PROTEIN STRUCTURE PREDICTION Bioinformatic Approach

Size: px
Start display at page:

Download "PROTEIN STRUCTURE PREDICTION Bioinformatic Approach"

Transcription

1 Link to Order: Price: $ Website:. PROTEIN STRUCTURE PREDICTION Bioinformatic Approach edited by IGOR F. TSIGELNY Table of Contents: Preface xv List of Contributors xxi Part I. CONCEPTS OF PROTEIN STRUCRURE PREDICTION 1 A. Prediction Methods and Systems 3 1. Computational Studies of Protein Structure and Function Using Threading Program PROSPECT 5 Dong Xu and Ying Xu 1.1. Introduction Method of PROSPECT Threading Templates Energy Function Threading Algorithm Confidence Assessment of Threading Results Protocols of Using PROSPECT Pre-Processing before Running PROSPECT Running PROSPECT Human Evaluation Manual Refinement Structure-Based Functional Inference Performance of PROSPECT Testing of PROSPECT Using Known Structures in PDB Blind Test in CASP Application of PROSPECT in Protein Studies Human Vitronectin Human DNA-Activated Protein Kinase Yeast PTR3 Protein Summary Bayesian Approach to Protein Fold Recognition: Building Protein Structural Models from Bits and Pieces 43 Jadwiga Bienkowska, Hongxian He, Robert G. Rogers Jr., and Lihua Yu 2.1. Introduction Fundamentals of DSMs and HMMs Representation of Protein Structure by a DSM Mathematical Representation of a DSM Measures of Compatibility of a Protein Sequence with a DSM Automated Generation of Protein Structural Templates Criteria for Selecting Structural Information Candidate Structural Quantities 55 1

2 Classification of Structural States Automated Design of a Structural DSM from a Structural Template Design Principles Secondary Structure Submodels Construction of DSM from the Structural Template Using Structural Alignments and Multiple Structural Templates in Building DSM Automatic Pattern Embedding in a DSM Automated Pattern Generation and Selection Look-Ahead A Bayesian Approach to Fold Recognition The Filtering Algorithm Prior Model Probabilities Results Comparing the Bayesian Approach and Total Alignment Probability with Other Methods Results of Automatic Pattern Embedding Comparison of Different Assignments of Prior Probabilities Strategies for Defeating the Combinatorial Explosion Three-Dimensional Structure Prediction Using Simplified Structure Models and Bayesian Block Fragments 85 Jun Zhu and Roland Lüthy 3.1. Introduction Methods Simplified Backbone Angle Representation of 3D Structures Block Selection Energy Functions Energy Minimization Using Information from Bayesian Blocks Enforcing Secondary Structures Examples Protein Structure Prediction Using Hidden Markov Model Structural Libraries 109 Igor Tsigelny, Yuriy Sharikov, and Lynn F. Ten Eyck 4.1. Introduction Structural Hidden Markov Model Libraries Decision Tree Search for the Best HMM Searching within the Structural Alignment Program Testing Prediction of Unsolved Structures The Role of Sequence Information in Protein Structure Prediction 125 Damien Devos, Florencio Pazos, Osvaldo Olmea, David de Juan, Osvaldo Graña, Jose M. Fernández, and Alfonso Valencia 2

3 5.1. Introduction Information Contained in Multiple Sequence Alignments in Protein Families Automated Generation of Protein Structural Templates Distribution of Informative Positions in Protein Structures Informative Positions in Protein Structure Models A Threading Server That Filters Models with Multiple Sequence Alignments Information A First Field Evaluation of the Server, the CAFASP Results A CAFASP Example of the Use of Sequence Information Training Neural Networks for the Discrimination of Wrong Threading Models Using Sequence Conclusions Protein Fold Recognition and Comparative Modeling Using HOMSTRAD, JOY, and FUGUE 143 Ricardo Núñez Miguel, Jiye Shi, and Kenji Mizuguchi 6.1. Introduction Overview Identification of Homologues Generating Sequence-Structure Alignment Example Searching for Homologues Alignment Modeling Heteroatoms Refinements Model Validation Model Conclusion Fully Automated Protein Tertiary Structure Prediction Using Fourier Transform Spectral Methods 171 Carlos Adriel Del Carpio Muñoz and Atsushi Yoshimori 7.1. Sequence Alignment and Protein Structure Modeling Protein Function and Structure Elucidation by Spectral Analysis Spectral Analysis and Folding Pattern Recognition Spectral Representation of Protein Primary Structures Spectral Alignment and Protein Structure Similarity Automatic Protein Folding Pattern Recognition Automatic Classification of Protein Foldings Dominant Physicochemical Parameters Classification of Protein Folding by Spectral Analysis Protein Folding Pattern Recognition by Spectral Analysis From the Building Blocks Folding Model to Protein Structure Prediction 201 Nurit Haspel, Chung-Jung Tsai, Haim Wolfson, and Ruth Nussinov 8.1. Introduction 203 3

