Sensory and Motor Mechanisms

Size: px
Start display at page:

Download "Sensory and Motor Mechanisms"

Transcription

1 Chapter 50 Sensory and Motor Mechanisms PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

2 Key concepts 1. Sensory mechanisms convert various stimuli into neural codes. 2. Motor mechanisms exert action by skeletons and muscles. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

3 Fig Can a moth evade a bat in the dark?

4 Fig Membrane potential (mv) Membrane potential (mv) Membrane potential (mv) Membrane potential (mv) Response of a crayfish stretch receptor to bending Slight bend: weak stimulus Weak receptor potential Dendrites Stretch receptor Action potentials Time (sec) Brain perceives slight bend Axon 4 Brain Large bend: strong stimulus 1 Reception Muscle Strong receptor potential Action potentials Time (sec) Brain perceives large bend. 2 Transduction 3 Transmission 4 Perception

5 slowly more quickly very rapidly Some of Adrian s first recordings from a very small number of nerve fibers in the sensory nerves of cat s toe (1926). Adrian s Laws: 1. The nerve impulse (action potential) is all-or-none 2. The strength of stimulus is coded by the firing frequency

6

7 Sensory adaptation is a decrease in responsiveness to continued stimulation

8 Perception Perceptions are the brain s construction of stimuli Stimuli from different sensory receptors travel as action potentials along different neural pathways ( label line ) Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

9 Types of Sensory Receptors Based on energy transduced, sensory receptors fall into five categories: Mechanoreceptors Chemoreceptors Electromagnetic receptors Thermoreceptors Pain receptors Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

10 Fig Heat Sensory receptors in human skin Gentle touch Pain Cold Hair Epidermis Dermis Hypodermis Nerve Connective tissue Hair movement Strong pressure

11 Fig mm

12 Fig Eye Infrared receptor (a) Rattlesnake (b) Beluga whales

13 Fig Ciliated receptor cells Cilia Statolith Sensory axons

14 Fig Many arthropods sense sounds with body hairs that vibrate or with localized ears consisting of a tympanic membrane and receptor cells Tympanic membrane 1 mm

15 Fig Outer ear Middle ear Inner ear The structure of the human ear Skull bone Incus Stapes Semicircular canals Malleus Auditory nerve to brain Cochlear duct Bone Auditory nerve Vestibular canal Pinna Auditory canal Tympanic membrane Oval window Round window Cochlea Eustachian tube Tympanic canal Organ of Corti Hair cells Tectorial membrane Hair cell bundle from a bullfrog; the longest cilia shown are about 8 µm (SEM). Basilar membrane Axons of sensory neurons To auditory nerve

16 Fig Signal Membrane potential (mv) Signal Membrane potential (mv) Signal Membrane potential (mv) Sensory reception by hair cells Hairs of hair cell Neurotransmitter at synapse Sensory neuron More neurotransmitter Receptor potential Less neurotransmitter Action potentials Time (sec) Time (sec) Time (sec) (a) No bending of hairs (b) Bending of hairs in one direction (c) Bending of hairs in other direction

17 Fig Transduction in the cochlea Axons of sensory neurons Oval window Vestibular canal Apex Flexible end of basilar membrane Apex Basilar membrane 500 Hz (low pitch) 1 khz 2 khz Stapes { Vibration 4 khz Base Round window Tympanic canal Fluid (perilymph) Basilar membrane Base (stiff) 16 khz (high pitch) 8 khz

18 Fig Semicircular canals Flow of fluid Vestibular nerve Cupula Hairs Hair cells Vestibule Utricle Axons Body movement Saccule The utricle and saccule contain granules called otoliths that allow us to detect gravity and linear movement Three semicircular canals contain fluid and allow us to detect angular acceleration such as the turning of the head

19 Fig The lateral line system in a fish Lateral line Surrounding water Scale Lateral line canal Epidermis Opening of lateral line canal Cupula Segmental muscles Fish body wall Lateral nerve Sensory hairs Hair cell Supporting cell Axon

20 Taste in Mammals There are five taste perceptions: sweet, sour, salty, bitter, and umami (elicited by glutamate) Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

21 Fig Sugar molecule Sweet receptor Tongue G protein Taste pore Sugar molecule SENSORY RECEPTOR CELL Phospholipase C Taste bud Sensory receptor cells PIP 2 Sensory neuron Nucleus IP 3 (second messenger) IP 3 -gated calcium channel Sodium channel Sensory transduction by a sweet receptor ER Ca 2+ (second messenger) Na +

22 Fig Relative consumption (%) How do mammals detect different tastes? RESULTS Concentration of PBDG (mm); log scale PBDG receptor expression in cells for sweet taste No PBDG receptor gene PBDG receptor expression in cells for bitter taste

23 Fig Smell in humans Brain Action potentials Odorants Nasal cavity Olfactory bulb Bone Odorant receptors Plasma membrane Epithelial cell Chemoreceptor Cilia Odorants Mucus

