Virtual Screening. Anna Linusson. Department of Chemistry Umeå University Sweden

Size: px
Start display at page:

Download "Virtual Screening. Anna Linusson. Department of Chemistry Umeå University Sweden"

Transcription

1 Virtual Screening Anna Linusson Department of Chemistry Umeå University Sweden

2 Virtual screening N N NH 2 N Cl N N H H H N N N S N HN N H S N N S S N N

3 Free energy of binding G RT ln K A H T S 0 G 0 0 R' L' aq ( 0 Raq 0 Laq ) Experimentally determined inhibition constants =10-2 to M, i.e. 10 pm to10 mm; pki= 2 to 8 (at T=298 K) A one order of magnitude change corresponds to 5.7 kj/mol or 1.36 kcal/mol (1kcal = 4.18 kj)

4 Virtual screening Development Validation Preparation Execution Evaluation H 6 (Embelin) H

5 utline Methodology Ligand-based Structure-based What can we expect? Virtual screening vs. HTS Case study Take home message

6 Virtual screening + Enthalpy Ionic interactions Hydrogen bonds Dipole-dipole moments Aromatic interactions van der Waal interactions Binding entropy loss of conformational flexibility Solvation/desolvation Flexibility (degrees of freedom)

7 Virtual screening H Similarity principle 6 (Embelin) H Receptor-based approach A plethora of methods/approaches to choose from Case dependent Don t trust retrospective studies

8 What do I know? Drug Discovery and Development Years First patent application Clinical trial application Product licence application Drug Discovery Target and lead identification Lead optimisation Drug Development Development Concept testing for launch Launch Product life cycle support Clinical Development Phase I people Phase II people Phase III 500-5,000 people Phase IV studies continue Toxicology and pharmacokinetic studies (absorption, distribution, metabolism, excretion) No. of compounds Up to 10, Pharmaceutical and analytical development Process chemistry and manufacturing Registration and regulatory affairs Sales and marketing (preparation, promotion, advertising and selling) Cost $3 million $225 million $450 million

9 Virtual screening - methodology Ligand-based Structure-based Demands a (set of) known ligands/active molecule/s These molecules may be structurally similar or different Validated inactive molecules may also be of use Demands a 3D-structure of the target receptor (protein) These may be crystal structures, NMR structures or homology models Several structures of the same target bound to different ligands is an advantage H 6 (Embelin) H Read more: Taboureau,. et al. Chemistry & Biology, 2012, 19, Klebe, DDT, 2006, 11: Shoichet, Nature, 2004, 432:

10 Virtual screening generic procedures Development Validation Preparation Execution Evaluation Source of chemicals (e.g. commercial) Selection of known ligand/s and/or target/s Preparation of chemical structures Chemicals and ligands: 2D, 2D->3D Macromolecules: X-ray, NMR, homology models Tautomers Protonation states Stereochemistry Conformations Experimental evaluation Confirmation of hits Biologically Chemical structure Follow up

11 Ligand-based virtual screening Prerequisite Screening methods ne or a set of known active molecules Descriptor-based Shape-based H 6 (Embelin) H Pharmacophore-based... Unsupervised (similarity search) Supervised (regression models)

12 Descriptor-based screening Based on the assumption that a similarity in compound physicochemical descriptors (i.e. physicochemical properties) will lead to a similar biological action Preparation Execution Calculation of descriptors Fingerprints Physical properties 3D-GRID descriptors Selection of similarity measure (Tanimoto) Creation of a quantitative structureactivity relationship Linear regression model Non-linear regression model Rule-based model Assessment of model quality Applicability domain Estimation of similarity Prediction of the biological activity of the compound library structures using the QSAR model Evaluation Use the ranking list from execution Cut offs Selection criteria (diversity) Additional filtering Clustering

13 Shape-based screening The goal is to find compounds similar in 3D-shape to the query molecule(s) Preparation Generation of 3D structures (Alignment of structures) Calculating volumes Creation of shape-query (Combine with electrostatics) Selection of similarity measure Evaluation Execution Screening of the compound database (3D-structures) based on overlapping volumes Multiple shape queries A good overlap will be ranked high Prioritization of hit compounds Cut offs Chemical features Combination of shape queries Read more: Kirchmair et al, J. Chem. Inf. Model. 2009, 49,

14 Pharmacophore-based screening A pharmacophore is an abstract (3D) description of chemical features in a molecule, necessary for biological recognition Preparation Align analogues Generation of low-energy 3D structures of the active molecules Alignment of structures Identification of 2-4 common features Creation of 3D-pharmacophore Assign pharmacophore features to a search chemicals Select measure Create pharmacophore Pseudo-receptor

15 Pharmacophore-based screening Execution Evaluation Fit molecules (i.e. the pharmacophore features) in the database to the generated pharmacophore A good match is ranked high Prioritization of hit compounds What about diversity among the hits? Many different pharmacophores Read more: Kim et al., Expert pin. Drug Discov., 2010, 5(3),

16 Structure-based virtual screening Prerequisite Structure of known target Molecular Docking Rigid receptor - flexible ligands Soft receptor - flexible ligands Multiple receptors Induced-fit docking

17 Docking-based virtual screening Preparation Preparation of protein structure(s) Addition of hydrogens ptimization of H-bond networks Treatment of water Protonation state and tautomers Definition of binding site ptional settings depending on docking software Inclusion of water Movement of side-chains Energy minimization of resulting complexes Re-docking (and crossdocking) of the crystal structure ligand may be guide the choice of docking software Structure-based virtual screening

18 Docking-based virtual screening Execution Generation of molecule conformations Generation of docking-poses for each molecule Judgment of clashes and interactions between ligand and protein Depending on docking software addition and removal of water molecules in the binding site docking filtering (removal unwanted molecules based on e.g. absence of specific interactions with the protein) Structure-based virtual screening

