HMM applications. Applications of HMMs. Gene finding with HMMs. Using the gene finder

Size: px
Start display at page:

Download "HMM applications. Applications of HMMs. Gene finding with HMMs. Using the gene finder"

Transcription

1 HMM applications Applications of HMMs Gene finding Pairwise alignment (pair HMMs) Characterizing protein families (profile HMMs) Predicting membrane proteins, and membrane protein topology Gene finding with HMMs Using the gene finder Apply the gene finder to both the top strand and bottom strand Training using annotated genes 1

2 A simple eukaryotic gene finder Pair HMMs and Sequence Alignment Global alignment with affine gaps revisited Suppose we re aligning sequences x,y of lengths m and n. Dynamic Programming: M(i, j): Optimal alignment of x 1 x i to y 1 y j ending in a match I X (i, j): Optimal alignment of x 1 x i to y 1 y j ending in a gap in x Alignment with affine gaps Initialization: M(0,0) = 0; M(i, 0) = M(0, j) = -, for i, j > 0 I X (i,0) = - (d + i * e); I Y (0, j) = - (d + j * e) Iteration: M(i 1, j 1) M(i, j) = s(x i, y j ) + max I X (i 1, j 1) I X (i 1, j 1) I Y (i, j): Optimal alignment of x 1 x i to y 1 y j ending in a gap in y I X (i, j) = max I Y (i, j) = max I X (i 1, j) - e M(i 1, j) - d I Y (i, j 1) - e M(i, j 1) - d Termination: Optimal alignment given by max { M(m, n), I X (m, n), I Y (m, n) } A state model for alignment Scoring transitions x -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- y TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX x -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- y TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX 2

3 Probabilistic interpretation of an alignment An alignment is a hypothesis that the two sequences are related by evolution Goal: Produce the most likely alignment Compute the likelihood that the sequences are indeed related A Pair HMM for alignments ε M δ 1 2δ optional Transition probabilities: δ δ: set so that 1/2δ is avg. length of match region ε: set so that 1/() is avg. length of a gap ε Model generates two sequences simultaneously Emission probabilities: Match/Mismatch state M: Emits pair of symbols with distribution P(x,y) that reflects substitution frequencies between pairs of amino acids Insertion states X,Y: Emit symbol + gap according to P(x), P(y) that reflect amino acid frequencies of x and y Viterbi for pair HMMs A model for unaligned sequences Initialization: Recurrence: ε 1 2δ δ δ R The two sequences are independently generated from one another P(x, y R) = P(x 1 ) P(x m ) P(y 1 ) P(y n ) = Π i P(x i ) Π j P(y j ) Termination: ALIGNMENT vs. RANDOM hypothesis Every pair of letters contributes: M (1 2δ) P(x i, y j ) when matched ε P(x i ) or ε P(y j ) when gapped R P(x i ) P(y j ) in random model ε 1 2δ δ δ ε ALIGNMENT vs. RANDOM hypothesis To compare the models we consider the log odds ratio under the two models, which can be expressed as a sum of terms: δ ε P(x i, y j ) s(x i, y j ) = log + log (1 2δ) P(x i ) P(y j ) δ () P(x i ) d = log (1 2δ) P(x i ) 1 2δ δ = Defn substitution score = Defn gap initiation penalty ε P(x i ) e = log P(x i ) = Defn gap extension penalty 3

4 Log-odds Viterbi Comments The Viterbi algorithm for Pair HMMs corresponds exactly to global alignment DP with affine gaps V M (i, j) = max { V M (i 1, j 1), V X ( i 1, j 1), V Y ( i 1, j 1) } + s(x i, y j ) V X (i, j) = max { V M (i 1, j) d, V X ( i 1, j) e } V Y (i, j) = max { V M (i 1, j) d, V Y ( i 1, j) e } The pair HMM formulation provides a probabilistic interpretation for the pairwise alignment algorithm, and allows assigning values to parameters from first principles. Viterbi provides the probability that two sequences are related by a particular alignment according to the HMM. Using the forward algorithm we can compute the probability that the two sequences are related by any alignment: Probability that two residues are aligned Notation: means x i and y j are aligned f M and b M are the forward and backward probs. that correspond to a match state Pair HMM for local alignment Describing protein families for prediction of protein structure and function Protein sequence and structure Protein classification Figure 4.3 from Durbin et al. 4

5 Primary Structure: Sequence The primary structure of a protein is its amino acid sequence Primary Structure: Sequence Primary Structure: Sequence Twenty different amino acids have distinct shapes and properties Secondary Structure: α, β, & loops α helices and β sheets are stabilized by hydrogen bonds between backbone oxygen and hydrogen atoms A useful mnemonic for the hydrophobic amino acids is "FAMILY VW" Tertiary Structure: the Fold of a protein Structure Determines Function The Protein Folding Problem What determines structure? 3d structure is minimum free-energy conformation How can we determine structure? Experimental methods Computational predictions 5