24 Fig Ocelli and orientation behavior of a planarian Ocellus Light Photoreceptor Visual pigment Ocellus Nerve to brain Screening pigment

25 Fig mm (a) Fly eyes Cornea Crystalline cone Lens Rhabdom Axons Photoreceptor (b) Ommatidia Ommatidium

26 Fig Ciliary body Sclera Choroid Retina Suspensory ligament Fovea (center of visual field) Cornea Iris Pupil Optic nerve Aqueous humor Lens Vitreous humor Optic disk (blind spot) Central artery and vein of the retina

27 Fig Focusing in the mammalian eye Ciliary muscles contract. Suspensory ligaments relax. Choroid Retina Ciliary muscles relax. Suspensory ligaments pull against lens. Lens becomes thicker and rounder. (a) Near vision (accommodation) Lens becomes flatter. (b) Distance vision

28 Fig Activation of rhodopsin by light Rod Outer segment Disks INSIDE OF DISK cis isomer Light Enzymes Cell body CYTOSOL Synaptic terminal Rhodopsin Retinal Opsin trans isomer

29 Membrane potential (mv) Fig Receptor potential production in a rod cell Light Inactive rhodopsin Active rhodopsin Transducin INSIDE OF DISK Disk membrane Phosphodiesterase GMP CYTOSOL cgmp EXTRACELLULAR FLUID Plasma membrane Sodium channel Na + 0 Dark Light Time Hyperpolarization Na +

30 Fig Dark Responses Light Responses Rhodopsin inactive Rhodopsin active Na + channels open Na + channels closed Rod depolarized Rod hyperpolarized Glutamate released No glutamate released Bipolar cell either depolarized or hyperpolarized Bipolar cell either hyperpolarized or depolarized

31 Fig Retina Neurons Retina Photoreceptors Cone Rod Choroid Light Optic nerve To brain Light Ganglion cell Optic nerve axons Amacrine cell Bipolar cell Horizontal cell Pigmented epithelium

32 Fig Right visual field Right eye Optic chiasm Left eye Left visual field Optic nerve Lateral geniculate nucleus Primary visual cortex

33 Evolution of Visual Perception Photoreceptors in diverse animals likely originated in the earliest bilateral animals Melanopsin, a pigment in ganglion cells, may play a role in circadian rhythms in humans Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

34 Fig Muscle The structure of skeletal muscle Bundle of muscle fibers Nuclei Single muscle fiber (cell) Plasma membrane Myofibril Z lines Sarcomere TEM M line 0.5 µm Thick filaments (myosin) Thin filaments (actin) Z line Sarcomere Z line

35 Fig According to the sliding-filament model, filaments slide past each other longitudinally, producing more overlap between thin and thick filaments Z Sarcomere M Z 0.5 µm Relaxed muscle Contracting muscle Fully contracted muscle Contracted Sarcomere

36 Fig Thin filaments Thick filament Myosin-actin interactions underlying muscle fiber contraction ATP ATP Myosin head (lowenergy configuration Thin filament Thick filament Thin filament moves toward center of sarcomere. Actin Myosin binding sites Myosin head (lowenergy configuration ADP P i Myosin head (highenergy configuration ADP + P i ADP P i Cross-bridge

37 Fig Tropomyosin Actin Troponin complex Ca 2+ -binding sites (a) Myosin-binding sites blocked Ca 2+ Myosinbinding site (b) Myosin-binding sites exposed

38 Fig Synaptic terminal Motor neuron axon T tubule Sarcoplasmic reticulum (SR) Myofibril Plasma membrane of muscle fiber Sarcomere Synaptic terminal of motor neuron Mitochondrion Ca 2+ released from SR Synaptic cleft T Tubule Plasma membrane ACh SR Ca 2+ ATPase pump Ca 2+ ATP CYTOSOL Ca 2+ ADP P i

39 Fig Spinal cord Motor unit 1 Motor unit 2 Synaptic terminals Nerve Motor neuron cell body Motor neuron axon Muscle Muscle fibers Tendon

40 Fig Tension Summation of twitches Tetanus Summation of two twitches Single twitch Action potential Pair of action potentials Time Series of action potentials at high frequency

41 Oxidative fibers rely on aerobic respiration to generate ATP Glycolytic fibers use glycolysis as their primary source of ATP Glycolytic fibers have less myoglobin than oxidative fibers, and tire more easily In poultry and fish, light meat is composed of glycolytic fibers, while dark meat is composed of oxidative fibers Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

42 Fig Human Grasshopper Biceps contracts Extensor muscle relaxes Tibia flexes Triceps relaxes Forearm flexes Flexor muscle contracts Biceps relaxes Extensor muscle contracts Tibia extends Triceps contracts Forearm extends Flexor muscle relaxes

43 Types of Skeletal Systems The three main types of skeletons are: Hydrostatic skeletons (lack hard parts) Exoskeletons (external hard parts) Endoskeletons (internal hard parts) Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

44 Fig Longitudinal muscle relaxed (extended) Circular muscle contracted Circular muscle relaxed Longitudinal muscle contracted Crawling by peristalsis Bristles Head end Head end Head end