19 Docking-based virtual screening Evaluation Scoring of docking poses using one scoring function Scoring using several scoring functions (consensus scoring or fused) Selection of a subset of molecules using a simple scoring function and re-scoring with a computational intensive function Choice of scoring function may be guided by the scoring of known active and inactive molecules Biological evaluation Example of a simple scoring function that estimates the free energy of binding ( G bind ): G bind = G solv + G int + G conf + G hbond + G elect

20 Account for (some) flexibility Soft receptors Multiple receptors Mimics movement by varying the Lennard-Jones potential of the receptor atoms (i.e. the distance at which atoms clash) Allowing for more clashes Variable binding site size Crystal structures of the same protein with different conformations induced by different ligands Conformation ensembles of a protein generated by MD-simulations Manual alterations of proteins structures (e.g. conformations of flexible loops) Ligated complexes usually performs better than apo-structures The complex with the largest ligand is usually a good choice

21 Account for (some) flexibility Induced-fit docking Movements or position of hydrogen atoms attached to hetero atoms (, N or S) Flips of histidine, aspargine and glutamine side chains (i.e. tautomers) Allowing for movements of userspecified receptor side chain and/or backbone atoms. The entire complex is optimized (e.g. the protein is forced to adopt to the ligand) Demands a scoring function that can account for protein internal energy changes Further reading: Kokh et al.,, Comput. Mol. Sci., 2011, 1,

22 Water To include or not to include? Crystal structure can guide for important waters Highly conserved waters can be included The benefit of included waters is questionable If any then case dependentc NB: It is not questionable that water is important Tools to predict important waters Docking tools to account for waters on/off

23 Using multiple methods Compound Library Fast: Rigid/shape based filtering, Fast: Pharmacophore/substructure searches, Fast: High-throughput docking ex. RCS, FRED Slow: Flexible docking Fast: Rescoring, Slow: Visual Inspection Biological evaluation ex. GLD, Glide, FlexX,...

24 Which method/approach should I use? How to best use existing information about ligands and targets? What is your goal? Combining methods is often beneficial Case dependent Don t trust retrospective studies Nicholls, JCAMD, 2008, 22: Warren et al., JCM, 2006, 49:

25 What can we expect? Scoring functions cannot predict binding affinities Marsden et al. BC, 2004, 2: Enyedy and Egan, JCAMD, 2008, 22:

26 What can we expect? G RT ln K A H T Sources of errors in virtual screening Limitations in fundamental knowledge Assumptions made (flexibility, water, simplifications) Bad science (pre-treatments, statistics, parameters, validations) S 0 Knowledge-based driven approach 31 pitfalls: Agrafiotis and co-workers, JCIM, 2012, 52: Pitfalls and traps: Hawkin et al., JCAMD, 2008, 22: Shoichet, Nature, 2004, 432: Klebe, DDT, 2006, 11:

27 What can we expect? Enrichment. Increase the likelihood of finding promising hits. Hit rates: To what good? Recover false negatives from HTS and disclose false positives When only a smaller library can be screened Virtual screening and HTS are complementary methods Ferreria et al., JCM, 2010, 53: Polgár et al. Comb. Chem. High Throughput Screening, 2011, 14,

28 utline Methodology Ligand-based Structure-based What can we expect? Virtual screening vs. HTS Case study Take home message

29 ADP-ribosyltransferases Post-translational modification NAD + as cosubstrate Mono- or Polyribosylation Writers in epigenetics The nomenclature... ARTD: diphteria toxin-like ADP-ribosyltransferase also known as PARP: poly ADP-ribose polymerase

30 Docking-based virtual screening...to find new small molecules that bind to ADP-ribosyltransferases...to develop selective ligands for different ADP-ribosyltransferases...to use the molecules as chemical tools in the elucidation of biological functions Andersson et al., JCM, 2012, 55:

31 Virtual screening What do we know? And what do we want? PARP14 PARP15

32 Virtual screening methodology Preparation Re-docking and cross-docking of crystal structures Evaluation of docking tools and settings Compound Database Chemicals In house compound collection Protonation states, tautomers and stereoisomers Determination of features and property criteria Filtering of compound collection Target/s Proteins Investigation of D-loop conformations of all crystalized PARPs Selection of protein structures Selection of conformers Protein preparation (hydrogens, tautomers, protonation states) Definition of binding site Known binders Collection of list known binders based on crystal structures and/or experimental assays Protonation states, tautomers and stereoisomers

33 Virtual screening methodology Execution Evaluation

34 Docking score resemblance Compounds were selected based on scoring similarities to known binders Previously known binders Compounds selected for testing

35 Selection of compounds for wet lab 64 were chosen by our scoring method and 64 (47) were selected solely based on Glidescore 111 molecules were selected for biological testing No enzymatic assay available! Thermal shift assay Senisterra et al. Mol. BioSyst., 2009, 5,

36 Hits for PARP14 and/or PARP15 ΔT m of degrees Identified by scoring resemblance Identified by Glidescore

37 Multiple protein structures Hits were identified from screening against all protein structures 63% of the hits were identified from PARPs with unaltered D-loop Three hits were exclusively identified from structures with truncated loop (including the two best hits)

38 Selectivity profile All 111 compounds experimentally tested for binding to PARP1 PARP15 PARP14 PARP1

39 Hit validation A16 (E) NH 2 N H H A16 (Z) H 2 N N H H

40 Hit validation Isothermal titration calorimetry A16 (Z) A16 (E) H 2 N N H H NH 2 N H H K d = 7.6 μm K d = 11.2 μm

41 Crystallization of A16 and PARP14 Z-isomer A16 H 2 N N H H Resolution 1.9 Å E-isomer A16 NH 2 N H H Resolution 2.8 Å

42 Binding mode of A16 to PARP14 Crystal structure of A16 (E and Z) Docking pose of A16(E) 2 1

43 Case summary 16 binders (8 different structural classes) => hit rate of 14 % ur scoring method found structurally diverse compounds Both isomers of A16 binds to PARP14 (~10μM) Crystal structures of the A16 isomers confirmed docking poses The virtual screen provided good starting points to develop selective inhibitors