4 8.2. Protein Folding: A Process of Intra-Molecular Building Block Recognition Experimental and Theoretical Support for the Building Block Concept The Building Block Cutting Algorithm The Scoring Function The Cutting Procedure Critical Building Blocks From the Building Block Folding Model to Structure Prediction: The Scheme Conclusions Protein Threading Statistics: An Attempt to Assess the Significance of a Fold Assignment to a Sequence 227 Antoine Marin, Joël Pothier, Karel Zimmermann, and Jean-François Gibrat 9.1. Introduction Method Library of Cores Development of a Score Function Combinatorial Optimization Algorithm Empirical Distribution of Scores Development of a Benchmark Database Results Discussion Use of Filters Difficulty of the Benchmark Statistical Criterion Present Limits of the Method Conclusion Protein Structure Prediction by Threading: Force Field Philosophy, Approaches to Alignment 263 Thomas Huber and Andrew E. Torda Introduction Common Methodology Force Field Based Scoring Parameterizing Force Fields Physically-Based Potential Energies Potentials of Mean Force Optimized Force Fields Alignment Philosophy Common Alignment and Score Methods Sausage Alignments Beyond Pairwise Terms Template Libraries Further Outlook and Speculation Predicting Protein Structure Using SAM, UCSC s Hidden Markov Model Tools 297 Kevin Karplus 4

5 11.1. A Naive View of Protein Structure Prediction Fold Recognition Hidden Markov Models Multitrack Hidden Markov Models Statistical Significance for Hidden Markov Models Using SAM-T2K for Superfamily Modeling Improved Verification of Homology Family-Level Multiple Alignments Modeling Non-Contiguous Domains Building an HMM from a Structural Alignment Improving Existing Multiple Alignments Creating a Multiple Alignment from Unaligned Sequences Conclusions Local Genome Organization, Gene Expression, and Structural Genomics: Evolution at Work 325 Wayne Volkmuth and Nickolai Alexandrov Introduction Methods Genomes Microarray Expression Data Fold Assignment Non-Redundant Set of Proteins Fold Enrichment Along the Genome Fold Enrichment for Genes with Similar Patterns of Expression Results Fold Enrichment Along the Genome Fold Enrichment for Genes with Similar Patterns of Expression Summary and Conclusions Protein Structure Prediction on the Basis of Combinatorial Peptide Library Screening 341 Igor Tsigelny, Yuriy Sharikov, Vladimir Kotlovyi, Michael Kelner, and Lynn F. Ten Eyck Concept of the Comprehensive System HMM-ELONGATOR Problem Description Elongation Strategies 346 B. Consensus Structure Prediction A User s Guide to Fold Recognition 355 Naomi Siew and Daniel Fischer Introduction Examples of Using Fold Recognition for Biological Research Plant Resistance Gene Products Acetohydroxyacid Synthase Endothelial Cell Protein C/Activated Protein C Receptor How to Fold Recognize? Searching for Homologues of Known Structure 364 5

6 Running Your Favorite Fold Recognition Method Running Other Methods Why Run More Than One Method? D-Shotgun Meta-Predictor Summary Structure Prediction Meta Server Leszek Rychlewski Introduction The Meta Server User Input and Job Status Display Job Deposition and Administration Request Submission Queuing Blast-Filter Local and Remote Prediction Services Raw Output Converters Visualization and Linking Interfaces Discussion 390 Part II. METHODS OF STRUCTURE AND SEQUENCE ALIGNMENT Improved Fold Recognition by Using the PCONS Consensus Approach 397 Huisheng Fang, Björn Wallin, Jesper Lundström, Christer von Wowern, and Arne Elofsson Introduction Why are Manual Predictions Better? Biological Knowledge Structural Analysis Consensus Analysis Consensus Predictions in CASP Pcons Collection of Publicly Available Models Structural Comparison Prediction of Quality of the Models Performance of Pcons Performance in LiveBench Why Does Pcons Perform Better? Pcons-II Improvements Using More Servers Speed-Up of Structural Comparisons Using Better Statistics Improvements Using Linear Regression Summary New Insights into Protein Fold Space and Sequence-Structure Relationships 417 Ilya N. Shindyalov and Philip E. Bourne Introduction 419 6

7 17.2. Overview of CE Sequence-Structure Space Scop vs. CE Fold Space Comparison Analysis of Structure Redundancy Size of NR Set as a Function of Criteria Used Characterization of Chains Excluded from the Set Characterization of Similarity Between Chains in the Set Complementary Sequence and Structure NR Sets Combined NR Set A Flexible Method for Structural Alignment: Applications to Structure Prediction Assessments 431 Vladimir Kotlovyi, Igor Tsigelny, and Lynn Ten Eyck Introduction Theoretical Background Algorithms and Their Implementation Representation of Data in XML Forms Timing Web-Servers Illustrative Examples Comparative Analysis of Protein Structure: New Concepts and Approaches for Multiple Structure Alignment 449 Chittibabu Guda, Eric D. Scheeff, Philip E. Bourne, and Ilya N. Shindyalov Introduction Algorithm for Aligning Multiple Protein Structures Using Monte Carlo Optimization Scoring Function Approaches for Optimization of Multiple Structure Alignment Effect of Weights Based on Number of Residues on Alignment Length and Alignment Distance Analysis of Specific Protein Families Analysis of an Alignment of Protein Kinases Analysis of an Alignment of Aspartic Proteinases Summary Comparative Analysis of Protein Structure: Automated vs. Manual Alignment of the Protein Kinase Family 463 Eric D. Scheeff, Philip E. Bourne, and Ilya N. Shindyalov Introduction The Challenge of Automated Protein Structure Alignment A Case Study: Alignment of the Eukaryotic Protein Kinases and Their Relatives An Example of an Automated Alignment: The Combinatorial Extension Algorithm Parameters for the Determination of an Optimal Structure Alignment Comparison of CE Alignments with Manual Alignments 471 7