6 Growth of the Protein Data Bank (PDB) The number of folds in nature New PDB structures Classifying folds Structure Classification Databases Despite the large growth in the number of solved protein structures, the number of new folds identified is small Classifying proteins into folds Generate overview of structure types Detect similarities between proteins Help predict 3D structure of new protein sequences Classification of 25,973 protein structures in PDB SCOP release 1.69, Class # folds All alpha proteins 218 All beta proteins 144 Alpha and beta proteins (a/b) 136 Alpha and beta proteins (a+b) 279 Multi-domain proteins 46 Membrane & cell surface 47 Small proteins 75 Total 945 SCOP Manual classification (A. Murzin) scop.berkeley.edu CATH Semi manual classification (C. Orengo) FSSP Automatic classification (L. Holm) Major classes in SCOP All α: Hemoglobin (1bab) Classes All α proteins All β proteins α and β proteins (α/β) α and β proteins (α+β) Membrane and cell surface proteins Small proteins Morten Nielsen,CBS, BioCentrum, DTU 6

7 All β: Immunoglobulin (8fab) α/β: Triosephosphate isomerase (1hti) Morten Nielsen,CBS, BioCentrum, DTU Morten Nielsen,CBS, BioCentrum, DTU α+β: Lysozyme (1jsf) Protein Family Consists of proteins whose evolutionarily relationship is readily recognizable from sequence (>30% sequence identity) Superfamily Fold Family Proteins Morten Nielsen,CBS, BioCentrum, DTU Protein Superfamily Fold Consists of proteins which are (remotely) evolutionarily related Sequence similarity low Related function Similar in structure Relationships between members of a superfamily hard to recognize from sequence alone Superfamily Family Fold Proteins Proteins in the same fold share the same general architecture, and have the same major secondary structures in the same topological arrangement No evolutionary relationship implied Fold Superfamily Family Proteins 7

8 Protein Classification PSI-BLAST Given a new protein, can we assign it to its position within an existing protein hierarchy? Methods BLAST / PsiBLAST Profile HMMs new protein? Superfamily Family Fold Given a sequence query x, and database D 1. Find all pairwise alignments of x to sequences in D 2. Collect all matches of x to y with some minimum significance 3. Construct a profile M Each sequence y is given a weight so that many similar sequences cannot have much influence on a position (Henikoff & Henikoff 1994) 4. Using M, search D for more matches 5. Iterate 1 4 until convergence Supervised machine learning Proteins Profile M Profiles & Profile HMMs Psi-BLAST builds a profile Profile HMM: a more elaborate version of a profile Intuitively, a profile that models insertions and deletions PWMs as HMMs Insertions I 1 BEGIN M L BEGIN M L A PWM can be described as a very simple HMM where the emissions associated with M i correspond to the i th column of the PWM Insertion: a part of the sequence x that is not modeled by the match states The loop allows for insertions of multiple letters An insert state emits symbols with the background distribution 8

9 Insertions Deletions I 1 BEGIN M L BEGIN Log odds contribution of an insertion of length k: M L Looks like an affine gap penalty Deletion states: silent states Cost of deletion of a sequence of letters: sum of log transition probabilities We could model deletions by allowing all forward transitions from match states: lots of transitions Profile HMMs Profile HMMs BEGIN I 0 I 1 I L-1 I L BEGIN I 0 I 1 I L-1 I L M L Protein Family F Each M state has a position-specific pre-computed substitution table Each I state has position-specific gap penalties (and in principle can have its own emission distributions) Each D allows to skip its corresponding match state In principle, D-D transitions can also be customized per position M L Protein Family F transition between match states a M(i)M(i+1) transitions between match and insert states a M(i)I(i), a I(i)M(i+1) transition within insert state a I(i)I(i) transition between match and delete states a M(i)D(i+1), a D(i)M(i+1) transition within delete state a D(i)D(i+1) emission of amino acid b at a state S e S (b) Estimating Profile HMMs from MSAs Estimating Profile HMMs from MSAs BEGIN I 0 I 1 I L-1 I L M L Columns that have less than a given number of gaps are used as match state of the HMM (starred columns) Amino acid frequencies of each column used to set emission probabilities for the corresponding match state transition probabilities ~ frequency of a transition in alignment emission probabilities ~ frequency of an emission in alignment pseudocounts are usually introduced Akl akl =! A ' ' l kl E k ( a) ek ( a) =! E k ( a ' ) ' a ' 9

10 Profile HMM for the globins example What you can do with a profile HMM Classification: given a protein, we can compute its probability under the model, or compare it to a random model (using a log-odds-ratio). Use forward/backward Alignment: Use the Viterbi algorithm to align a sequence to the HMM. Learning: set model parameters using a given MSA, or from scratch using EM. Figure 5.4 from Durbin et al. Alignment of a protein to a profile HMM Log-odds Viterbi To align sequence x 1 x n to a profile HMM: We will find the most likely alignment with the Viterbi DP algorithm Define V jm (i): score of best alignment of x 1 x i to the HMM ending in x i being emitted from M j V ji (i): score of best alignment of x 1 x i to the HMM ending in x i being emitted from I j V jd (i): score of best alignment of x 1 x i to the HMM ending in D j (x i is the last character emitted before D j ) Denote by q a the frequency of amino acid a in a random protein Log-odds Viterbi (termination) MSA using a profile HMM 10

11 BEGIN I 0 I 1 I m-1 M m I m BEGIN I 0 I 1 I m-1 M m BEGIN I 0 I 1 I m-1 M m I m I m How to build a profile HMM Classification with Profile HMMs Fold Superfamily Family new protein? Classification with Profile HMMs Classifying globins How generative models work Training examples: sequences known to be members of family Tuning parameters with a priori knowledge Model assigns a probability to any given protein sequence Idea: The sequences from the family (hopefully) yields a higher probability than sequences outside the family Log-likelihood ratio as score P(H 1 X) L(X) = log P(H 0 X) Classification using Z score Weighting training sequences The examples of a protein family are not a good sample from the sequences that belong to the family: typically there are sequences that are very closely related. They can given the mistaken impression regarding the pattern of conservation in the family. Solution: assign weights to each sequence. Less weight to related sequences. 11