44 Take home message Virtual screening increases the likelihood of finding hits in a set Virtual screening is a knowledge-based method use available information Don t trust retrospective studies Virtual screening is a complementary method to HTS

45 Acknowledgements Department of Chemisty, UmU Linusson s Lab David Andersson Lotta Berg Brijesh Kumar Mishra Cecilia Lindgren Urszula Uciechowska Cecilia Engdahl Elofsson s Lab Sara Spjut Anders Lindgren Rémi Caraballo Wittung-Stafshede s Lab Pernilla Wittung-Stafshede Moritz Niemiec Laboratories for Chemical Biology Umeå (LCBU) Karolinska institutet Schüler s Lab Tobias Karlberg Torun Ekblad Ann-Gerd Thorsell Johan Weigelt Financial Support The Swedish Research Council Umeå University Swedish Foundation for Strategic Research

46

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre Dr. Sander B. Nabuurs Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre The road to new drugs. How to find new hits? High Throughput

More information

The PhilOEsophy. There are only two fundamental molecular descriptors

The PhilOEsophy. There are only two fundamental molecular descriptors The PhilOEsophy There are only two fundamental molecular descriptors Where can we use shape? Virtual screening More effective than 2D Lead-hopping Shape analogues are not graph analogues Molecular alignment

More information

Structural Bioinformatics (C3210) Molecular Docking

Structural Bioinformatics (C3210) Molecular Docking Structural Bioinformatics (C3210) Molecular Docking Molecular Recognition, Molecular Docking Molecular recognition is the ability of biomolecules to recognize other biomolecules and selectively interact

More information

Kd = koff/kon = [R][L]/[RL]

Kd = koff/kon = [R][L]/[RL] Taller de docking y cribado virtual: Uso de herramientas computacionales en el diseño de fármacos Docking program GLIDE El programa de docking GLIDE Sonsoles Martín-Santamaría Shrödinger is a scientific

More information

Retrieving hits through in silico screening and expert assessment M. N. Drwal a,b and R. Griffith a

Retrieving hits through in silico screening and expert assessment M. N. Drwal a,b and R. Griffith a Retrieving hits through in silico screening and expert assessment M.. Drwal a,b and R. Griffith a a: School of Medical Sciences/Pharmacology, USW, Sydney, Australia b: Charité Berlin, Germany Abstract:

More information

Docking. GBCB 5874: Problem Solving in GBCB

Docking. GBCB 5874: Problem Solving in GBCB Docking Benzamidine Docking to Trypsin Relationship to Drug Design Ligand-based design QSAR Pharmacophore modeling Can be done without 3-D structure of protein Receptor/Structure-based design Molecular

More information

Computational chemical biology to address non-traditional drug targets. John Karanicolas

Computational chemical biology to address non-traditional drug targets. John Karanicolas Computational chemical biology to address non-traditional drug targets John Karanicolas Our computational toolbox Structure-based approaches Ligand-based approaches Detailed MD simulations 2D fingerprints

More information

In silico pharmacology for drug discovery

In silico pharmacology for drug discovery In silico pharmacology for drug discovery In silico drug design In silico methods can contribute to drug targets identification through application of bionformatics tools. Currently, the application of

More information

Virtual Libraries and Virtual Screening in Drug Discovery Processes using KNIME

Virtual Libraries and Virtual Screening in Drug Discovery Processes using KNIME Virtual Libraries and Virtual Screening in Drug Discovery Processes using KNIME Iván Solt Solutions for Cheminformatics Drug Discovery Strategies for known targets High-Throughput Screening (HTS) Cells

More information

Virtual Screening: How Are We Doing?

Virtual Screening: How Are We Doing? Virtual Screening: How Are We Doing? Mark E. Snow, James Dunbar, Lakshmi Narasimhan, Jack A. Bikker, Dan Ortwine, Christopher Whitehead, Yiannis Kaznessis, Dave Moreland, Christine Humblet Pfizer Global

More information

Using AutoDock for Virtual Screening

Using AutoDock for Virtual Screening Using AutoDock for Virtual Screening CUHK Croucher ASI Workshop 2011 Stefano Forli, PhD Prof. Arthur J. Olson, Ph.D Molecular Graphics Lab Screening and Virtual Screening The ultimate tool for identifying

More information

The Schrödinger KNIME extensions

The Schrödinger KNIME extensions The Schrödinger KNIME extensions Computational Chemistry and Cheminformatics in a workflow environment Jean-Christophe Mozziconacci Volker Eyrich Topics What are the Schrödinger extensions? Workflow application

More information

Softwares for Molecular Docking. Lokesh P. Tripathi NCBS 17 December 2007

Softwares for Molecular Docking. Lokesh P. Tripathi NCBS 17 December 2007 Softwares for Molecular Docking Lokesh P. Tripathi NCBS 17 December 2007 Molecular Docking Attempt to predict structures of an intermolecular complex between two or more molecules Receptor-ligand (or drug)

More information

Structure-Activity Modeling - QSAR. Uwe Koch

Structure-Activity Modeling - QSAR. Uwe Koch Structure-Activity Modeling - QSAR Uwe Koch QSAR Assumption: QSAR attempts to quantify the relationship between activity and molecular strcucture by correlating descriptors with properties Biological activity

More information

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions Molecular Interactions F14NMI Lecture 4: worked answers to practice questions http://comp.chem.nottingham.ac.uk/teaching/f14nmi jonathan.hirst@nottingham.ac.uk (1) (a) Describe the Monte Carlo algorithm

More information

Structural biology and drug design: An overview

Structural biology and drug design: An overview Structural biology and drug design: An overview livier Taboureau Assitant professor Chemoinformatics group-cbs-dtu otab@cbs.dtu.dk Drug discovery Drug and drug design A drug is a key molecule involved

More information

Introduction to Chemoinformatics and Drug Discovery

Introduction to Chemoinformatics and Drug Discovery Introduction to Chemoinformatics and Drug Discovery Irene Kouskoumvekaki Associate Professor February 15 th, 2013 The Chemical Space There are atoms and space. Everything else is opinion. Democritus (ca.