8 20.7. Conclusion 475 Index 479 8

Week 10: Homology Modelling (II) - HHpred

Week 10: Homology Modelling (II) - HHpred Week 10: Homology Modelling (II) - HHpred Course: Tools for Structural Biology Fabian Glaser BKU - Technion 1 2 Identify and align related structures by sequence methods is not an easy task All comparative

More information

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues Programme 8.00-8.20 Last week s quiz results + Summary 8.20-9.00 Fold recognition 9.00-9.15 Break 9.15-11.20 Exercise: Modelling remote homologues 11.20-11.40 Summary & discussion 11.40-12.00 Quiz 1 Feedback

More information

Identification of correct regions in protein models using structural, alignment, and consensus information

Identification of correct regions in protein models using structural, alignment, and consensus information Identification of correct regions in protein models using structural, alignment, and consensus information BJO RN WALLNER AND ARNE ELOFSSON Stockholm Bioinformatics Center, Stockholm University, SE-106

More information

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche The molecular structure of a protein can be broken down hierarchically. The primary structure of a protein is simply its

More information

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror Protein structure prediction CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror 1 Outline Why predict protein structure? Can we use (pure) physics-based methods? Knowledge-based methods Two major

More information

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror Protein structure prediction CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror 1 Outline Why predict protein structure? Can we use (pure) physics-based methods? Knowledge-based methods Two major

More information

Template-Based Modeling of Protein Structure

Template-Based Modeling of Protein Structure Template-Based Modeling of Protein Structure David Constant Biochemistry 218 December 11, 2011 Introduction. Much can be learned about the biology of a protein from its structure. Simply put, structure

More information

Molecular Modeling. Prediction of Protein 3D Structure from Sequence. Vimalkumar Velayudhan. May 21, 2007

Molecular Modeling. Prediction of Protein 3D Structure from Sequence. Vimalkumar Velayudhan. May 21, 2007 Molecular Modeling Prediction of Protein 3D Structure from Sequence Vimalkumar Velayudhan Jain Institute of Vocational and Advanced Studies May 21, 2007 Vimalkumar Velayudhan Molecular Modeling 1/23 Outline

More information

STRUCTURAL BIOINFORMATICS II. Spring 2018

STRUCTURAL BIOINFORMATICS II. Spring 2018 STRUCTURAL BIOINFORMATICS II Spring 2018 Syllabus Course Number - Classification: Chemistry 5412 Class Schedule: Monday 5:30-7:50 PM, SERC Room 456 (4 th floor) Instructors: Ronald Levy, SERC 718 (ronlevy@temple.edu)

More information

Bioinformatics. Dept. of Computational Biology & Bioinformatics

Bioinformatics. Dept. of Computational Biology & Bioinformatics Bioinformatics Dept. of Computational Biology & Bioinformatics 3 Bioinformatics - play with sequences & structures Dept. of Computational Biology & Bioinformatics 4 ORGANIZATION OF LIFE ROLE OF BIOINFORMATICS

More information

Bioinformatics. Macromolecular structure

Bioinformatics. Macromolecular structure Bioinformatics Macromolecular structure Contents Determination of protein structure Structure databases Secondary structure elements (SSE) Tertiary structure Structure analysis Structure alignment Domain

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Fall 2017 Databases and Protein Structure Representation October 2, 2017 Molecular Biology as Information Science > 12, 000 genomes sequenced, mostly bacterial (2013) > 5x10 6 unique sequences available

More information

Template-Based 3D Structure Prediction

Template-Based 3D Structure Prediction Template-Based 3D Structure Prediction Sequence and Structure-based Template Detection and Alignment Issues The rate of new sequences is growing exponentially relative to the rate of protein structures

More information

CSCE555 Bioinformatics. Protein Function Annotation

CSCE555 Bioinformatics. Protein Function Annotation CSCE555 Bioinformatics Protein Function Annotation Why we need to do function annotation? Fig from: Network-based prediction of protein function. Molecular Systems Biology 3:88. 2007 What s function? The

More information

PROTEIN STRUCTURE PREDICTION II

PROTEIN STRUCTURE PREDICTION II PROTEIN STRUCTURE PREDICTION II Jeffrey Skolnick 1,2 Yang Zhang 1 Because the molecular function of a protein depends on its three dimensional structure, which is often unknown, protein structure prediction

More information

Protein Fold Recognition Using Gradient Boost Algorithm

Protein Fold Recognition Using Gradient Boost Algorithm Protein Fold Recognition Using Gradient Boost Algorithm Feng Jiao 1, Jinbo Xu 2, Libo Yu 3 and Dale Schuurmans 4 1 School of Computer Science, University of Waterloo, Canada fjiao@cs.uwaterloo.ca 2 Toyota

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/309/5742/1868/dc1 Supporting Online Material for Toward High-Resolution de Novo Structure Prediction for Small Proteins Philip Bradley, Kira M. S. Misura, David Baker*

More information

CMPS 3110: Bioinformatics. Tertiary Structure Prediction

CMPS 3110: Bioinformatics. Tertiary Structure Prediction CMPS 3110: Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the laws of physics! Conformation space is finite

More information

Contact map guided ab initio structure prediction

Contact map guided ab initio structure prediction Contact map guided ab initio structure prediction S M Golam Mortuza Postdoctoral Research Fellow I-TASSER Workshop 2017 North Carolina A&T State University, Greensboro, NC Outline Ab initio structure prediction:

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction CMPS 6630: Introduction to Computational Biology and Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the

More information

Protein Structure Prediction, Engineering & Design CHEM 430

Protein Structure Prediction, Engineering & Design CHEM 430 Protein Structure Prediction, Engineering & Design CHEM 430 Eero Saarinen The free energy surface of a protein Protein Structure Prediction & Design Full Protein Structure from Sequence - High Alignment

More information

Computational Biology From The Perspective Of A Physical Scientist

Computational Biology From The Perspective Of A Physical Scientist Computational Biology From The Perspective Of A Physical Scientist Dr. Arthur Dong PP1@TUM 26 November 2013 Bioinformatics Education Curriculum Math, Physics, Computer Science (Statistics and Programming)

More information

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program)

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Course Name: Structural Bioinformatics Course Description: Instructor: This course introduces fundamental concepts and methods for structural

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison CMPS 6630: Introduction to Computational Biology and Bioinformatics Structure Comparison Protein Structure Comparison Motivation Understand sequence and structure variability Understand Domain architecture

More information

Homology Modeling. Roberto Lins EPFL - summer semester 2005

Homology Modeling. Roberto Lins EPFL - summer semester 2005 Homology Modeling Roberto Lins EPFL - summer semester 2005 Disclaimer: course material is mainly taken from: P.E. Bourne & H Weissig, Structural Bioinformatics; C.A. Orengo, D.T. Jones & J.M. Thornton,

More information

Procheck output. Bond angles (Procheck) Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics.

Procheck output. Bond angles (Procheck) Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics. Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics Iosif Vaisman Email: ivaisman@gmu.edu ----------------------------------------------------------------- Bond

More information

PROTEIN FOLD RECOGNITION USING THE GRADIENT BOOST ALGORITHM

PROTEIN FOLD RECOGNITION USING THE GRADIENT BOOST ALGORITHM 43 1 PROTEIN FOLD RECOGNITION USING THE GRADIENT BOOST ALGORITHM Feng Jiao School of Computer Science, University of Waterloo, Canada fjiao@cs.uwaterloo.ca Jinbo Xu Toyota Technological Institute at Chicago,

More information

Homology Modeling (Comparative Structure Modeling) GBCB 5874: Problem Solving in GBCB

Homology Modeling (Comparative Structure Modeling) GBCB 5874: Problem Solving in GBCB Homology Modeling (Comparative Structure Modeling) Aims of Structural Genomics High-throughput 3D structure determination and analysis To determine or predict the 3D structures of all the proteins encoded

More information

A NEW ALGORITHM FOR THE ALIGNMENT OF MULTIPLE PROTEIN STRUCTURES USING MONTE CARLO OPTIMIZATION

A NEW ALGORITHM FOR THE ALIGNMENT OF MULTIPLE PROTEIN STRUCTURES USING MONTE CARLO OPTIMIZATION A NEW ALGORITHM FOR THE ALIGNMENT OF MULTIPLE PROTEIN STRUCTURES USING MONTE CARLO OPTIMIZATION C. GUDA, E. D. SCHEEFF, P. E. BOURNE 1,2, I. N. SHINDYALOV San Diego Supercomputer Center, University of

More information

114 Grundlagen der Bioinformatik, SS 09, D. Huson, July 6, 2009

114 Grundlagen der Bioinformatik, SS 09, D. Huson, July 6, 2009 114 Grundlagen der Bioinformatik, SS 09, D. Huson, July 6, 2009 9 Protein tertiary structure Sources for this chapter, which are all recommended reading: D.W. Mount. Bioinformatics: Sequences and Genome

More information

CAP 5510 Lecture 3 Protein Structures

CAP 5510 Lecture 3 Protein Structures CAP 5510 Lecture 3 Protein Structures Su-Shing Chen Bioinformatics CISE 8/19/2005 Su-Shing Chen, CISE 1 Protein Conformation 8/19/2005 Su-Shing Chen, CISE 2 Protein Conformational Structures Hydrophobicity

More information

Grundlagen der Bioinformatik Summer semester Lecturer: Prof. Daniel Huson

Grundlagen der Bioinformatik Summer semester Lecturer: Prof. Daniel Huson Grundlagen der Bioinformatik, SS 10, D. Huson, April 12, 2010 1 1 Introduction Grundlagen der Bioinformatik Summer semester 2010 Lecturer: Prof. Daniel Huson Office hours: Thursdays 17-18h (Sand 14, C310a)

More information

SUPPLEMENTARY MATERIALS

SUPPLEMENTARY MATERIALS SUPPLEMENTARY MATERIALS Enhanced Recognition of Transmembrane Protein Domains with Prediction-based Structural Profiles Baoqiang Cao, Aleksey Porollo, Rafal Adamczak, Mark Jarrell and Jaroslaw Meller Contact:

More information

Bioinformatics: Secondary Structure Prediction

Bioinformatics: Secondary Structure Prediction Bioinformatics: Secondary Structure Prediction Prof. David Jones d.jones@cs.ucl.ac.uk LMLSTQNPALLKRNIIYWNNVALLWEAGSD The greatest unsolved problem in molecular biology:the Protein Folding Problem? Entries

More information

EBI web resources II: Ensembl and InterPro. Yanbin Yin Spring 2013

EBI web resources II: Ensembl and InterPro. Yanbin Yin Spring 2013 EBI web resources II: Ensembl and InterPro Yanbin Yin Spring 2013 1 Outline Intro to genome annotation Protein family/domain databases InterPro, Pfam, Superfamily etc. Genome browser Ensembl Hands on Practice