12 Profile HMMs for local alignment PFAM: profile HMMs for protein families PFAM method: Use Blast to cluster a protein database into families of related proteins Construct a multiple alignment for each protein family. Construct a profile HMM from each alignment Given a protein of unknown origin: Align the target sequence against each HMM to find the best fit PFAM Generative Models Pfam decribes protein domains Each protein domain family in Pfam has: Seed alignment: manually verified multiple alignment of a representative set of sequences. HMM built from the seed alignment for further database searches. Full alignment generated automatically from the HMM The distinction between seed and full alignments facilitates Pfam updates. Seed alignments are a stable resource (manually inspected by an expert) HMMs can be updated with new protein sequences. Generative Models Generative Models 12

13 Digression: Discriminative Models k-mer based SVMs for protein classification Rather than model each class (red/ green), construct a decision boundary between the classes. margin Support Vector Machines (SVM) learn large margin decision boundaries For given word size k, and mismatch tolerance m, define K(x, y) = # distinct k-long word occurrences with m mismatches SVM can be learned by supplying this kernel function X A B A C A R D I w Decision Rule: red: w T x > 0 Let k = 3; m = 1 Y A B R A D A B I K(X, Y) = 4 Benchmarks Resources on the web HMMer a free profile HMM software SAM another free profile HMM software PFAM database of alignments and HMMs for protein families and domains SCOP a structural classification of proteins Transmembrane proteins Prediction of transmembrane proteins 13

14 Transmembrane proteins Sonnhammer et al., ISMB, 6: , 1998: TMHMM Properties of transmembrane proteins: hydrophobic α-helices connected by interfacial loops There are 3 main locations of a residue: TM helix core (in hydrophobic tail of membrane) TM helix cap (in head of membrane) cytoplasmic vs non-cytoplasmic side of the helix core loops cytoplasimc vs non-cytoplasmic (short) vs non-cytoplasmic (long) cyto non-cyto Architecture of TMHMM 14

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Outline 1. CG-Islands 2. The Fair Bet Casino 3. Hidden Markov Model 4. Decoding Algorithm 5. Forward-Backward Algorithm 6. Profile HMMs 7. HMM Parameter Estimation 8. Viterbi Training

More information

An Introduction to Bioinformatics Algorithms Hidden Markov Models

An Introduction to Bioinformatics Algorithms   Hidden Markov Models Hidden Markov Models Outline 1. CG-Islands 2. The Fair Bet Casino 3. Hidden Markov Model 4. Decoding Algorithm 5. Forward-Backward Algorithm 6. Profile HMMs 7. HMM Parameter Estimation 8. Viterbi Training

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Outline CG-islands The Fair Bet Casino Hidden Markov Model Decoding Algorithm Forward-Backward Algorithm Profile HMMs HMM Parameter Estimation Viterbi training Baum-Welch algorithm

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Slides revised and adapted to Bioinformática 55 Engª Biomédica/IST 2005 Ana Teresa Freitas Forward Algorithm For Markov chains we calculate the probability of a sequence, P(x) How

More information

2MHR. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity.

2MHR. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity. A global picture of the protein universe will help us to understand

More information

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD Department of Computer Science University of Missouri 2008 Free for Academic

More information

HMMs and biological sequence analysis

HMMs and biological sequence analysis HMMs and biological sequence analysis Hidden Markov Model A Markov chain is a sequence of random variables X 1, X 2, X 3,... That has the property that the value of the current state depends only on the

More information

Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD William and Nancy Thompson Missouri Distinguished Professor Department

More information

Protein Structure: Data Bases and Classification Ingo Ruczinski

Protein Structure: Data Bases and Classification Ingo Ruczinski Protein Structure: Data Bases and Classification Ingo Ruczinski Department of Biostatistics, Johns Hopkins University Reference Bourne and Weissig Structural Bioinformatics Wiley, 2003 More References

More information

Hidden Markov Models. x 1 x 2 x 3 x K

Hidden Markov Models. x 1 x 2 x 3 x K Hidden Markov Models 1 1 1 1 2 2 2 2 K K K K x 1 x 2 x 3 x K Viterbi, Forward, Backward VITERBI FORWARD BACKWARD Initialization: V 0 (0) = 1 V k (0) = 0, for all k > 0 Initialization: f 0 (0) = 1 f k (0)

More information

Page 1. References. Hidden Markov models and multiple sequence alignment. Markov chains. Probability review. Example. Markovian sequence

Page 1. References. Hidden Markov models and multiple sequence alignment. Markov chains. Probability review. Example. Markovian sequence Page Hidden Markov models and multiple sequence alignment Russ B Altman BMI 4 CS 74 Some slides borrowed from Scott C Schmidler (BMI graduate student) References Bioinformatics Classic: Krogh et al (994)

More information

Hidden Markov Models. Main source: Durbin et al., Biological Sequence Alignment (Cambridge, 98)

Hidden Markov Models. Main source: Durbin et al., Biological Sequence Alignment (Cambridge, 98) Hidden Markov Models Main source: Durbin et al., Biological Sequence Alignment (Cambridge, 98) 1 The occasionally dishonest casino A P A (1) = P A (2) = = 1/6 P A->B = P B->A = 1/10 B P B (1)=0.1... P

More information

Moreover, the circular logic

Moreover, the circular logic Moreover, the circular logic How do we know what is the right distance without a good alignment? And how do we construct a good alignment without knowing what substitutions were made previously? ATGCGT--GCAAGT

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2014 1 HMM Lecture Notes Dannie Durand and Rose Hoberman November 6th Introduction In the last few lectures, we have focused on three problems related

More information

CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools. Giri Narasimhan

CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools. Giri Narasimhan CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs15.html Describing & Modeling Patterns

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison CMPS 6630: Introduction to Computational Biology and Bioinformatics Structure Comparison Protein Structure Comparison Motivation Understand sequence and structure variability Understand Domain architecture

More information

Stephen Scott.