More information

Computational Chemistry in Drug Design. Xavier Fradera Barcelona, 17/4/2007

Computational Chemistry in Drug Design. Xavier Fradera Barcelona, 17/4/2007 Computational Chemistry in Drug Design Xavier Fradera Barcelona, 17/4/2007 verview Introduction and background Drug Design Cycle Computational methods Chemoinformatics Ligand Based Methods Structure Based

More information

MM-GBSA for Calculating Binding Affinity A rank-ordering study for the lead optimization of Fxa and COX-2 inhibitors

MM-GBSA for Calculating Binding Affinity A rank-ordering study for the lead optimization of Fxa and COX-2 inhibitors MM-GBSA for Calculating Binding Affinity A rank-ordering study for the lead optimization of Fxa and COX-2 inhibitors Thomas Steinbrecher Senior Application Scientist Typical Docking Workflow Databases

More information

BCMP 201 Protein biochemistry

BCMP 201 Protein biochemistry BCMP 201 Protein biochemistry BCMP 201 Protein biochemistry with emphasis on the interrelated roles of protein structure, catalytic activity, and macromolecular interactions in biological processes. The

More information

est Drive K20 GPUs! Experience The Acceleration Run Computational Chemistry Codes on Tesla K20 GPU today

est Drive K20 GPUs! Experience The Acceleration Run Computational Chemistry Codes on Tesla K20 GPU today est Drive K20 GPUs! Experience The Acceleration Run Computational Chemistry Codes on Tesla K20 GPU today Sign up for FREE GPU Test Drive on remotely hosted clusters www.nvidia.com/gputestd rive Shape Searching

More information

Biologically Relevant Molecular Comparisons. Mark Mackey

Biologically Relevant Molecular Comparisons. Mark Mackey Biologically Relevant Molecular Comparisons Mark Mackey Agenda > Cresset Technology > Cresset Products > FieldStere > FieldScreen > FieldAlign > FieldTemplater > Cresset and Knime About Cresset > Specialist

More information

Bioengineering & Bioinformatics Summer Institute, Dept. Computational Biology, University of Pittsburgh, PGH, PA

Bioengineering & Bioinformatics Summer Institute, Dept. Computational Biology, University of Pittsburgh, PGH, PA Pharmacophore Model Development for the Identification of Novel Acetylcholinesterase Inhibitors Edwin Kamau Dept Chem & Biochem Kennesa State Uni ersit Kennesa GA 30144 Dept. Chem. & Biochem. Kennesaw

More information

Introduction. OntoChem

Introduction. OntoChem Introduction ntochem Providing drug discovery knowledge & small molecules... Supporting the task of medicinal chemistry Allows selecting best possible small molecule starting point From target to leads

More information

Virtual screening in drug discovery

Virtual screening in drug discovery Virtual screening in drug discovery Pavel Polishchuk Institute of Molecular and Translational Medicine Palacky University pavlo.polishchuk@upol.cz Drug development workflow Vistoli G., et al., Drug Discovery

More information

Other Cells. Hormones. Viruses. Toxins. Cell. Bacteria

Other Cells. Hormones. Viruses. Toxins. Cell. Bacteria Other Cells Hormones Viruses Toxins Cell Bacteria ΔH < 0 reaction is exothermic, tells us nothing about the spontaneity of the reaction Δ H > 0 reaction is endothermic, tells us nothing about the spontaneity

More information

Ignasi Belda, PhD CEO. HPC Advisory Council Spain Conference 2015

Ignasi Belda, PhD CEO. HPC Advisory Council Spain Conference 2015 Ignasi Belda, PhD CEO HPC Advisory Council Spain Conference 2015 Business lines Molecular Modeling Services We carry out computational chemistry projects using our selfdeveloped and third party technologies

More information

Isothermal Titration Calorimetry in Drug Discovery. Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 2017

Isothermal Titration Calorimetry in Drug Discovery. Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 2017 Isothermal Titration Calorimetry in Drug Discovery Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 217 Introduction Introduction to ITC Strengths / weaknesses & what is required

More information

Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs

Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs William (Bill) Welsh welshwj@umdnj.edu Prospective Funding by DTRA/JSTO-CBD CBIS Conference 1 A State-wide, Regional and National

More information

Using Phase for Pharmacophore Modelling. 5th European Life Science Bootcamp March, 2017

Using Phase for Pharmacophore Modelling. 5th European Life Science Bootcamp March, 2017 Using Phase for Pharmacophore Modelling 5th European Life Science Bootcamp March, 2017 Phase: Our Pharmacohore generation tool Significant improvements to Phase methods in 2016 New highly interactive interface

More information

LigandScout. Automated Structure-Based Pharmacophore Model Generation. Gerhard Wolber* and Thierry Langer

LigandScout. Automated Structure-Based Pharmacophore Model Generation. Gerhard Wolber* and Thierry Langer LigandScout Automated Structure-Based Pharmacophore Model Generation Gerhard Wolber* and Thierry Langer * E-Mail: wolber@inteligand.com Pharmacophores from LigandScout Pharmacophores & the Protein Data

More information

High Throughput In-Silico Screening Against Flexible Protein Receptors

High Throughput In-Silico Screening Against Flexible Protein Receptors John von Neumann Institute for Computing High Throughput In-Silico Screening Against Flexible Protein Receptors H. Sánchez, B. Fischer, H. Merlitz, W. Wenzel published in From Computational Biophysics