More information

Protein Structure Prediction

Protein Structure Prediction Page 1 Protein Structure Prediction Russ B. Altman BMI 214 CS 274 Protein Folding is different from structure prediction --Folding is concerned with the process of taking the 3D shape, usually based on

More information

Subfamily HMMS in Functional Genomics. D. Brown, N. Krishnamurthy, J.M. Dale, W. Christopher, and K. Sjölander

Subfamily HMMS in Functional Genomics. D. Brown, N. Krishnamurthy, J.M. Dale, W. Christopher, and K. Sjölander Subfamily HMMS in Functional Genomics D. Brown, N. Krishnamurthy, J.M. Dale, W. Christopher, and K. Sjölander Pacific Symposium on Biocomputing 10:322-333(2005) SUBFAMILY HMMS IN FUNCTIONAL GENOMICS DUNCAN

More information

HMM applications. Applications of HMMs. Gene finding with HMMs. Using the gene finder

HMM applications. Applications of HMMs. Gene finding with HMMs. Using the gene finder HMM applications Applications of HMMs Gene finding Pairwise alignment (pair HMMs) Characterizing protein families (profile HMMs) Predicting membrane proteins, and membrane protein topology Gene finding

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 2/15/07 CAP5510 1 EM Algorithm Goal: Find θ, Z that maximize Pr

More information

FuncNet a distributed platform for high-throughput protein function analysis. Andrew Clegg University College London. funcnet.eu

FuncNet a distributed platform for high-throughput protein function analysis. Andrew Clegg University College London. funcnet.eu FuncNet a distributed platform for high-throughput protein function analysis Andrew Clegg University College London Outline of talk Introduction and background Working with FuncNet APIs and extensions

More information

Protein Structure Prediction using String Kernels. Technical Report

Protein Structure Prediction using String Kernels. Technical Report Protein Structure Prediction using String Kernels Technical Report Department of Computer Science and Engineering University of Minnesota 4-192 EECS Building 200 Union Street SE Minneapolis, MN 55455-0159

More information

Protein Bioinformatics. Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet sandberg.cmb.ki.

Protein Bioinformatics. Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet sandberg.cmb.ki. Protein Bioinformatics Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet rickard.sandberg@ki.se sandberg.cmb.ki.se Outline Protein features motifs patterns profiles signals 2 Protein

More information

Measuring quaternary structure similarity using global versus local measures.

Measuring quaternary structure similarity using global versus local measures. Supplementary Figure 1 Measuring quaternary structure similarity using global versus local measures. (a) Structural similarity of two protein complexes can be inferred from a global superposition, which

More information

Genomics and bioinformatics summary. Finding genes -- computer searches

Genomics and bioinformatics summary. Finding genes -- computer searches Genomics and bioinformatics summary 1. Gene finding: computer searches, cdnas, ESTs, 2. Microarrays 3. Use BLAST to find homologous sequences 4. Multiple sequence alignments (MSAs) 5. Trees quantify sequence

More information

STRUCTURAL BIOINFORMATICS I. Fall 2015

STRUCTURAL BIOINFORMATICS I. Fall 2015 STRUCTURAL BIOINFORMATICS I Fall 2015 Info Course Number - Classification: Biology 5411 Class Schedule: Monday 5:30-7:50 PM, SERC Room 456 (4 th floor) Instructors: Vincenzo Carnevale - SERC, Room 704C;

More information

Motifs, Profiles and Domains. Michael Tress Protein Design Group Centro Nacional de Biotecnología, CSIC

Motifs, Profiles and Domains. Michael Tress Protein Design Group Centro Nacional de Biotecnología, CSIC Motifs, Profiles and Domains Michael Tress Protein Design Group Centro Nacional de Biotecnología, CSIC Comparing Two Proteins Sequence Alignment Determining the pattern of evolution and identifying conserved

More information

CISC 636 Computational Biology & Bioinformatics (Fall 2016)

CISC 636 Computational Biology & Bioinformatics (Fall 2016) CISC 636 Computational Biology & Bioinformatics (Fall 2016) Predicting Protein-Protein Interactions CISC636, F16, Lec22, Liao 1 Background Proteins do not function as isolated entities. Protein-Protein

More information

2MHR. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity.

2MHR. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity. A global picture of the protein universe will help us to understand

More information

Molecular Modeling Lecture 7. Homology modeling insertions/deletions manual realignment

Molecular Modeling Lecture 7. Homology modeling insertions/deletions manual realignment Molecular Modeling 2018-- Lecture 7 Homology modeling insertions/deletions manual realignment Homology modeling also called comparative modeling Sequences that have similar sequence have similar structure.