Stephen Scott. 1 / 21 sscott@cse.unl.edu 2 / 21 Introduction Designed to model (profile) a multiple alignment of a protein family (e.g., Fig. 5.1) Gives a probabilistic model of the proteins in the family Useful for

More information

CAP 5510 Lecture 3 Protein Structures

CAP 5510 Lecture 3 Protein Structures CAP 5510 Lecture 3 Protein Structures Su-Shing Chen Bioinformatics CISE 8/19/2005 Su-Shing Chen, CISE 1 Protein Conformation 8/19/2005 Su-Shing Chen, CISE 2 Protein Conformational Structures Hydrophobicity

More information

Multiple Sequence Alignment using Profile HMM

Multiple Sequence Alignment using Profile HMM Multiple Sequence Alignment using Profile HMM. based on Chapter 5 and Section 6.5 from Biological Sequence Analysis by R. Durbin et al., 1998 Acknowledgements: M.Sc. students Beatrice Miron, Oana Răţoi,

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 07: profile Hidden Markov Model http://bibiserv.techfak.uni-bielefeld.de/sadr2/databasesearch/hmmer/profilehmm.gif Slides adapted from Dr. Shaojie Zhang

More information

CSCE 471/871 Lecture 3: Markov Chains and

CSCE 471/871 Lecture 3: Markov Chains and and and 1 / 26 sscott@cse.unl.edu 2 / 26 Outline and chains models (s) Formal definition Finding most probable state path (Viterbi algorithm) Forward and backward algorithms State sequence known State

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 2/15/07 CAP5510 1 EM Algorithm Goal: Find θ, Z that maximize Pr

More information

Protein structure alignments

Protein structure alignments Protein structure alignments Proteins that fold in the same way, i.e. have the same fold are often homologs. Structure evolves slower than sequence Sequence is less conserved than structure If BLAST gives

More information

Today s Lecture: HMMs

Today s Lecture: HMMs Today s Lecture: HMMs Definitions Examples Probability calculations WDAG Dynamic programming algorithms: Forward Viterbi Parameter estimation Viterbi training 1 Hidden Markov Models Probability models

More information

Lecture 7 Sequence analysis. Hidden Markov Models

Lecture 7 Sequence analysis. Hidden Markov Models Lecture 7 Sequence analysis. Hidden Markov Models Nicolas Lartillot may 2012 Nicolas Lartillot (Universite de Montréal) BIN6009 may 2012 1 / 60 1 Motivation 2 Examples of Hidden Markov models 3 Hidden

More information

Hidden Markov Models (I)

Hidden Markov Models (I) GLOBEX Bioinformatics (Summer 2015) Hidden Markov Models (I) a. The model b. The decoding: Viterbi algorithm Hidden Markov models A Markov chain of states At each state, there are a set of possible observables

More information

Pairwise alignment using HMMs

Pairwise alignment using HMMs Pairwise alignment using HMMs The states of an HMM fulfill the Markov property: probability of transition depends only on the last state. CpG islands and casino example: HMMs emit sequence of symbols (nucleotides

More information

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB)

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB) Protein structure databases; visualization; and classifications 1. Introduction to Protein Data Bank (PDB) 2. Free graphic software for 3D structure visualization 3. Hierarchical classification of protein

More information

Bioinformatics. Proteins II. - Pattern, Profile, & Structure Database Searching. Robert Latek, Ph.D. Bioinformatics, Biocomputing

Bioinformatics. Proteins II. - Pattern, Profile, & Structure Database Searching. Robert Latek, Ph.D. Bioinformatics, Biocomputing Bioinformatics Proteins II. - Pattern, Profile, & Structure Database Searching Robert Latek, Ph.D. Bioinformatics, Biocomputing WIBR Bioinformatics Course, Whitehead Institute, 2002 1 Proteins I.-III.

More information

Hidden Markov Models and Their Applications in Biological Sequence Analysis

Hidden Markov Models and Their Applications in Biological Sequence Analysis Hidden Markov Models and Their Applications in Biological Sequence Analysis Byung-Jun Yoon Dept. of Electrical & Computer Engineering Texas A&M University, College Station, TX 77843-3128, USA Abstract

More information

Procheck output. Bond angles (Procheck) Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics.

Procheck output. Bond angles (Procheck) Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics. Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics Iosif Vaisman Email: ivaisman@gmu.edu ----------------------------------------------------------------- Bond

More information

Basics of protein structure

Basics of protein structure Today: 1. Projects a. Requirements: i. Critical review of one paper ii. At least one computational result b. Noon, Dec. 3 rd written report and oral presentation are due; submit via email to bphys101@fas.harvard.edu

More information

Stephen Scott.