45 Fig Skull Examples of joints Head of humerus Scapula 1 Shoulder girdle Clavicle Scapula Sternum Rib Humerus Vertebra Ball-and-socket joint Radius Ulna Pelvic girdle Humerus Carpals Phalanges Metacarpals Femur Patella Ulna 2 Hinge joint Tibia Fibula Tarsals Metatarsals Phalanges 3 Ulna Pivot joint Radius

46 Fig Energy-efficient locomotion on land

47 Fig Measuring energy usage during flight

48 Energy cost (cal/kg m) Fig RESULTS Animals specialized for swimming expend less energy per meter traveled than equivalently sized animals specialized for flying or running 10 2 Flying Running Swimming Body mass (g)

49 You should now be able to: 1. Distinguish between the following pairs of terms: sensation and perception; sensory transduction and receptor potential; tastants and odorants; rod and cone cells; oxidative and glycolytic muscle fibers; slow-twitch and fast-twitch muscle fibers; endoskeleton and exoskeleton 2. List the five categories of sensory receptors and explain the energy transduced by each type Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

50 3. Explain the role of mechanoreceptors in hearing and balance 4. Give the function of each structure using a diagram of the human ear 5. Explain the basis of the sensory discrimination of human smell 6. Identify and give the function of each structure using a diagram of the vertebrate eye Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

51 7. Identify the components of a skeletal muscle cell using a diagram 8. Explain the sliding-filament model of muscle contraction 9. Explain how a skeleton combines with an antagonistic muscle arrangement to provide a mechanism for movement Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Sensing and acting Bats use sonar to detect their prey. Both bats and moths have complex sensory systems that facilitate their survival

Sensing and acting Bats use sonar to detect their prey. Both bats and moths have complex sensory systems that facilitate their survival Sensing and acting Bats use sonar to detect their prey Moths, a common prey for bats can detect the bat s sonar and attempt to flee Both bats and moths have complex sensory systems that facilitate their

More information

BIOLOGY. 1. Sensory Receptors 11/9/2014. Sensory and Motor Mechanisms. Sensory Receptors

BIOLOGY. 1. Sensory Receptors 11/9/2014. Sensory and Motor Mechanisms. Sensory Receptors CAMPBELL BIOLOGY TENTH EDITION 50 Reece Urry Cain Wasserman Minorsky Jackson Sensory and Motor Mechanisms Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick 1. Sensory Receptors Sensory

More information

Some sensory receptors are specialized neurons while others are specialized cells that regulate neurons Figure 50.4

Some sensory receptors are specialized neurons while others are specialized cells that regulate neurons Figure 50.4 1 2 3 4 5 6 7 8 9 10 Sensory and Motor Mechanisms Chapter 50 Sensory receptors transduce stimulus energy and transmit signals to the central nervous system Sensory Pathways Sensory pathways have four basic

More information

SENSORY PROCESSES PROVIDE INFORMATION ON ANIMALS EXTERNAL ENVIRONMENT AND INTERNAL STATUS 34.4

SENSORY PROCESSES PROVIDE INFORMATION ON ANIMALS EXTERNAL ENVIRONMENT AND INTERNAL STATUS 34.4 SENSORY PROCESSES PROVIDE INFORMATION ON ANIMALS EXTERNAL ENVIRONMENT AND INTERNAL STATUS 34.4 INTRODUCTION Animals need information about their external environments to move, locate food, find mates,

More information

Sensory and Motor Mechanisms Chapter 50. Sensory Pathways. Transmission. Perception 11/6/2017

Sensory and Motor Mechanisms Chapter 50. Sensory Pathways. Transmission. Perception 11/6/2017 Sensory and Motor Mechanisms Chapter 50 Sensory receptors transduce stimulus energy and transmit signals to the CNS Sensory Pathways Four basic functions Sensory reception Tranduction Conversion of stimulus

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

According to the diagram, which of the following is NOT true?

According to the diagram, which of the following is NOT true? Instructions: Review Chapter 44 on muscular-skeletal systems and locomotion, and then complete the following Blackboard activity. This activity will introduce topics that will be covered in the next few

More information

Sensory and Motor Mechanisms

Sensory and Motor Mechanisms 50 Sensory and Motor Mechanisms KEY ON EPTS 50.1 Sensory receptors transduce stimulus energy and transmit signals to the central nervous system 50.2 The mechanoreceptors responsible for hearing and equilibrium

More information

Review sheet for exam III

Review sheet for exam III Review sheet for exam III WARNING: I have tried to be complete, but I may have missed something. You are responsible for all the material discussed in class. This is only a guide. NOTE: the extra material

More information

Aflash of light reveals an instant in a nighttime confrontation. r~:~;;; :nd Acting

Aflash of light reveals an instant in a nighttime confrontation. r~:~;;; :nd Acting KEY CONCEPTS 5.1 Sensory receptors transduce stimulus energy and transmit signals to the central nervous system 5.2 The mechanoreceptors responsible for hearing and equilibrium detect moving fluid or settling