More information

Structure based drug design and LIE models for GPCRs

Structure based drug design and LIE models for GPCRs Structure based drug design and LIE models for GPCRs Peter Kolb kolb@docking.org Shoichet Lab ACS 237 th National Meeting, March 24, 2009 p.1/26 [Acknowledgements] Brian Shoichet John Irwin Mike Keiser

More information

BUDE. A General Purpose Molecular Docking Program Using OpenCL. Richard B Sessions

BUDE. A General Purpose Molecular Docking Program Using OpenCL. Richard B Sessions BUDE A General Purpose Molecular Docking Program Using OpenCL Richard B Sessions 1 The molecular docking problem receptor ligand Proteins typically O(1000) atoms Ligands typically O(100) atoms predicted

More information

Protein Structure Prediction and Protein-Ligand Docking

Protein Structure Prediction and Protein-Ligand Docking Protein Structure Prediction and Protein-Ligand Docking Björn Wallner bjornw@ifm.liu.se Jan. 24, 2014 Todays topics Protein Folding Intro Protein structure prediction How can we predict the structure of

More information

DOCKING TUTORIAL. A. The docking Workflow

DOCKING TUTORIAL. A. The docking Workflow 2 nd Strasbourg Summer School on Chemoinformatics VVF Obernai, France, 20-24 June 2010 E. Kellenberger DOCKING TUTORIAL A. The docking Workflow 1. Ligand preparation It consists in the standardization

More information

Progress of Compound Library Design Using In-silico Approach for Collaborative Drug Discovery

Progress of Compound Library Design Using In-silico Approach for Collaborative Drug Discovery 21 th /June/2018@CUGM Progress of Compound Library Design Using In-silico Approach for Collaborative Drug Discovery Kaz Ikeda, Ph.D. Keio University Self Introduction Keio University, Tokyo, Japan (Established

More information

The Schrödinger KNIME extensions

The Schrödinger KNIME extensions The Schrödinger KNIME extensions Computational Chemistry and Cheminformatics in a workflow environment Jean-Christophe Mozziconacci Volker Eyrich KNIME UGM, Berlin, February 2015 The Schrödinger Extensions

More information

Targeting protein-protein interactions: A hot topic in drug discovery

Targeting protein-protein interactions: A hot topic in drug discovery Michal Kamenicky; Maria Bräuer; Katrin Volk; Kamil Ödner; Christian Klein; Norbert Müller Targeting protein-protein interactions: A hot topic in drug discovery 104 Biomedizin Innovativ patientinnenfokussierte,

More information

Receptor Based Drug Design (1)

Receptor Based Drug Design (1) Induced Fit Model For more than 100 years, the behaviour of enzymes had been explained by the "lock-and-key" mechanism developed by pioneering German chemist Emil Fischer. Fischer thought that the chemicals

More information

Molecular Dynamics Graphical Visualization 3-D QSAR Pharmacophore QSAR, COMBINE, Scoring Functions, Homology Modeling,..

Molecular Dynamics Graphical Visualization 3-D QSAR Pharmacophore QSAR, COMBINE, Scoring Functions, Homology Modeling,.. 3 Conformational Search Molecular Docking Simulate Annealing Ab Initio QM Molecular Dynamics Graphical Visualization 3-D QSAR Pharmacophore QSAR, COMBINE, Scoring Functions, Homology Modeling,.. Rino Ragno:

More information

A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery

A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery AtomNet A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery Izhar Wallach, Michael Dzamba, Abraham Heifets Victor Storchan, Institute for Computational and

More information

Fondamenti di Chimica Farmaceutica. Computer Chemistry in Drug Research: Introduction

Fondamenti di Chimica Farmaceutica. Computer Chemistry in Drug Research: Introduction Fondamenti di Chimica Farmaceutica Computer Chemistry in Drug Research: Introduction Introduction Introduction Introduction Computer Chemistry in Drug Design Drug Discovery: Target identification Lead

More information

schematic diagram; EGF binding, dimerization, phosphorylation, Grb2 binding, etc.

schematic diagram; EGF binding, dimerization, phosphorylation, Grb2 binding, etc. Lecture 1: Noncovalent Biomolecular Interactions Bioengineering and Modeling of biological processes -e.g. tissue engineering, cancer, autoimmune disease Example: RTK signaling, e.g. EGFR Growth responses

More information

BioSolveIT. A Combinatorial Approach for Handling of Protonation and Tautomer Ambiguities in Docking Experiments

BioSolveIT. A Combinatorial Approach for Handling of Protonation and Tautomer Ambiguities in Docking Experiments BioSolveIT Biology Problems Solved using Information Technology A Combinatorial Approach for andling of Protonation and Tautomer Ambiguities in Docking Experiments Ingo Dramburg BioSolve IT Gmb An der

More information

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015,

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Course,Informa5on, BIOC%530% GraduateAlevel,discussion,of,the,structure,,func5on,,and,chemistry,of,proteins,and, nucleic,acids,,control,of,enzyma5c,reac5ons.,please,see,the,course,syllabus,and,

More information

Hit Finding and Optimization Using BLAZE & FORGE

Hit Finding and Optimization Using BLAZE & FORGE Hit Finding and Optimization Using BLAZE & FORGE Kevin Cusack,* Maria Argiriadi, Eric Breinlinger, Jeremy Edmunds, Michael Hoemann, Michael Friedman, Sami Osman, Raymond Huntley, Thomas Vargo AbbVie, Immunology

More information

Bridging the Dimensions:

Bridging the Dimensions: Bridging the Dimensions: Seamless Integration of 3D Structure-based Design and 2D Structure-activity Relationships to Guide Medicinal Chemistry ACS Spring National Meeting. COMP, March 13 th 2016 Marcus

