15 Grossberg Network 1

Size: px
Start display at page:

Download "15 Grossberg Network 1"

Transcription

1 Grossberg Network

2 Biological Motivation: Vision Bipolar Cell Amacrine Cell Ganglion Cell Optic Nerve Cone Light Lens Rod Horizontal Cell Retina Optic Nerve Fiber Eyeball and Retina

3 Layers of Retina The retina is a part of the brain that covers the back inner wall of the eye and consists of three layers of neurons: Outer Layer: Photoreceptors - convert light into electrical signals Rods - allow us to see in dim light Cones - fine detail and color Middle Layer Bipolar Cells - link photoreceptors to third layer Horizontal Cells - link receptors with bipolar cells Amacrine Cells - link bipolar cells with ganglion cells Final Layer Ganglion Cells - link retina to brain through optic nerve 3

4 Visual Pathway Primary Visual Cortex Lateral Geniculate Nucleus Retina 4

5 Photograph of the Retina Blind Spot (Optic Disk) Vein Fovea 5

6 Imperfections in Retinal Uptake Edge Vein Retina Blind Spot Stabilized Images Fade 6

7 Compensatory Processing Emergent Segmentation: Complete missing boundaries. Featural Filling-In: Fill in color and brightness. Before Processing After Processing Emergent Segmentation Featural Filling-in 7

8 Visual Illusions Illusions demostrate the compensatory processing of the visual system. Here we see a bright white triangle and a circle which do not actually exist in the figures. 8

9 Vision Normalization Variable Illumination Separate Constant Illumination The vision systems normalize scenes so that we are only aware of relative differences in brightness, not absolute brightness. 9

10 Brightness Contrast If you look at a point between the two circles, the small inner circle on the left will appear lighter than the small inner circle on the right, although they have the same brightness. It is relatively lighter than its surroundings. The visual system normalizes the scene. We see relative intensities. 0

11 Leaky Integrator (Building block for basic nonlinear model.) ε dn () t = nt () pt () dt Leaky Integrator p - /ε ṅ n ε dn/dt = - n p

12 Leaky Integrator Response nt () = e t ε n() 0 t -- e ( t τ) ε pt ( τ) dτ ε 0 For a constant input and zero initial conditions: nt () = p( e t ε )

13 Shunting Model Input Basic Shunting Model p Excitatory Input /ε ṅ b - n b p n(t) -b - Inhibitory Input b - ε dn/dt = -n (b - n) p - (n b - ) p - Gain Control (Sets upper limit) Gain Control (Sets lower limit) 3

14 Shunting Model Response ε dn () t = nt () ( b nt ())p ( nt () b - )p - dt b = b - = 0 ε = p - = 0 Upper limit will be, and lower limit will be p = p =

15 Grossberg Network Input Layer Layer (Retina) (Visual Cortex) STM LTM (Adaptive Weights) Normalization Contrast Enhancement LTM - Long Term Memory (Network Weights) STM - Short Term Memory (Network Outputs) 5

16 Layer Input Layer b S p W S x S n /ε S x - - W S x S -. n - b - a S εdn /dt = - n ( b - n ) [ W ] p - (n - b ) [ - W ] p 6

17 Operation of Layer ε dn () t = n () t ( b dt n () t )[ W ]p ( n () t - b )[ - W ]p Excitatory Input [ W ]p Inhibitory Input - [ W ]p W - W = = On-Center/ Off-Surround Connection Pattern b bi - - = = 0 b Normalizes the input while maintaining relative intensities. 7

18 Analysis of Normalization Neuron i response: At steady state: ε dn i () t = n dt i () t ( b n i () t )pi n i () t p j n i 0 = n i ( b )p i n i Define relative intensity: p i Steady state neuron activity: p i j i p j = ---- P p P where = j S j = j i n i = b p i S p j j = n i b P = pi P Total activity: n j S j = S b P = P p j = j = b P P b 8