More information

Sensors. Sensory Physiology. Transduction. Types of Environmental Stimuli. Chemoreception. Taste Buds (Contact Chemoreceptors)

Sensors. Sensory Physiology. Transduction. Types of Environmental Stimuli. Chemoreception. Taste Buds (Contact Chemoreceptors) Sensors Sensory Physiology Chapter 13 Detect changes in environmental conditions Primary Sensors neurons modified to undergo action potentials in response to specific stimuli (e.g. chemical, mechanical)

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

the axons of the nerve meet with the muscle cell.

the axons of the nerve meet with the muscle cell. Steps to Contraction 1. A nerve impulse travels to the neuromuscular junction on a muscle cell. The neuromuscular junction is the point where the axons of the nerve meet with the muscle cell. 2. Ach is

More information

Our patient for the day...

Our patient for the day... Muscles Ch.12 Our patient for the day... Name: Eddy Age: Newborn Whole-body muscle contractions No relaxation Severe difficulty breathing due to inadequate relaxation of breathing muscles Diagnosed with

More information

UNIT 6 THE MUSCULAR SYSTEM

UNIT 6 THE MUSCULAR SYSTEM UNIT 6 THE MUSCULAR SYSTEM I. Functions of Muscular System A. Produces Movement Internal vs. External «locomotion & manipulation «circulate blood & maintain blood pressure «move fluids, food, baby B. Maintaining

More information

Sensory Systems (con t)

Sensory Systems (con t) 10 th or 11 th Lecture Fri/Mon 06/09 Feb 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh Sensory Processing II Chapter 13 Housekeeping, Fri 06

More information

Sensory Processing II Chapter 13

Sensory Processing II Chapter 13 10 th or 11 th Lecture Fri/Mon 06/09 Feb 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh Sensory Processing II Chapter 13 1 Housekeeping, Fri

More information

Sensory Processing II

Sensory Processing II 10 th or 11 th Lecture Fri/Mon 06/09 Feb 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh Sensory Processing II Chapter 13 1 Housekeeping, Fri

More information

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 2 Chapter 9 Muscles and Muscle Tissue Overview of Muscle Tissue types of muscle: are all prefixes for muscle Contractility all muscles cells can Smooth & skeletal

More information

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles 1 Response Mechanism tropism Definition A growth movement of part of plant in response to a directional stimulus examples Positive:

More information

Hair Cells: The Sensory Transducers of the Inner Ear

Hair Cells: The Sensory Transducers of the Inner Ear Chapter 1 Hair Cells: The Sensory Transducers of the Inner Ear Hair cells are specialized cells that transform a mechanical motion into changes in membrane potential. Such changes, whereby one form of

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lectures for Biology, Eighth Edition Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp and Janette Lewis Copyright

More information

Sensory Transduction

Sensory Transduction Sensory Transduction Gordon L. Fain University of California, Los Angeles with illustrations by Margery J. Fain Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A. Brief Contents Chapter

More information

Muscle tissue. Types. Functions. Cardiac, Smooth, and Skeletal

Muscle tissue. Types. Functions. Cardiac, Smooth, and Skeletal Types Cardiac, Smooth, and Skeletal Functions movements posture and body position Support soft tissues Guard openings body temperature nutrient reserves Muscle tissue Special Characteristics of Muscle

More information

Nervous System Organization

Nervous System Organization The Nervous System Nervous System Organization Receptors respond to stimuli Sensory receptors detect the stimulus Motor effectors respond to stimulus Nervous system divisions Central nervous system Command

More information

Lecture 13, 05 October 2004 Chapter 10, Muscle. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Lecture 13, 05 October 2004 Chapter 10, Muscle. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a. Lecture 13, 05 October 2004 Chapter 10, Muscle Vertebrate Physiology ECOL 437 University of Arizona Fall 2004 instr: Kevin Bonine t.a.: Nate Swenson Vertebrate Physiology 437 18 1. Muscle A. Sarcomere

More information

CIE Biology A-level Topic 15: Control and coordination

CIE Biology A-level Topic 15: Control and coordination CIE Biology A-level Topic 15: Control and coordination Notes Neuron structure The nerve cells called neurones play an important role in coordinating communication within the nervous system. The structure

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 48 Neurons, Synapses, and Signaling

More information

Lecture 07, 13 Sept 2005 Chapters 12 and 13. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005

Lecture 07, 13 Sept 2005 Chapters 12 and 13. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 Lecture 07, 13 Sept 2005 Chapters 12 and 13 Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 instr: Kevin Bonine t.a.: Kristen Potter Vertebrate Physiology 437 Chapter

More information

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle The Nervous System and Muscle SECTION 2 2-1 Nernst Potential 2-2 Resting Membrane Potential 2-3 Axonal Action Potential 2-4 Neurons 2-5 Axonal Conduction 2-6 Morphology of Synapses 2-7 Chemical Synaptic