Stephen Scott. 1 / 27 sscott@cse.unl.edu 2 / 27 Useful for modeling/making predictions on sequential data E.g., biological sequences, text, series of sounds/spoken words Will return to graphical models that are generative

More information

Protein Structure Prediction using String Kernels. Technical Report

Protein Structure Prediction using String Kernels. Technical Report Protein Structure Prediction using String Kernels Technical Report Department of Computer Science and Engineering University of Minnesota 4-192 EECS Building 200 Union Street SE Minneapolis, MN 55455-0159

More information

Hidden Markov Models. x 1 x 2 x 3 x K

Hidden Markov Models. x 1 x 2 x 3 x K Hidden Markov Models 1 1 1 1 2 2 2 2 K K K K x 1 x 2 x 3 x K HiSeq X & NextSeq Viterbi, Forward, Backward VITERBI FORWARD BACKWARD Initialization: V 0 (0) = 1 V k (0) = 0, for all k > 0 Initialization:

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Fall 2017 Databases and Protein Structure Representation October 2, 2017 Molecular Biology as Information Science > 12, 000 genomes sequenced, mostly bacterial (2013) > 5x10 6 unique sequences available

More information

SCOP. all-β class. all-α class, 3 different folds. T4 endonuclease V. 4-helical cytokines. Globin-like

SCOP. all-β class. all-α class, 3 different folds. T4 endonuclease V. 4-helical cytokines. Globin-like SCOP all-β class 4-helical cytokines T4 endonuclease V all-α class, 3 different folds Globin-like TIM-barrel fold α/β class Profilin-like fold α+β class http://scop.mrc-lmb.cam.ac.uk/scop CATH Class, Architecture,

More information

Week 10: Homology Modelling (II) - HHpred

Week 10: Homology Modelling (II) - HHpred Week 10: Homology Modelling (II) - HHpred Course: Tools for Structural Biology Fabian Glaser BKU - Technion 1 2 Identify and align related structures by sequence methods is not an easy task All comparative

More information

Protein tertiary structure prediction with new machine learning approaches

Protein tertiary structure prediction with new machine learning approaches Protein tertiary structure prediction with new machine learning approaches Rui Kuang Department of Computer Science Columbia University Supervisor: Jason Weston(NEC) and Christina Leslie(Columbia) NEC

More information

Large-Scale Genomic Surveys

Large-Scale Genomic Surveys Bioinformatics Subtopics Fold Recognition Secondary Structure Prediction Docking & Drug Design Protein Geometry Protein Flexibility Homology Modeling Sequence Alignment Structure Classification Gene Prediction

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

CSCE 478/878 Lecture 9: Hidden. Markov. Models. Stephen Scott. Introduction. Outline. Markov. Chains. Hidden Markov Models. CSCE 478/878 Lecture 9:

CSCE 478/878 Lecture 9: Hidden. Markov. Models. Stephen Scott. Introduction. Outline. Markov. Chains. Hidden Markov Models. CSCE 478/878 Lecture 9: Useful for modeling/making predictions on sequential data E.g., biological sequences, text, series of sounds/spoken words Will return to graphical models that are generative sscott@cse.unl.edu 1 / 27 2

More information

Lecture 9. Intro to Hidden Markov Models (finish up)

Lecture 9. Intro to Hidden Markov Models (finish up) Lecture 9 Intro to Hidden Markov Models (finish up) Review Structure Number of states Q 1.. Q N M output symbols Parameters: Transition probability matrix a ij Emission probabilities b i (a), which is

More information

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program)

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Course Name: Structural Bioinformatics Course Description: Instructor: This course introduces fundamental concepts and methods for structural

More information

Identification of Representative Protein Sequence and Secondary Structure Prediction Using SVM Approach

Identification of Representative Protein Sequence and Secondary Structure Prediction Using SVM Approach Identification of Representative Protein Sequence and Secondary Structure Prediction Using SVM Approach Prof. Dr. M. A. Mottalib, Md. Rahat Hossain Department of Computer Science and Information Technology

More information

Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics

Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics Jianlin Cheng, PhD Department of Computer Science University of Missouri, Columbia

More information

PROTEIN FUNCTION PREDICTION WITH AMINO ACID SEQUENCE AND SECONDARY STRUCTURE ALIGNMENT SCORES

PROTEIN FUNCTION PREDICTION WITH AMINO ACID SEQUENCE AND SECONDARY STRUCTURE ALIGNMENT SCORES PROTEIN FUNCTION PREDICTION WITH AMINO ACID SEQUENCE AND SECONDARY STRUCTURE ALIGNMENT SCORES Eser Aygün 1, Caner Kömürlü 2, Zafer Aydin 3 and Zehra Çataltepe 1 1 Computer Engineering Department and 2

More information

RNA Search and! Motif Discovery" Genome 541! Intro to Computational! Molecular Biology"

RNA Search and! Motif Discovery Genome 541! Intro to Computational! Molecular Biology RNA Search and! Motif Discovery" Genome 541! Intro to Computational! Molecular Biology" Day 1" Many biologically interesting roles for RNA" RNA secondary structure prediction" 3 4 Approaches to Structure

More information

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha Neural Networks for Protein Structure Prediction Brown, JMB 1999 CS 466 Saurabh Sinha Outline Goal is to predict secondary structure of a protein from its sequence Artificial Neural Network used for this