19 Layer Example t ( 0.) dn () = n dt () t ( n() t )p n ()p t t ( 0.) dn () = n dt () t ( n() t )p n ()p t n n p = p 0 = n 0.5 n t t 9

20 Characteristics of Layer The network is sensitive to relative intensities of the input pattern, rather than absolute intensities. The output of Layer is a normalized version of the input pattern. The on-center/off-surround connection pattern and the nonlinear gain control of the shunting model produce the normalization effect. The operation of Layer explains the brightness constancy and brightness contrast characteristics of the human visual system. 0

21 Layer Layer S x S W On-Center b W S x S a S - - /ε. n - n f a Off-Surround - b - W S x S S εdn /dt = - n ( b - n ) {[ W ] f (n ) W a } - (n - b ) [ - W ] f (n )

22 Layer Operation ε dn () t dt = n () t ( b n () t ){[ W ]f ( n () t ) W a } ( n () t - b ) W Excitatory Input: {[ W ]f ( n () t ) W a } - [ ]f ( n () t ) W W = W (On-center connections) (Adaptive weights) Inhibitory Input: - W [ ]f ( n () t ) - W - = W (Off-surround connections)

23 Layer Example ε = 0. b = b = W ( w ) T f 0 () n ( n ) = = = 0 ( n) ( w ) T Correlation between prototype and input. t ( 0.) dn () n dt () t ( n() t ) f ( n() t ) ( w ) T a n t = ()f ( n() t ) Correlation between prototype and input. t ( 0.) dn () n dt () t ( n() t ) f ( n() t ) ( w ) T a n t = ()f ( n() t ). 3

24 Layer Response ( w ) T a n () t 0.75 a 0. = ( w ) T a n () t Contrast Enhancement and Storage Input to neuron : Input to neuron : t ( w ) T a = = ( w ) T a = =

25 Characteristics of Layer As in the Hamming and Kohonen networks, the inputs to Layer are the inner products between the prototype patterns (rows of the weight matrix W ) and the output of Layer (normalized input pattern). The nonlinear feedback enables the network to store the output pattern (pattern remains after input is removed). The on-center/off-surround connection pattern causes contrast enhancement (large inputs are maintained, while small inputs are attenuated). 5

26 Oriented Receptive Field When an oriented receptive field is used, instead of an on-center/off-surround receptive field, the emergent segmentation problem can be understood. Active Active Inactive 6

27 Choice of Transfer Function f (n) Linear Stored Pattern n ( ) Comments Perfect storage of any pattern, but amplifies noise. n i(0) Slower than Linear Amplifies noise, reduces contrast. i Faster than Linear Sigmoid Winner-take-all, suppresses noise, quantizes total activity. Supresses noise, contrast enhances, not quantized. 7

28 Adaptive Weights dw i, j Hebb Rule with Decay () t = α { w dt i, j () t n i ()n t j() t } dw i, j Instar Rule (Gated Learning) () t = αn dt i t () wi, j { () t n j() t } Learn when n i (t) is active. Vector Instar Rule d[ w i () t ] = αn dt i () t { [ i w () t ] n () t } 8

29 Example dw, () t = n dt t () w, { () t n () t } dw, () t = n dt t () w, { () t n () t } dw, () t = n dt t () w, { () t n () t } dw, () t = n dt t () w, { () t n () t } 9

30 Response of Adaptive Weights Two different input patterns are alternately presented to the network for periods of 0. seconds at a time. For Pattern : n = 0.9 n = w, () t w, () t For Pattern : 0.5 w, () t n = 0.45 n = w, () t The first row of the weight matrix is updated when n (t) is active, and the second row of the weight matrix is updated when n (t) is active. 30

31 Relation to Kohonen Law Grossberg Learning (Continuous-Time) d[ w i () t ] = αn dt i () t { [ i w () t ] n () t } Euler Approximation for the Derivative d[ w i () t ] dt w i ( t t) w i () t t Discrete-Time Approximation to Grossberg Learning w i ( t t) w = i () t α t ( )n i () t { i w () t n () t } 3