More information

Principles of Drug Design

Principles of Drug Design Advanced Medicinal Chemistry II Principles of Drug Design Tentative Course Outline Instructors: Longqin Hu and John Kerrigan Direct questions and enquiries to the Course Coordinator: Longqin Hu I. Introduction

More information

Data Mining in the Chemical Industry. Overview of presentation

Data Mining in the Chemical Industry. Overview of presentation Data Mining in the Chemical Industry Glenn J. Myatt, Ph.D. Partner, Myatt & Johnson, Inc. glenn.myatt@gmail.com verview of presentation verview of the chemical industry Example of the pharmaceutical industry

More information

An Integrated Approach to in-silico

An Integrated Approach to in-silico An Integrated Approach to in-silico Screening Joseph L. Durant Jr., Douglas. R. Henry, Maurizio Bronzetti, and David. A. Evans MDL Information Systems, Inc. 14600 Catalina St., San Leandro, CA 94577 Goals

More information

Integrated Cheminformatics to Guide Drug Discovery

Integrated Cheminformatics to Guide Drug Discovery Integrated Cheminformatics to Guide Drug Discovery Matthew Segall, Ed Champness, Peter Hunt, Tamsin Mansley CINF Drug Discovery Cheminformatics Approaches August 23 rd 2017 Optibrium, StarDrop, Auto-Modeller,

More information

Chemogenomic: Approaches to Rational Drug Design. Jonas Skjødt Møller

Chemogenomic: Approaches to Rational Drug Design. Jonas Skjødt Møller Chemogenomic: Approaches to Rational Drug Design Jonas Skjødt Møller Chemogenomic Chemistry Biology Chemical biology Medical chemistry Chemical genetics Chemoinformatics Bioinformatics Chemoproteomics

More information

Development of a Structure Generator to Explore Target Areas on Chemical Space

Development of a Structure Generator to Explore Target Areas on Chemical Space Development of a Structure Generator to Explore Target Areas on Chemical Space Kimito Funatsu Department of Chemical System Engineering, This materials will be published on Molecular Informatics Drug Development

More information

Practical QSAR and Library Design: Advanced tools for research teams

Practical QSAR and Library Design: Advanced tools for research teams DS QSAR and Library Design Webinar Practical QSAR and Library Design: Advanced tools for research teams Reservationless-Plus Dial-In Number (US): (866) 519-8942 Reservationless-Plus International Dial-In

More information

Cheminformatics platform for drug discovery application

Cheminformatics platform for drug discovery application EGI-InSPIRE Cheminformatics platform for drug discovery application Hsi-Kai, Wang Academic Sinica Grid Computing EGI User Forum, 13, April, 2011 1 Introduction to drug discovery Computing requirement of

More information

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes Introduction The production of new drugs requires time for development and testing, and can result in large prohibitive costs

More information

Scoring functions for of protein-ligand docking: New routes towards old goals

Scoring functions for of protein-ligand docking: New routes towards old goals 3nd Strasbourg Summer School on Chemoinformatics Strasbourg, June 25-29, 2012 Scoring functions for of protein-ligand docking: New routes towards old goals Christoph Sotriffer Institute of Pharmacy and

More information

A Tiered Screen Protocol for the Discovery of Structurally Diverse HIV Integrase Inhibitors

A Tiered Screen Protocol for the Discovery of Structurally Diverse HIV Integrase Inhibitors A Tiered Screen Protocol for the Discovery of Structurally Diverse HIV Integrase Inhibitors Rajarshi Guha, Debojyoti Dutta, Ting Chen and David J. Wild School of Informatics Indiana University and Dept.

More information

Design and Synthesis of the Comprehensive Fragment Library

Design and Synthesis of the Comprehensive Fragment Library YOUR INNOVATIVE CHEMISTRY PARTNER IN DRUG DISCOVERY Design and Synthesis of the Comprehensive Fragment Library A 3D Enabled Library for Medicinal Chemistry Discovery Warren S Wade 1, Kuei-Lin Chang 1,

More information

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM Homology modeling Dinesh Gupta ICGEB, New Delhi Protein structure prediction Methods: Homology (comparative) modelling Threading Ab-initio Protein Homology modeling Homology modeling is an extrapolation

More information

Protein-Ligand Docking Evaluations

Protein-Ligand Docking Evaluations Introduction Protein-Ligand Docking Evaluations Protein-ligand docking: Given a protein and a ligand, determine the pose(s) and conformation(s) minimizing the total energy of the protein-ligand complex

More information

Introduction to Structure Preparation and Visualization

Introduction to Structure Preparation and Visualization Introduction to Structure Preparation and Visualization Created with: Release 2018-4 Prerequisites: Release 2018-2 or higher Access to the internet Categories: Molecular Visualization, Structure-Based

More information

György M. Keserű H2020 FRAGNET Network Hungarian Academy of Sciences

György M. Keserű H2020 FRAGNET Network Hungarian Academy of Sciences Fragment based lead discovery - introduction György M. Keserű H2020 FRAGET etwork Hungarian Academy of Sciences www.fragnet.eu Hit discovery from screening Druglike library Fragment library Large molecules

More information

Principles of Drug Design

Principles of Drug Design (16:663:502) Instructors: Longqin Hu and John Kerrigan Direct questions and enquiries to the Course Coordinator: Longqin Hu For more current information, please check WebCT at https://webct.rutgers.edu

More information

Ping-Chiang Lyu. Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University.