More information

Skeletal 2 - joints. Puzzle 1 bones

Skeletal 2 - joints. Puzzle 1 bones Puzzle 1 bones Listed below are the names of some of the bones that make up your skeletal system. But the names have been encrypted using a secret code. Can you decipher this code to find out what they

More information

Membrane Potential. 1. Resting membrane potential (RMP): 2. Action Potential (AP):

Membrane Potential. 1. Resting membrane potential (RMP): 2. Action Potential (AP): Membrane Potential 1. Resting membrane potential (RMP): 2. Action Potential (AP): Resting Membrane Potential (RMP) It is the potential difference across the cell membrane. If an electrode of a voltmeter

More information

Visual pigments. Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2019

Visual pigments. Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2019 Visual pigments Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2019 References Webvision: The Organization of the Retina and Visual System (http://www.ncbi.nlm.nih.gov/books/nbk11522/#a 127) The

More information

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p.

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. 5 Signaling in Nerve Cells p. 9 Cellular and Molecular Biology of Neurons

More information

NOTES: CH 48 Neurons, Synapses, and Signaling

NOTES: CH 48 Neurons, Synapses, and Signaling NOTES: CH 48 Neurons, Synapses, and Signaling A nervous system has three overlapping functions: 1) SENSORY INPUT: signals from sensory receptors to integration centers 2) INTEGRATION: information from

More information

Converting energy into nerve impulses, resting potentials and action potentials Sensory receptors

Converting energy into nerve impulses, resting potentials and action potentials Sensory receptors D 1.3 s Converting energy into nerve impulses, resting potentials and action potentials Sensory receptors A receptor converts an external or internal stimulus into an electrical signal. Sensory receptors

More information

Chapter 9. Nerve Signals and Homeostasis

Chapter 9. Nerve Signals and Homeostasis Chapter 9 Nerve Signals and Homeostasis A neuron is a specialized nerve cell that is the functional unit of the nervous system. Neural signaling communication by neurons is the process by which an animal

More information

Identify the structure labelled 1.

Identify the structure labelled 1. Identify the structure labelled 1. Identify the structure labelled 1. Cornea Identify the structure labelled 2. Identify the structure labelled 2. Sclera 1 2 Identify the structure labelled 1. Pupil Identify

More information

Bio 449 Fall Exam points total Multiple choice. As with any test, choose the best answer in each case. Each question is 3 points.

Bio 449 Fall Exam points total Multiple choice. As with any test, choose the best answer in each case. Each question is 3 points. Name: Exam 1 100 points total Multiple choice. As with any test, choose the best answer in each case. Each question is 3 points. 1. The term internal environment, as coined by Clause Bernard, is best defined

More information

Nervous Tissue. Neurons Neural communication Nervous Systems

Nervous Tissue. Neurons Neural communication Nervous Systems Nervous Tissue Neurons Neural communication Nervous Systems What is the function of nervous tissue? Maintain homeostasis & respond to stimuli Sense & transmit information rapidly, to specific cells and

More information

I n this chapter, we will delve more deeply into the mechanisms of transduction in sensory

I n this chapter, we will delve more deeply into the mechanisms of transduction in sensory Chapter 4b Sensory Receptors II I n this chapter, we will delve more deeply into the mechanisms of transduction in sensory receptors. First, recall that sensory receptors have 3 functional regions: the

More information

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals Control and Integration Neurophysiology Chapters 10-12 Nervous system composed of nervous tissue cells designed to conduct electrical impulses rapid communication to specific cells or groups of cells Endocrine

More information

Introduction to Physiological Psychology

Introduction to Physiological Psychology Introduction to Physiological Psychology Psych 260 Kim Sweeney ksweeney@cogsci.ucsd.edu cogsci.ucsd.edu/~ksweeney/psy260.html n Vestibular System Today n Gustation and Olfaction 1 n Vestibular sacs: Utricle

More information

Chapter 48 Neurons, Synapses, and Signaling

Chapter 48 Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling Concept 48.1 Neuron organization and structure reflect function in information transfer Neurons are nerve cells that transfer information within the body Neurons

More information

(Be sure to clearly state the principles addressed in your discussion.)

(Be sure to clearly state the principles addressed in your discussion.) CELL QUESTION 1992: AP BIOLOGY A laboratory assistant prepared solutions of 0.8 M, 0.6 M, 0.4 M, and 0.2 M sucrose, but forgot to label them. After realizing the error, the assistant randomly labeled the

More information

BIOLOGY. 1. Overview of Neurons 11/3/2014. Neurons, Synapses, and Signaling. Communication in Neurons

BIOLOGY. 1. Overview of Neurons 11/3/2014. Neurons, Synapses, and Signaling. Communication in Neurons CAMPBELL BIOLOGY TENTH EDITION 48 Reece Urry Cain Wasserman Minorsky Jackson Neurons, Synapses, and Signaling Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick 1. Overview of Neurons Communication

More information

Unit 6.8. Motor Mechanisms and Behavior CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece

Unit 6.8. Motor Mechanisms and Behavior CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece Unit 6.8 Motor Mechanisms and Behavior Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: The How and Why

More information

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 KEY CONCEPTS 34.1 Nervous Systems Are Composed of Neurons and Glial Cells 34.2 Neurons Generate Electric Signals by Controlling Ion Distributions 34.3

More information

Neurons and Nervous Systems

Neurons and Nervous Systems 34 Neurons and Nervous Systems Concept 34.1 Nervous Systems Consist of Neurons and Glia Nervous systems have two categories of cells: Neurons, or nerve cells, are excitable they generate and transmit electrical

More information

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation Nervous Tissue Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation What is the function of nervous tissue? Maintain homeostasis & respond to stimuli

More information

NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below.

NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below. Anatomy & Physiology Nervous System Part I 2/26/16 NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below. 1. 2. 3. 5. 4. 6. Part

More information

Vertebrate Physiology 437 EXAM I 26 September 2002 NAME

Vertebrate Physiology 437 EXAM I 26 September 2002 NAME 437 EXAM1.DOC Vertebrate Physiology 437 EXAM I 26 September 2002 NAME 0. When you gaze at the stars, why do you have to look slightly away from the really faint ones in order to be able to see them? (1

More information

EASTERN ARIZONA COLLEGE Human Anatomy and Physiology I

EASTERN ARIZONA COLLEGE Human Anatomy and Physiology I EASTERN ARIZONA COLLEGE Human Anatomy and Physiology I Course Design 2015-2016 Course Information Division Science Course Number BIO 201 (SUN# BIO 2201) Title Human Anatomy and Physiology I Credits 4 Developed

More information

36 SENSORY SYSTEMS Sensory Processes. Chapter Outline. Introduction

36 SENSORY SYSTEMS Sensory Processes. Chapter Outline. Introduction CHAPTER 36 SENSORY SYSTEMS 1031 36 SENSORY SYSTEMS Figure 36.1 This shark uses its senses of sight, vibration (lateral-line system), and smell to hunt, but it also relies on its ability to sense the electric

More information

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer 48 Neurons, Synapses, and Signaling CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 48.1: Neuron organization

More information

Biology 224 Human Anatomy and Physiology - II Week 1; Lecture 1; Monday Dr. Stuart S. Sumida. Review of Early Development of Humans.

Biology 224 Human Anatomy and Physiology - II Week 1; Lecture 1; Monday Dr. Stuart S. Sumida. Review of Early Development of Humans. Biology 224 Human Anatomy and Physiology - II Week 1; Lecture 1; Monday Dr. Stuart S. Sumida Review of Early Development of Humans Special Senses Review: Historical and Developmental Perspectives Ontogeny

More information

Neurochemistry 1. Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906

Neurochemistry 1. Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906 Neurochemistry 1 Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906 How Many Neurons Do We Have? The human brain contains ~86 billion neurons and

More information

1. True or false: at this moment, some of the muscle fibers in your gluteus maximus (a whole muscle) are contracting. a. True b.

1. True or false: at this moment, some of the muscle fibers in your gluteus maximus (a whole muscle) are contracting. a. True b. Exam III ANP 213 Spring 2008 You only need to print out the last two pages. Please do not consult classmates once you have begun this exam. Multiple Choice- 1 point each (use a ScanTron) 1. True or false:

More information

Information processing. Divisions of nervous system. Neuron structure and function Synapse. Neurons, synapses, and signaling 11/3/2017

Information processing. Divisions of nervous system. Neuron structure and function Synapse. Neurons, synapses, and signaling 11/3/2017 Neurons, synapses, and signaling Chapter 48 Information processing Divisions of nervous system Central nervous system (CNS) Brain and a nerve cord Integration center Peripheral nervous system (PNS) Nerves

More information

ESSENTIAL LEARNING OUTCOMES:

ESSENTIAL LEARNING OUTCOMES: ESSENTIAL LEARNING OUTCOMES: Upon satisfactory completion of BIO 2331 - Anatomy and Physiology I, the student should be able to perform the following outcomes and supporting objectives: Outcome: A. Critical/Creative

More information

Introduction to CNS neurobiology: focus on retina

Introduction to CNS neurobiology: focus on retina Introduction to CNS neurobiology: focus on retina September 27, 2017 The retina is part of the CNS Calloway et al., 2009) 1 Retinal circuits: neurons and synapses Rods and Cones Bipolar cells Horizontal

More information

Neurophysiology. Danil Hammoudi.MD

Neurophysiology. Danil Hammoudi.MD Neurophysiology Danil Hammoudi.MD ACTION POTENTIAL An action potential is a wave of electrical discharge that travels along the membrane of a cell. Action potentials are an essential feature of animal

More information

Dendrites - receives information from other neuron cells - input receivers.