More information

Protein structure alignments

Protein structure alignments Protein structure alignments Proteins that fold in the same way, i.e. have the same fold are often homologs. Structure evolves slower than sequence Sequence is less conserved than structure If BLAST gives

More information

Template Free Protein Structure Modeling Jianlin Cheng, PhD

Template Free Protein Structure Modeling Jianlin Cheng, PhD Template Free Protein Structure Modeling Jianlin Cheng, PhD Professor Department of EECS Informatics Institute University of Missouri, Columbia 2018 Protein Energy Landscape & Free Sampling http://pubs.acs.org/subscribe/archive/mdd/v03/i09/html/willis.html

More information

LigandScout. Automated Structure-Based Pharmacophore Model Generation. Gerhard Wolber* and Thierry Langer

LigandScout. Automated Structure-Based Pharmacophore Model Generation. Gerhard Wolber* and Thierry Langer LigandScout Automated Structure-Based Pharmacophore Model Generation Gerhard Wolber* and Thierry Langer * E-Mail: wolber@inteligand.com Pharmacophores from LigandScout Pharmacophores & the Protein Data

More information

Detecting unfolded regions in protein sequences. Anne Poupon Génomique Structurale de la Levure IBBMC Université Paris-Sud / CNRS France

Detecting unfolded regions in protein sequences. Anne Poupon Génomique Structurale de la Levure IBBMC Université Paris-Sud / CNRS France Detecting unfolded regions in protein sequences Anne Poupon Génomique Structurale de la Levure IBBMC Université Paris-Sud / CNRS France Large proteins and complexes: a domain approach Structural studies

More information

Multiple Mapping Method: A Novel Approach to the Sequence-to-Structure Alignment Problem in Comparative Protein Structure Modeling

Multiple Mapping Method: A Novel Approach to the Sequence-to-Structure Alignment Problem in Comparative Protein Structure Modeling 63:644 661 (2006) Multiple Mapping Method: A Novel Approach to the Sequence-to-Structure Alignment Problem in Comparative Protein Structure Modeling Brajesh K. Rai and András Fiser* Department of Biochemistry

More information

SCOP. all-β class. all-α class, 3 different folds. T4 endonuclease V. 4-helical cytokines. Globin-like

SCOP. all-β class. all-α class, 3 different folds. T4 endonuclease V. 4-helical cytokines. Globin-like SCOP all-β class 4-helical cytokines T4 endonuclease V all-α class, 3 different folds Globin-like TIM-barrel fold α/β class Profilin-like fold α+β class http://scop.mrc-lmb.cam.ac.uk/scop CATH Class, Architecture,

More information

ALL LECTURES IN SB Introduction

ALL LECTURES IN SB Introduction 1. Introduction 2. Molecular Architecture I 3. Molecular Architecture II 4. Molecular Simulation I 5. Molecular Simulation II 6. Bioinformatics I 7. Bioinformatics II 8. Prediction I 9. Prediction II ALL

More information

Structural Bioinformatics (C3210) Molecular Docking

Structural Bioinformatics (C3210) Molecular Docking Structural Bioinformatics (C3210) Molecular Docking Molecular Recognition, Molecular Docking Molecular recognition is the ability of biomolecules to recognize other biomolecules and selectively interact

More information

Building 3D models of proteins

Building 3D models of proteins Building 3D models of proteins Why make a structural model for your protein? The structure can provide clues to the function through structural similarity with other proteins With a structure it is easier

More information

Sequence Analysis and Databases 2: Sequences and Multiple Alignments

Sequence Analysis and Databases 2: Sequences and Multiple Alignments 1 Sequence Analysis and Databases 2: Sequences and Multiple Alignments Jose María González-Izarzugaza Martínez CNIO Spanish National Cancer Research Centre (jmgonzalez@cnio.es) 2 Sequence Comparisons:

More information

PREDICTION OF PROTEIN BINDING SITES BY COMBINING SEVERAL METHODS

PREDICTION OF PROTEIN BINDING SITES BY COMBINING SEVERAL METHODS PREDICTION OF PROTEIN BINDING SITES BY COMBINING SEVERAL METHODS T. Z. SEN, A. KLOCZKOWSKI, R. L. JERNIGAN L.H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University Ames, IA

More information

Sequence and Structure Alignment Z. Luthey-Schulten, UIUC Pittsburgh, 2006 VMD 1.8.5

Sequence and Structure Alignment Z. Luthey-Schulten, UIUC Pittsburgh, 2006 VMD 1.8.5 Sequence and Structure Alignment Z. Luthey-Schulten, UIUC Pittsburgh, 2006 VMD 1.8.5 Why Look at More Than One Sequence? 1. Multiple Sequence Alignment shows patterns of conservation 2. What and how many

More information

Protein Structure Determination from Pseudocontact Shifts Using ROSETTA

Protein Structure Determination from Pseudocontact Shifts Using ROSETTA Supporting Information Protein Structure Determination from Pseudocontact Shifts Using ROSETTA Christophe Schmitz, Robert Vernon, Gottfried Otting, David Baker and Thomas Huber Table S0. Biological Magnetic

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Fall 2017 Protein Structure Detection Methods October 30, 2017 Comparative Modeling Comparative modeling is modeling of the unknown based on comparison to what is known In the context of modeling or computing

More information

Whole Genome Alignments and Synteny Maps

Whole Genome Alignments and Synteny Maps Whole Genome Alignments and Synteny Maps IINTRODUCTION It was not until closely related organism genomes have been sequenced that people start to think about aligning genomes and chromosomes instead of

More information

Docking. GBCB 5874: Problem Solving in GBCB

Docking. GBCB 5874: Problem Solving in GBCB Docking Benzamidine Docking to Trypsin Relationship to Drug Design Ligand-based design QSAR Pharmacophore modeling Can be done without 3-D structure of protein Receptor/Structure-based design Molecular

More information

frmsdalign: Protein Sequence Alignment Using Predicted Local Structure Information for Pairs with Low Sequence Identity

frmsdalign: Protein Sequence Alignment Using Predicted Local Structure Information for Pairs with Low Sequence Identity 1 frmsdalign: Protein Sequence Alignment Using Predicted Local Structure Information for Pairs with Low Sequence Identity HUZEFA RANGWALA and GEORGE KARYPIS Department of Computer Science and Engineering