Ping-Chiang Lyu. Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University. Pharmacophore-based Drug design Ping-Chiang Lyu Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University 96/08/07 Outline Part I: Analysis The analytical

More information

Building innovative drug discovery alliances. Just in KNIME: Successful Process Driven Drug Discovery

Building innovative drug discovery alliances. Just in KNIME: Successful Process Driven Drug Discovery Building innovative drug discovery alliances Just in KIME: Successful Process Driven Drug Discovery Berlin KIME Spring Summit, Feb 2016 Research Informatics @ Evotec Evotec s worldwide operations 2 Pharmaceuticals

More information

CHAPTER 6 QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP (QSAR) ANALYSIS

CHAPTER 6 QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP (QSAR) ANALYSIS 159 CHAPTER 6 QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP (QSAR) ANALYSIS 6.1 INTRODUCTION The purpose of this study is to gain on insight into structural features related the anticancer, antioxidant

More information

BioSolveIT. A Combinatorial Docking Approach for Dealing with Protonation and Tautomer Ambiguities

BioSolveIT. A Combinatorial Docking Approach for Dealing with Protonation and Tautomer Ambiguities BioSolveIT Biology Problems Solved using Information Technology A Combinatorial Docking Approach for Dealing with Protonation and Tautomer Ambiguities Ingo Dramburg BioSolve IT Gmb An der Ziegelei 75 53757

More information

User Guide for LeDock

User Guide for LeDock User Guide for LeDock Hongtao Zhao, PhD Email: htzhao@lephar.com Website: www.lephar.com Copyright 2017 Hongtao Zhao. All rights reserved. Introduction LeDock is flexible small-molecule docking software,

More information

CHEM 4170 Problem Set #1

CHEM 4170 Problem Set #1 CHEM 4170 Problem Set #1 0. Work problems 1-7 at the end of Chapter ne and problems 1, 3, 4, 5, 8, 10, 12, 17, 18, 19, 22, 24, and 25 at the end of Chapter Two and problem 1 at the end of Chapter Three

More information

The Long and Rocky Road from a PDB File to a Protein Ligand Docking Score. Protein Structures: The Starting Point for New Drugs 2

The Long and Rocky Road from a PDB File to a Protein Ligand Docking Score. Protein Structures: The Starting Point for New Drugs 2 The Long and Rocky Road from a PDB File to a Protein Ligand Docking Score Protein Structures: The Starting Point for New Drugs 2 Matthias Rarey Stefan Bietz Nadine Schneider Sascha Urbaczek University

More information

KNIME-based scoring functions in Muse 3.0. KNIME User Group Meeting 2013 Fabian Bös

KNIME-based scoring functions in Muse 3.0. KNIME User Group Meeting 2013 Fabian Bös KIME-based scoring functions in Muse 3.0 KIME User Group Meeting 2013 Fabian Bös Certara Mission: End-to-End Model-Based Drug Development Certara was formed by acquiring and integrating Tripos, Pharsight,

More information

ENERGY MINIMIZATION AND CONFORMATION SEARCH ANALYSIS OF TYPE-2 ANTI-DIABETES DRUGS

ENERGY MINIMIZATION AND CONFORMATION SEARCH ANALYSIS OF TYPE-2 ANTI-DIABETES DRUGS Int. J. Chem. Sci.: 6(2), 2008, 982-992 EERGY MIIMIZATI AD CFRMATI SEARC AALYSIS F TYPE-2 ATI-DIABETES DRUGS R. PRASAA LAKSMI a, C. ARASIMA KUMAR a, B. VASATA LAKSMI, K. AGA SUDA, K. MAJA, V. JAYA LAKSMI

More information

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes Introduction Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes The production of new drugs requires time for development and testing, and can result in large prohibitive costs

More information

Machine Learning Concepts in Chemoinformatics

Machine Learning Concepts in Chemoinformatics Machine Learning Concepts in Chemoinformatics Martin Vogt B-IT Life Science Informatics Rheinische Friedrich-Wilhelms-Universität Bonn BigChem Winter School 2017 25. October Data Mining in Chemoinformatics

More information

Protein-Ligand Docking Methods

Protein-Ligand Docking Methods Review Goal: Given a protein structure, predict its ligand bindings Protein-Ligand Docking Methods Applications: Function prediction Drug discovery etc. Thomas Funkhouser Princeton University S597A, Fall

More information

Protein-Ligand Docking Methods

Protein-Ligand Docking Methods Review Goal: Given a protein structure, predict its ligand bindings Protein-Ligand Docking Methods Applications: Function prediction Drug discovery etc. Thomas Funkhouser Princeton University S597A, Fall

More information

Fragment based drug discovery in teams of medicinal and computational chemists. Carsten Detering

Fragment based drug discovery in teams of medicinal and computational chemists. Carsten Detering Fragment based drug discovery in teams of medicinal and computational chemists Carsten Detering BioSolveIT Quick Facts Founded in 2001 by the developers of FlexX ~20 people Core expertise: docking, screening,

More information

Early Stages of Drug Discovery in the Pharmaceutical Industry

Early Stages of Drug Discovery in the Pharmaceutical Industry Early Stages of Drug Discovery in the Pharmaceutical Industry Daniel Seeliger / Jan Kriegl, Discovery Research, Boehringer Ingelheim September 29, 2016 Historical Drug Discovery From Accidential Discovery

More information

FRAUNHOFER IME SCREENINGPORT

FRAUNHOFER IME SCREENINGPORT FRAUNHOFER IME SCREENINGPORT Design of screening projects General remarks Introduction Screening is done to identify new chemical substances against molecular mechanisms of a disease It is a question of

More information

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE Examples of Protein Modeling Protein Modeling Visualization Examination of an experimental structure to gain insight about a research question Dynamics To examine the dynamics of protein structures To

More information

Microcalorimetry for the Life Sciences

Microcalorimetry for the Life Sciences Microcalorimetry for the Life Sciences Why Microcalorimetry? Microcalorimetry is universal detector Heat is generated or absorbed in every chemical process In-solution No molecular weight limitations Label-free

More information

Similarity Search. Uwe Koch

Similarity Search. Uwe Koch Similarity Search Uwe Koch Similarity Search The similar property principle: strurally similar molecules tend to have similar properties. However, structure property discontinuities occur frequently. Relevance