Dendrites - receives information from other neuron cells - input receivers. The Nerve Tissue Neuron - the nerve cell Dendrites - receives information from other neuron cells - input receivers. Cell body - includes usual parts of the organelles of a cell (nucleus, mitochondria)

More information

Visual pigments. Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2015

Visual pigments. Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2015 Visual pigments Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2015 References Photoreceptors and visual pigments Webvision: The Organization of the Retina and Visual System (http://www.ncbi.nlm.nih.gov/books/nbk11522/#a127)

More information

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent Overview Organization: Central Nervous System (CNS) Brain and spinal cord receives and processes information. Peripheral Nervous System (PNS) Nerve cells that link CNS with organs throughout the body.

More information

AflaSh of light reveals an instant in a nighttime confrontation. Sen. Mot. r;:~:;;;r~~~~ors. Merrn~

AflaSh of light reveals an instant in a nighttime confrontation. Sen. Mot. r;:~:;;;r~~~~ors. Merrn~ Sen Mot Merrn~... Figure 50.1 Can a moth evade a bat in the dark? KEY CONCEPTS 50.1 Sensory receptors transduce stimulus energy and transmit signals to the central nervous system 50.2 The mechanoreceptors

More information

Human Physiology Part - 02

Human Physiology Part - 02 Episode No 32 Telecast: 16/04/2017 Faculty: prof. M J H Shafi Human Physiology Part - 02 01. Read the statements A and B Pick the correct option. Statement A: All kinds of movements seen in humans are

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 37 Neurons, Synapses, and Signaling Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Muscles and Muscle Tissue: Part A

Muscles and Muscle Tissue: Part A PowerPoint Lecture Slides prepared by Janice Meeking, Mount Royal College CHAPTER 9 Muscles and Muscle Tissue: Part A Warm Up 12/12/16 Describe the major differences between cardiac, skeletal and smooth

More information

Nervous System Organization

Nervous System Organization The Nervous System Chapter 44 Nervous System Organization All animals must be able to respond to environmental stimuli -Sensory receptors = Detect stimulus -Motor effectors = Respond to it -The nervous

More information

Purpose: Perception, Movement, Learning, Memory, Thinking, Communication Functions:

Purpose: Perception, Movement, Learning, Memory, Thinking, Communication Functions: Nervous System Purpose: Perception, Movement, Learning, Memory, Thinking, Communication Functions: Sensory Input: Obtaining stimulation from the environment (light, heat, pressure, vibration, chemical,

More information

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling Name: AP Biology Mr. Croft Section 1 1. What is a neuron? Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling 2. Neurons can be placed into three groups, based on their location and function.

More information

HUMAN ANATOMY & PHYSIOLOGY STRUCTURE 30

HUMAN ANATOMY & PHYSIOLOGY STRUCTURE 30 HUMAN ANATOMY & PHYSIOLOGY STRUCTURE 30 Description This second-year course in biology emphasizes the workings of the human body. The course is offered in the fall semester and meets six (6) periods per

More information

Structure of Biological Materials

Structure of Biological Materials ELEC ENG 3BA3: Structure of Biological Materials Notes for Lecture #7 Monday, September 24, 2012 3.2 Muscle biomechanics Organization: skeletal muscle is made up of muscle fibers each fiber is a single

More information

BIOL Anatomy and Physiology I ( version L )

BIOL Anatomy and Physiology I ( version L ) BIOL 2113 - Anatomy and Physiology I ( version 213L ) Course Title Course Development Learning Support Anatomy and Physiology I Standard No Course Description Introduces the anatomy and physiology of the

More information

CHEMICAL SENSES Smell (Olfaction) and Taste

CHEMICAL SENSES Smell (Olfaction) and Taste CHEMICAL SENSES Smell (Olfaction) and Taste Peter Århem Department of Neuroscience SMELL 1 Olfactory receptor neurons in olfactory epithelium. Size of olfactory region 2 Number of olfactory receptor cells

More information

Vertebrate Physiology 437 EXAM I NAME, Section (circle): am pm 23 September Exam is worth 100 points. You have 75 minutes.

Vertebrate Physiology 437 EXAM I NAME, Section (circle): am pm 23 September Exam is worth 100 points. You have 75 minutes. 1 Vertebrate Physiology 437 EXAM I NAME, Section (circle): am pm 23 September 2004. Exam is worth 100 points. You have 75 minutes. True or False (write true or false ; 10 points total; 1 point each) 1.

More information

Ch 33. The nervous system

Ch 33. The nervous system Ch 33 The nervous system AP bio schedule Tuesday Wed Thursday Friday Plant test Animal behavior lab Nervous system 25 Review Day (bring computer) 27 Review Day (bring computer) 28 Practice AP bio test

More information

COMP 546. Lecture 21. Cochlea to brain, Source Localization. Tues. April 3, 2018

COMP 546. Lecture 21. Cochlea to brain, Source Localization. Tues. April 3, 2018 COMP 546 Lecture 21 Cochlea to brain, Source Localization Tues. April 3, 2018 1 Ear pinna auditory canal cochlea outer middle inner 2 Eye Ear Lens? Retina? Photoreceptors (light -> chemical) Ganglion cells

More information

Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell

Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell 1. Abstract Matthew Dunlevie Clement Lee Indrani Mikkilineni mdunlevi@ucsd.edu cll008@ucsd.edu imikkili@ucsd.edu Isolated

More information

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc.