More information

K-means-based Feature Learning for Protein Sequence Classification

K-means-based Feature Learning for Protein Sequence Classification K-means-based Feature Learning for Protein Sequence Classification Paul Melman and Usman W. Roshan Department of Computer Science, NJIT Newark, NJ, 07102, USA pm462@njit.edu, usman.w.roshan@njit.edu Abstract

More information

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Brian Kuhlman, Gautam Dantas, Gregory C. Ireton, Gabriele Varani, Barry L. Stoddard, David Baker Presented by Kate Stafford 4 May 05 Protein

More information

Protein Structure Prediction

Protein Structure Prediction Protein Structure Prediction Michael Feig MMTSB/CTBP 2009 Summer Workshop From Sequence to Structure SEALGDTIVKNA Folding with All-Atom Models AAQAAAAQAAAAQAA All-atom MD in general not succesful for real

More information

Computational methods for predicting protein-protein interactions

Computational methods for predicting protein-protein interactions Computational methods for predicting protein-protein interactions Tomi Peltola T-61.6070 Special course in bioinformatics I 3.4.2008 Outline Biological background Protein-protein interactions Computational

More information

Can protein model accuracy be. identified? NO! CBS, BioCentrum, Morten Nielsen, DTU

Can protein model accuracy be. identified? NO! CBS, BioCentrum, Morten Nielsen, DTU Can protein model accuracy be identified? Morten Nielsen, CBS, BioCentrum, DTU NO! Identification of Protein-model accuracy Why is it important? What is accuracy RMSD, fraction correct, Protein model correctness/quality

More information

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB)

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB) Protein structure databases; visualization; and classifications 1. Introduction to Protein Data Bank (PDB) 2. Free graphic software for 3D structure visualization 3. Hierarchical classification of protein

More information

Prediction and refinement of NMR structures from sparse experimental data

Prediction and refinement of NMR structures from sparse experimental data Prediction and refinement of NMR structures from sparse experimental data Jeff Skolnick Director Center for the Study of Systems Biology School of Biology Georgia Institute of Technology Overview of talk

More information

Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs

Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs William (Bill) Welsh welshwj@umdnj.edu Prospective Funding by DTRA/JSTO-CBD CBIS Conference 1 A State-wide, Regional and National

More information

proteins Estimating quality of template-based protein models by alignment stability Hao Chen 1 and Daisuke Kihara 1,2,3,4 * INTRODUCTION

proteins Estimating quality of template-based protein models by alignment stability Hao Chen 1 and Daisuke Kihara 1,2,3,4 * INTRODUCTION proteins STRUCTURE O FUNCTION O BIOINFORMATICS Estimating quality of template-based protein models by alignment stability Hao Chen 1 and Daisuke Kihara 1,2,3,4 * 1 Department of Biological Sciences, College

More information

Template Free Protein Structure Modeling Jianlin Cheng, PhD

Template Free Protein Structure Modeling Jianlin Cheng, PhD Template Free Protein Structure Modeling Jianlin Cheng, PhD Associate Professor Computer Science Department Informatics Institute University of Missouri, Columbia 2013 Protein Energy Landscape & Free Sampling

More information

HMM part 1. Dr Philip Jackson

HMM part 1. Dr Philip Jackson Centre for Vision Speech & Signal Processing University of Surrey, Guildford GU2 7XH. HMM part 1 Dr Philip Jackson Probability fundamentals Markov models State topology diagrams Hidden Markov models -

More information

Amino Acid Structures from Klug & Cummings. 10/7/2003 CAP/CGS 5991: Lecture 7 1

Amino Acid Structures from Klug & Cummings. 10/7/2003 CAP/CGS 5991: Lecture 7 1 Amino Acid Structures from Klug & Cummings 10/7/2003 CAP/CGS 5991: Lecture 7 1 Amino Acid Structures from Klug & Cummings 10/7/2003 CAP/CGS 5991: Lecture 7 2 Amino Acid Structures from Klug & Cummings

More information

Structure to Function. Molecular Bioinformatics, X3, 2006

Structure to Function. Molecular Bioinformatics, X3, 2006 Structure to Function Molecular Bioinformatics, X3, 2006 Structural GeNOMICS Structural Genomics project aims at determination of 3D structures of all proteins: - organize known proteins into families

More information

Comprehensive genome analysis of 203 genomes provides structural genomics with new insights into protein family space

Comprehensive genome analysis of 203 genomes provides structural genomics with new insights into protein family space Published online February 15, 26 166 18 Nucleic Acids Research, 26, Vol. 34, No. 3 doi:1.193/nar/gkj494 Comprehensive genome analysis of 23 genomes provides structural genomics with new insights into protein

More information

Conditional Graphical Models

Conditional Graphical Models PhD Thesis Proposal Conditional Graphical Models for Protein Structure Prediction Yan Liu Language Technologies Institute University Thesis Committee Jaime Carbonell (Chair) John Lafferty Eric P. Xing

More information

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD Department of Computer Science University of Missouri 2008 Free for Academic

More information

Supplementing information theory with opposite polarity of amino acids for protein contact prediction

Supplementing information theory with opposite polarity of amino acids for protein contact prediction Supplementing information theory with opposite polarity of amino acids for protein contact prediction Yancy Liao 1, Jeremy Selengut 1 1 Department of Computer Science, University of Maryland - College