More information

Presentation Microcalorimetry for Life Science Research

Presentation Microcalorimetry for Life Science Research Presentation Microcalorimetry for Life Science Research MicroCalorimetry The Universal Detector Heat is either generated or absorbed in every chemical process Capable of thermal measurements over a wide

More information

Generating Small Molecule Conformations from Structural Data

Generating Small Molecule Conformations from Structural Data Generating Small Molecule Conformations from Structural Data Jason Cole cole@ccdc.cam.ac.uk Cambridge Crystallographic Data Centre 1 The Cambridge Crystallographic Data Centre About us A not-for-profit,

More information

Flexibility and Constraints in GOLD

Flexibility and Constraints in GOLD Flexibility and Constraints in GOLD Version 2.1 August 2018 GOLD v5.6.3 Table of Contents Purpose of Docking... 3 GOLD s Evolutionary Algorithm... 4 GOLD and Hermes... 4 Handling Flexibility and Constraints

More information

Contents 1 Open-Source Tools, Techniques, and Data in Chemoinformatics

Contents 1 Open-Source Tools, Techniques, and Data in Chemoinformatics Contents 1 Open-Source Tools, Techniques, and Data in Chemoinformatics... 1 1.1 Chemoinformatics... 2 1.1.1 Open-Source Tools... 2 1.1.2 Introduction to Programming Languages... 3 1.2 Chemical Structure

More information

What is Protein-Ligand Docking?

What is Protein-Ligand Docking? MOLECULAR DOCKING Definition: What is Protein-Ligand Docking? Computationally predict the structures of protein-ligand complexes from their conformations and orientations. The orientation that maximizes

More information

Implementation of novel tools to facilitate fragment-based drug discovery by NMR:

Implementation of novel tools to facilitate fragment-based drug discovery by NMR: Implementation of novel tools to facilitate fragment-based drug discovery by NMR: Automated analysis of large sets of ligand-observed NMR binding data and 19 F methods Andreas Lingel Global Discovery Chemistry

More information

Introduction to FBDD Fragment screening methods and library design

Introduction to FBDD Fragment screening methods and library design Introduction to FBDD Fragment screening methods and library design Samantha Hughes, PhD Fragments 2013 RSC BMCS Workshop 3 rd March 2013 Copyright 2013 Galapagos NV Why fragment screening methods? Guess

More information

CHAPTER 3. Pharmacophore modelling studies:

CHAPTER 3. Pharmacophore modelling studies: CHAPTER 3 Pharmacophore modelling studies: 3.1 Introduction: According to Langer & Wolber (2004), the key goal of computer-aided molecular design methods in medicinal chemistry is to reduce the time and

More information

EMPIRICAL VS. RATIONAL METHODS OF DISCOVERING NEW DRUGS

EMPIRICAL VS. RATIONAL METHODS OF DISCOVERING NEW DRUGS EMPIRICAL VS. RATIONAL METHODS OF DISCOVERING NEW DRUGS PETER GUND Pharmacopeia Inc., CN 5350 Princeton, NJ 08543, USA pgund@pharmacop.com Empirical and theoretical approaches to drug discovery have often

More information

Chemical library design

Chemical library design Chemical library design Pavel Polishchuk Institute of Molecular and Translational Medicine Palacky University pavlo.polishchuk@upol.cz Drug development workflow Vistoli G., et al., Drug Discovery Today,

More information

Drug Design 2. Oliver Kohlbacher. Winter 2009/ QSAR Part 4: Selected Chapters

Drug Design 2. Oliver Kohlbacher. Winter 2009/ QSAR Part 4: Selected Chapters Drug Design 2 Oliver Kohlbacher Winter 2009/2010 11. QSAR Part 4: Selected Chapters Abt. Simulation biologischer Systeme WSI/ZBIT, Eberhard-Karls-Universität Tübingen Overview GRIND GRid-INDependent Descriptors

More information

Virtual screening for drug discovery. Markus Lill Purdue University

Virtual screening for drug discovery. Markus Lill Purdue University Virtual screening for drug discovery Markus Lill Purdue University mlill@purdue.edu Lecture material http://people.pharmacy.purdue.edu/~mlill/teaching/eidelberg/ I.1 Drug discovery Cl N Disease I.1 Drug

More information

October 6 University Faculty of pharmacy Computer Aided Drug Design Unit

October 6 University Faculty of pharmacy Computer Aided Drug Design Unit October 6 University Faculty of pharmacy Computer Aided Drug Design Unit CADD@O6U.edu.eg CADD Computer-Aided Drug Design Unit The development of new drugs is no longer a process of trial and error or strokes

More information

Author Index Volume

Author Index Volume Perspectives in Drug Discovery and Design, 20: 289, 2000. KLUWER/ESCOM Author Index Volume 20 2000 Bradshaw,J., 1 Knegtel,R.M.A., 191 Rose,P.W., 209 Briem, H., 231 Kostka, T., 245 Kuhn, L.A., 171 Sadowski,

More information

PATTERN RECOGNITION AND DISTRIBUTED COMPUTING

PATTERN RECOGNITION AND DISTRIBUTED COMPUTING 49 Molecular Informatics: Confronting Complexity, May 13 th - 16 th 2002, Bozen, Italy PATTERN RECOGNITION AND DISTRIBUTED COMPUTING IN DRUG DESIGN W. GRAHAM RICHARDS Department of Chemistry, University

More information

Using Bayesian Statistics to Predict Water Affinity and Behavior in Protein Binding Sites. J. Andrew Surface

Using Bayesian Statistics to Predict Water Affinity and Behavior in Protein Binding Sites. J. Andrew Surface Using Bayesian Statistics to Predict Water Affinity and Behavior in Protein Binding Sites Introduction J. Andrew Surface Hampden-Sydney College / Virginia Commonwealth University In the past several decades

More information