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc. Chapter 16 Cellular Movement: Motility and Contractility Lectures by Kathleen Fitzpatrick Simon Fraser University Two eukaryotic motility systems 1. Interactions between motor proteins and microtubules

More information

Nervous System AP Biology

Nervous System AP Biology Nervous System 2007-2008 Why do animals need a nervous system? What characteristics do animals need in a nervous system? fast accurate reset quickly Remember Poor think bunny! about the bunny signal direction

More information

37 Neurons, Synapses, and Signaling

37 Neurons, Synapses, and Signaling CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 37 Neurons, Synapses, and Signaling Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Lines of Communication

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES Neuron Communication Neurons are stimulated by receptors on dendrites and cell bodies (soma) Ligand gated ion channels GPCR s Neurons stimulate cells

More information

لجنة الطب البشري رؤية تنير دروب تميزكم

لجنة الطب البشري رؤية تنير دروب تميزكم 1) Hyperpolarization phase of the action potential: a. is due to the opening of voltage-gated Cl channels. b. is due to prolonged opening of voltage-gated K + channels. c. is due to closure of the Na +

More information

The Nervous System. Nerve Impulses. Resting Membrane Potential. Overview. Nerve Impulses. Resting Membrane Potential

The Nervous System. Nerve Impulses. Resting Membrane Potential. Overview. Nerve Impulses. Resting Membrane Potential The Nervous System Overview Nerve Impulses (completed12/03/04) (completed12/03/04) How do nerve impulses start? (completed 19/03/04) (completed 19/03/04) How Fast are Nerve Impulses? Nerve Impulses Nerve

More information

Nervous Systems: Neuron Structure and Function

Nervous Systems: Neuron Structure and Function Nervous Systems: Neuron Structure and Function Integration An animal needs to function like a coherent organism, not like a loose collection of cells. Integration = refers to processes such as summation

More information

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials Nerve Signal Conduction Resting Potential Action Potential Conduction of Action Potentials Resting Potential Resting neurons are always prepared to send a nerve signal. Neuron possesses potential energy

More information

BIOLOGY. Neurons, Synapses, and Signaling CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Neurons, Synapses, and Signaling CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 48 Neurons, Synapses, and Signaling Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Lines of Communication The

More information

15 Grossberg Network 1

15 Grossberg Network 1 Grossberg Network Biological Motivation: Vision Bipolar Cell Amacrine Cell Ganglion Cell Optic Nerve Cone Light Lens Rod Horizontal Cell Retina Optic Nerve Fiber Eyeball and Retina Layers of Retina The

More information

Organization of Vertebrate Body. Organization of Vertebrate Body

Organization of Vertebrate Body. Organization of Vertebrate Body The Animal Body and Principles of Regulation Chapter 43 There are four levels of organization: 1. Cells 2. Tissues 3. Organs 4. Organ systems Bodies of vertebrates are composed of different cell types

More information

Neuron Structure. Why? Model 1 Parts of a Neuron. What are the essential structures that make up a neuron?

Neuron Structure. Why? Model 1 Parts of a Neuron. What are the essential structures that make up a neuron? Why? Neuron Structure What are the essential structures that make up a neuron? Cells are specialized for different functions in multicellular organisms. In animals, one unique kind of cell helps organisms

More information

Seminar 5. Biophysics of the senses

Seminar 5. Biophysics of the senses Seminar 5 Biophysics of the senses Vision. The eye as a compound lens. Limitations of visual acuity. Colour vision. Imperfect human vision. Correction of vision. Audition. Physics of sound waves. Parameters

More information

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement 1 Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement In the last lecture, we saw that a repeating alternation between chemical (ATP hydrolysis) and vectorial

More information

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011 Crab cam (Barlow et al., 2001) self inhibition recurrent inhibition lateral inhibition - L16. Neural processing in Linear Systems: Temporal and Spatial Filtering C. D. Hopkins Sept. 21, 2011 The Neural

More information

Carbon and the Molecular Diversity of Life

Carbon and the Molecular Diversity of Life Chapter 4 Carbon and the Molecular Diversity of Life PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Collin College BIOL Week 10. Special Senses. General Organization

Collin College BIOL Week 10. Special Senses. General Organization Collin College BIOL 2401 Week 10 Special Senses 1 General Organization Organs of the Special senses are structurally more complex than the structures that make up the general senses. Special senses classification

More information

Biology September 2015 Exam One FORM G KEY

Biology September 2015 Exam One FORM G KEY Biology 251 17 September 2015 Exam One FORM G KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information

Biology September 2015 Exam One FORM W KEY

Biology September 2015 Exam One FORM W KEY Biology 251 17 September 2015 Exam One FORM W KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information

Animal structure and function

Animal structure and function Animal structure and function The nervous system Parts of the nervous system 43C, 44B, 45D Brain structure and function Eyes Retina Neurons: How neurons communicate: Resting potential: The resting

More information