More information

Bioinformatics 1--lectures 15, 16. Markov chains Hidden Markov models Profile HMMs

Bioinformatics 1--lectures 15, 16. Markov chains Hidden Markov models Profile HMMs Bioinformatics 1--lectures 15, 16 Markov chains Hidden Markov models Profile HMMs target sequence database input to database search results are sequence family pseudocounts or background-weighted pseudocounts

More information

HIDDEN MARKOV MODELS FOR REMOTE PROTEIN HOMOLOGY DETECTION

HIDDEN MARKOV MODELS FOR REMOTE PROTEIN HOMOLOGY DETECTION From THE CENTER FOR GENOMICS AND BIOINFORMATICS Karolinska Institutet, Stockholm, Sweden HIDDEN MARKOV MODELS FOR REMOTE PROTEIN HOMOLOGY DETECTION Markus Wistrand Stockholm 2005 All previously published

More information

Comparative Gene Finding. BMI/CS 776 Spring 2015 Colin Dewey

Comparative Gene Finding. BMI/CS 776  Spring 2015 Colin Dewey Comparative Gene Finding BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2015 Colin Dewey cdewey@biostat.wisc.edu Goals for Lecture the key concepts to understand are the following: using related genomes

More information

Conditional Graphical Models for Protein Structure Prediction

Conditional Graphical Models for Protein Structure Prediction Conditional Graphical Models for Protein Structure Prediction Yan Liu Language Technologies Institute School of Computer Science Carnegie Mellon University Submitted in partial fulfillment of the requirements

More information

Hidden Markov Models

Hidden Markov Models Andrea Passerini passerini@disi.unitn.it Statistical relational learning The aim Modeling temporal sequences Model signals which vary over time (e.g. speech) Two alternatives: deterministic models directly

More information

ALL LECTURES IN SB Introduction

ALL LECTURES IN SB Introduction 1. Introduction 2. Molecular Architecture I 3. Molecular Architecture II 4. Molecular Simulation I 5. Molecular Simulation II 6. Bioinformatics I 7. Bioinformatics II 8. Prediction I 9. Prediction II ALL

More information

Intro Secondary structure Transmembrane proteins Function End. Last time. Domains Hidden Markov Models

Intro Secondary structure Transmembrane proteins Function End. Last time. Domains Hidden Markov Models Last time Domains Hidden Markov Models Today Secondary structure Transmembrane proteins Structure prediction NAD-specific glutamate dehydrogenase Hard Easy >P24295 DHE2_CLOSY MSKYVDRVIAEVEKKYADEPEFVQTVEEVL

More information

Heteropolymer. Mostly in regular secondary structure

Heteropolymer. Mostly in regular secondary structure Heteropolymer - + + - Mostly in regular secondary structure 1 2 3 4 C >N trace how you go around the helix C >N C2 >N6 C1 >N5 What s the pattern? Ci>Ni+? 5 6 move around not quite 120 "#$%&'!()*(+2!3/'!4#5'!1/,#64!#6!,6!

More information

Today. Last time. Secondary structure Transmembrane proteins. Domains Hidden Markov Models. Structure prediction. Secondary structure

Today. Last time. Secondary structure Transmembrane proteins. Domains Hidden Markov Models. Structure prediction. Secondary structure Last time Today Domains Hidden Markov Models Structure prediction NAD-specific glutamate dehydrogenase Hard Easy >P24295 DHE2_CLOSY MSKYVDRVIAEVEKKYADEPEFVQTVEEVL SSLGPVVDAHPEYEEVALLERMVIPERVIE FRVPWEDDNGKVHVNTGYRVQFNGAIGPYK

More information

Protein Secondary Structure Prediction

Protein Secondary Structure Prediction Protein Secondary Structure Prediction Doug Brutlag & Scott C. Schmidler Overview Goals and problem definition Existing approaches Classic methods Recent successful approaches Evaluating prediction algorithms

More information

EBI web resources II: Ensembl and InterPro. Yanbin Yin Spring 2013

EBI web resources II: Ensembl and InterPro. Yanbin Yin Spring 2013 EBI web resources II: Ensembl and InterPro Yanbin Yin Spring 2013 1 Outline Intro to genome annotation Protein family/domain databases InterPro, Pfam, Superfamily etc. Genome browser Ensembl Hands on Practice

More information

COMP 598 Advanced Computational Biology Methods & Research. Introduction. Jérôme Waldispühl School of Computer Science McGill University

COMP 598 Advanced Computational Biology Methods & Research. Introduction. Jérôme Waldispühl School of Computer Science McGill University COMP 598 Advanced Computational Biology Methods & Research Introduction Jérôme Waldispühl School of Computer Science McGill University General informations (1) Office hours: by appointment Office: TR3018

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 2/14/07 CAP5510 1 CpG Islands Regions in DNA sequences with increased

More information

CMPS 3110: Bioinformatics. Tertiary Structure Prediction

CMPS 3110: Bioinformatics. Tertiary Structure Prediction CMPS 3110: Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the laws of physics! Conformation space is finite

More information

Number sequence representation of protein structures based on the second derivative of a folded tetrahedron sequence

Number sequence representation of protein structures based on the second derivative of a folded tetrahedron sequence Number sequence representation of protein structures based on the second derivative of a folded tetrahedron sequence Naoto Morikawa (nmorika@genocript.com) October 7, 2006. Abstract A protein is a sequence