More information

Syllabus BINF Computational Biology Core Course

Syllabus BINF Computational Biology Core Course Course Description Syllabus BINF 701-702 Computational Biology Core Course BINF 701/702 is the Computational Biology core course developed at the KU Center for Computational Biology. The course is designed

More information

A profile-based protein sequence alignment algorithm for a domain clustering database

A profile-based protein sequence alignment algorithm for a domain clustering database A profile-based protein sequence alignment algorithm for a domain clustering database Lin Xu,2 Fa Zhang and Zhiyong Liu 3, Key Laboratory of Computer System and architecture, the Institute of Computing

More information

Multiple Sequence Alignment

Multiple Sequence Alignment Multiple equence lignment Four ami Khuri Dept of omputer cience an José tate University Multiple equence lignment v Progressive lignment v Guide Tree v lustalw v Toffee v Muscle v MFFT * 20 * 0 * 60 *

More information

COMP 598 Advanced Computational Biology Methods & Research. Introduction. Jérôme Waldispühl School of Computer Science McGill University

COMP 598 Advanced Computational Biology Methods & Research. Introduction. Jérôme Waldispühl School of Computer Science McGill University COMP 598 Advanced Computational Biology Methods & Research Introduction Jérôme Waldispühl School of Computer Science McGill University General informations (1) Office hours: by appointment Office: TR3018

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Bioinformatics. Proteins II. - Pattern, Profile, & Structure Database Searching. Robert Latek, Ph.D. Bioinformatics, Biocomputing

Bioinformatics. Proteins II. - Pattern, Profile, & Structure Database Searching. Robert Latek, Ph.D. Bioinformatics, Biocomputing Bioinformatics Proteins II. - Pattern, Profile, & Structure Database Searching Robert Latek, Ph.D. Bioinformatics, Biocomputing WIBR Bioinformatics Course, Whitehead Institute, 2002 1 Proteins I.-III.

More information

Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD William and Nancy Thompson Missouri Distinguished Professor Department

More information

Introduction to Evolutionary Concepts

Introduction to Evolutionary Concepts Introduction to Evolutionary Concepts and VMD/MultiSeq - Part I Zaida (Zan) Luthey-Schulten Dept. Chemistry, Beckman Institute, Biophysics, Institute of Genomics Biology, & Physics NIH Workshop 2009 VMD/MultiSeq

More information

FlexPepDock In a nutshell

FlexPepDock In a nutshell FlexPepDock In a nutshell All Tutorial files are located in http://bit.ly/mxtakv FlexPepdock refinement Step 1 Step 3 - Refinement Step 4 - Selection of models Measure of fit FlexPepdock Ab-initio Step

More information

Hidden Markov Models and Their Applications in Biological Sequence Analysis

Hidden Markov Models and Their Applications in Biological Sequence Analysis Hidden Markov Models and Their Applications in Biological Sequence Analysis Byung-Jun Yoon Dept. of Electrical & Computer Engineering Texas A&M University, College Station, TX 77843-3128, USA Abstract

More information

Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics

Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics Jianlin Cheng, PhD Department of Computer Science University of Missouri, Columbia

More information

Large-Scale Genomic Surveys

Large-Scale Genomic Surveys Bioinformatics Subtopics Fold Recognition Secondary Structure Prediction Docking & Drug Design Protein Geometry Protein Flexibility Homology Modeling Sequence Alignment Structure Classification Gene Prediction

More information

Overview Multiple Sequence Alignment

Overview Multiple Sequence Alignment Overview Multiple Sequence Alignment Inge Jonassen Bioinformatics group Dept. of Informatics, UoB Inge.Jonassen@ii.uib.no Definition/examples Use of alignments The alignment problem scoring alignments

More information

Chapter 5. Proteomics and the analysis of protein sequence Ⅱ

Chapter 5. Proteomics and the analysis of protein sequence Ⅱ Proteomics Chapter 5. Proteomics and the analysis of protein sequence Ⅱ 1 Pairwise similarity searching (1) Figure 5.5: manual alignment One of the amino acids in the top sequence has no equivalent and

More information

Detection of Protein Binding Sites II

Detection of Protein Binding Sites II Detection of Protein Binding Sites II Goal: Given a protein structure, predict where a ligand might bind Thomas Funkhouser Princeton University CS597A, Fall 2007 1hld Geometric, chemical, evolutionary

More information

proteins Effect of using suboptimal alignments in template-based protein structure prediction Hao Chen 1 and Daisuke Kihara 1,2,3 * INTRODUCTION

proteins Effect of using suboptimal alignments in template-based protein structure prediction Hao Chen 1 and Daisuke Kihara 1,2,3 * INTRODUCTION proteins STRUCTURE O FUNCTION O BIOINFORMATICS Effect of using suboptimal alignments in template-based protein structure prediction Hao Chen 1 and Daisuke Kihara 1,2,3 * 1 Department of Biological Sciences,

More information

TOUCHSTONE: A Unified Approach to Protein Structure Prediction

TOUCHSTONE: A Unified Approach to Protein Structure Prediction PROTEINS: Structure, Function, and Genetics 53:469 479 (2003) TOUCHSTONE: A Unified Approach to Protein Structure Prediction Jeffrey Skolnick, 1 * Yang Zhang, 1 Adrian K. Arakaki, 1 Andrzej Kolinski, 1,2

More information