More information

Amino Acid Structures from Klug & Cummings. 10/7/2003 CAP/CGS 5991: Lecture 7 1

Amino Acid Structures from Klug & Cummings. 10/7/2003 CAP/CGS 5991: Lecture 7 1 Amino Acid Structures from Klug & Cummings 10/7/2003 CAP/CGS 5991: Lecture 7 1 Amino Acid Structures from Klug & Cummings 10/7/2003 CAP/CGS 5991: Lecture 7 2 Amino Acid Structures from Klug & Cummings

More information

Homology Modeling (Comparative Structure Modeling) GBCB 5874: Problem Solving in GBCB

Homology Modeling (Comparative Structure Modeling) GBCB 5874: Problem Solving in GBCB Homology Modeling (Comparative Structure Modeling) Aims of Structural Genomics High-throughput 3D structure determination and analysis To determine or predict the 3D structures of all the proteins encoded

More information

Hidden Markov Models (HMMs) and Profiles

Hidden Markov Models (HMMs) and Profiles Hidden Markov Models (HMMs) and Profiles Swiss Institute of Bioinformatics (SIB) 26-30 November 2001 Markov Chain Models A Markov Chain Model is a succession of states S i (i = 0, 1,...) connected by transitions.

More information

Pairwise sequence alignment and pair hidden Markov models

Pairwise sequence alignment and pair hidden Markov models Pairwise sequence alignment and pair hidden Markov models Martin C. Frith April 13, 2012 ntroduction Pairwise alignment and pair hidden Markov models (phmms) are basic textbook fare [2]. However, there

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction CMPS 6630: Introduction to Computational Biology and Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the

More information

December 2, :4 WSPC/INSTRUCTION FILE jbcb-profile-kernel. Profile-based string kernels for remote homology detection and motif extraction

December 2, :4 WSPC/INSTRUCTION FILE jbcb-profile-kernel. Profile-based string kernels for remote homology detection and motif extraction Journal of Bioinformatics and Computational Biology c Imperial College Press Profile-based string kernels for remote homology detection and motif extraction Rui Kuang 1, Eugene Ie 1,3, Ke Wang 1, Kai Wang

More information

Protein Structure Prediction

Protein Structure Prediction Page 1 Protein Structure Prediction Russ B. Altman BMI 214 CS 274 Protein Folding is different from structure prediction --Folding is concerned with the process of taking the 3D shape, usually based on

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models A selection of slides taken from the following: Chris Bystroff Protein Folding Initiation Site Motifs Iosif Vaisman Bioinformatics and Gene Discovery Colin Cherry Hidden Markov Models

More information

Motifs, Profiles and Domains. Michael Tress Protein Design Group Centro Nacional de Biotecnología, CSIC

Motifs, Profiles and Domains. Michael Tress Protein Design Group Centro Nacional de Biotecnología, CSIC Motifs, Profiles and Domains Michael Tress Protein Design Group Centro Nacional de Biotecnología, CSIC Comparing Two Proteins Sequence Alignment Determining the pattern of evolution and identifying conserved

More information

Analysis and Prediction of Protein Structure (I)

Analysis and Prediction of Protein Structure (I) Analysis and Prediction of Protein Structure (I) Jianlin Cheng, PhD School of Electrical Engineering and Computer Science University of Central Florida 2006 Free for academic use. Copyright @ Jianlin Cheng

More information

DATE A DAtabase of TIM Barrel Enzymes

DATE A DAtabase of TIM Barrel Enzymes DATE A DAtabase of TIM Barrel Enzymes 2 2.1 Introduction.. 2.2 Objective and salient features of the database 2.2.1 Choice of the dataset.. 2.3 Statistical information on the database.. 2.4 Features....

More information

Chapter 5. Proteomics and the analysis of protein sequence Ⅱ

Chapter 5. Proteomics and the analysis of protein sequence Ⅱ Proteomics Chapter 5. Proteomics and the analysis of protein sequence Ⅱ 1 Pairwise similarity searching (1) Figure 5.5: manual alignment One of the amino acids in the top sequence has no equivalent and

More information

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010 Hidden Lecture 4: Hidden : An Introduction to Dynamic Decision Making November 11, 2010 Special Meeting 1/26 Markov Model Hidden When a dynamical system is probabilistic it may be determined by the transition

More information

Presentation Outline. Prediction of Protein Secondary Structure using Neural Networks at Better than 70% Accuracy

Presentation Outline. Prediction of Protein Secondary Structure using Neural Networks at Better than 70% Accuracy Prediction of Protein Secondary Structure using Neural Networks at Better than 70% Accuracy Burkhard Rost and Chris Sander By Kalyan C. Gopavarapu 1 Presentation Outline Major Terminology Problem Method

More information

Some Problems from Enzyme Families

Some Problems from Enzyme Families Some Problems from Enzyme Families Greg Butler Department of Computer Science Concordia University, Montreal www.cs.concordia.ca/~faculty/gregb gregb@cs.concordia.ca Abstract I will discuss some problems

More information

Protein Structures. Sequences of amino acid residues 20 different amino acids. Quaternary. Primary. Tertiary. Secondary. 10/8/2002 Lecture 12 1

Protein Structures. Sequences of amino acid residues 20 different amino acids. Quaternary. Primary. Tertiary. Secondary. 10/8/2002 Lecture 12 1 Protein Structures Sequences of amino acid residues 20 different amino acids Primary Secondary Tertiary Quaternary 10/8/2002 Lecture 12 1 Angles φ and ψ in the polypeptide chain 10/8/2002 Lecture 12 2

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2011 1 HMM Lecture Notes Dannie Durand and Rose Hoberman October 11th 1 Hidden Markov Models In the last few lectures, we have focussed on three problems

More information

Example: The Dishonest Casino. Hidden Markov Models. Question # 1 Evaluation. The dishonest casino model. Question # 3 Learning. Question # 2 Decoding

Example: The Dishonest Casino. Hidden Markov Models. Question # 1 Evaluation. The dishonest casino model. Question # 3 Learning. Question # 2 Decoding Example: The Dishonest Casino Hidden Markov Models Durbin and Eddy, chapter 3 Game:. You bet $. You roll 3. Casino player rolls 4. Highest number wins $ The casino has two dice: Fair die P() = P() = P(3)

More information

Module: Sequence Alignment Theory and Applications Session: Introduction to Searching and Sequence Alignment

Module: Sequence Alignment Theory and Applications Session: Introduction to Searching and Sequence Alignment Module: Sequence Alignment Theory and Applications Session: Introduction to Searching and Sequence Alignment Introduction to Bioinformatics online course : IBT Jonathan Kayondo Learning Objectives Understand

More information

Sequence analysis and comparison

Sequence analysis and comparison The aim with sequence identification: Sequence analysis and comparison Marjolein Thunnissen Lund September 2012 Is there any known protein sequence that is homologous to mine? Are there any other species

More information

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment Algorithms in Bioinformatics FOUR Sami Khuri Department of Computer Science San José State University Pairwise Sequence Alignment Homology Similarity Global string alignment Local string alignment Dot

More information

Quantifying sequence similarity

Quantifying sequence similarity Quantifying sequence similarity Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, February 16 th 2016 After this lecture, you can define homology, similarity, and identity

More information

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II)

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II) CISC 889 Bioinformatics (Spring 24) Hidden Markov Models (II) a. Likelihood: forward algorithm b. Decoding: Viterbi algorithm c. Model building: Baum-Welch algorithm Viterbi training Hidden Markov models

More information

EBI web resources II: Ensembl and InterPro

EBI web resources II: Ensembl and InterPro EBI web resources II: Ensembl and InterPro Yanbin Yin http://www.ebi.ac.uk/training/online/course/ 1 Homework 3 Go to http://www.ebi.ac.uk/interpro/training.htmland finish the second online training course

More information

O 3 O 4 O 5. q 3. q 4. Transition

O 3 O 4 O 5. q 3. q 4. Transition Hidden Markov Models Hidden Markov models (HMM) were developed in the early part of the 1970 s and at that time mostly applied in the area of computerized speech recognition. They are first described in

More information

Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling

Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 009 Mark Craven craven@biostat.wisc.edu Sequence Motifs what is a sequence

More information

Protein Bioinformatics. Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet sandberg.cmb.ki.

Protein Bioinformatics. Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet sandberg.cmb.ki. Protein Bioinformatics Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet rickard.sandberg@ki.se sandberg.cmb.ki.se Outline Protein features motifs patterns profiles signals 2 Protein

More information

An Introduction to Sequence Similarity ( Homology ) Searching

An Introduction to Sequence Similarity ( Homology ) Searching An Introduction to Sequence Similarity ( Homology ) Searching Gary D. Stormo 1 UNIT 3.1 1 Washington University, School of Medicine, St. Louis, Missouri ABSTRACT Homologous sequences usually have the same,

More information

Sequence Bioinformatics. Multiple Sequence Alignment Waqas Nasir

Sequence Bioinformatics. Multiple Sequence Alignment Waqas Nasir Sequence Bioinformatics Multiple Sequence Alignment Waqas Nasir 2010-11-12 Multiple Sequence Alignment One amino acid plays coy; a pair of homologous sequences whisper; many aligned sequences shout out

More information

Alignment Algorithms. Alignment Algorithms

Alignment Algorithms. Alignment Algorithms Midterm Results Big improvement over scores from the previous two years. Since this class grade is based on the previous years curve, that means this class will get higher grades than the previous years.

More information

Algorithms in Bioinformatics

Algorithms in Bioinformatics Algorithms in Bioinformatics Sami Khuri Department of omputer Science San José State University San José, alifornia, USA khuri@cs.sjsu.edu www.cs.sjsu.edu/faculty/khuri Pairwise Sequence Alignment Homology

More information

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche The molecular structure of a protein can be broken down hierarchically. The primary structure of a protein is simply its

More information

Pair Hidden Markov Models

Pair Hidden Markov Models Pair Hidden Markov Models Scribe: Rishi Bedi Lecturer: Serafim Batzoglou January 29, 2015 1 Recap of HMMs alphabet: Σ = {b 1,...b M } set of states: Q = {1,..., K} transition probabilities: A = [a ij ]

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

Markov Chains and Hidden Markov Models. = stochastic, generative models

Markov Chains and Hidden Markov Models. = stochastic, generative models Markov Chains and Hidden Markov Models = stochastic, generative models (Drawing heavily from Durbin et al., Biological Sequence Analysis) BCH339N Systems Biology / Bioinformatics Spring 2016 Edward Marcotte,

More information

Protein Structure & Motifs

Protein Structure & Motifs & Motifs Biochemistry 201 Molecular Biology January 12, 2000 Doug Brutlag Introduction Proteins are more flexible than nucleic acids in structure because of both the larger number of types of residues

More information