32 Relation to Kohonen Law Rearrange Terms w i ( t t) = { α t ( )n i () t }w i () t α t ( )n i () t { n () t } Assume Winner-Take-All Competition w ( t t) = { α' } w () t { α}'n () t where α' α t ( )n i i = i () t Compare to Kohonen Rule w i ( q) = ( α) i w( q ) αp( q) 3

Adaptation in the Neural Code of the Retina

Adaptation in the Neural Code of the Retina Adaptation in the Neural Code of the Retina Lens Retina Fovea Optic Nerve Optic Nerve Bottleneck Neurons Information Receptors: 108 95% Optic Nerve 106 5% After Polyak 1941 Visual Cortex ~1010 Mean Intensity

More information

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1)

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Lecture 6 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2015 1 Chapter 2 remnants 2 Receptive field:

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Peter Hitchcock, PH.D., 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

A Three-dimensional Physiologically Realistic Model of the Retina

A Three-dimensional Physiologically Realistic Model of the Retina A Three-dimensional Physiologically Realistic Model of the Retina Michael Tadross, Cameron Whitehouse, Melissa Hornstein, Vicky Eng and Evangelia Micheli-Tzanakou Department of Biomedical Engineering 617

More information

Ângelo Cardoso 27 May, Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico

Ângelo Cardoso 27 May, Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico BIOLOGICALLY INSPIRED COMPUTER MODELS FOR VISUAL RECOGNITION Ângelo Cardoso 27 May, 2010 Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico Index Human Vision Retinal Ganglion Cells Simple

More information

Modeling retinal high and low contrast sensitivity lters. T. Lourens. Abstract

Modeling retinal high and low contrast sensitivity lters. T. Lourens. Abstract Modeling retinal high and low contrast sensitivity lters T. Lourens Department of Computer Science University of Groningen P.O. Box 800, 9700 AV Groningen, The Netherlands E-mail: tino@cs.rug.nl Abstract

More information

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011 Crab cam (Barlow et al., 2001) self inhibition recurrent inhibition lateral inhibition - L16. Neural processing in Linear Systems: Temporal and Spatial Filtering C. D. Hopkins Sept. 21, 2011 The Neural

More information

Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell

Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell 1. Abstract Matthew Dunlevie Clement Lee Indrani Mikkilineni mdunlevi@ucsd.edu cll008@ucsd.edu imikkili@ucsd.edu Isolated

More information

Visual pigments. Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2019

Visual pigments. Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2019 Visual pigments Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2019 References Webvision: The Organization of the Retina and Visual System (http://www.ncbi.nlm.nih.gov/books/nbk11522/#a 127) The

More information

BASIC VISUAL SCIENCE CORE

BASIC VISUAL SCIENCE CORE BASIC VISUAL SCIENCE CORE Absolute and Increment Thresholds Ronald S. Harwerth Fall, 2016 1. Psychophysics of Vision 2. Light and Dark Adaptation Michael Kalloniatis and Charles Luu 1 The Neuron Doctrine

More information

The Visual Perception of Images

The Visual Perception of Images C. A. Bouman: Digital Image Processing - January 8, 2018 1 The Visual Perception of Images In order to understand images you must understand how humans perceive visual stimulus. Objectives: Understand

More information

Outline. Photosensors in biology and in semiconductors. The visual pathway Bottom view. The visual pathway Side view

Outline. Photosensors in biology and in semiconductors. The visual pathway Bottom view. The visual pathway Side view Outline Photosensors in biology and in semiconductors CNS WS07-08 Class 1 Photosensors in biology The visual pathway and the retina Photoreceptors and the fovea Giacomo Indiveri Institute of Neuroinformatics

More information

COMP 546. Lecture 21. Cochlea to brain, Source Localization. Tues. April 3, 2018

COMP 546. Lecture 21. Cochlea to brain, Source Localization. Tues. April 3, 2018 COMP 546 Lecture 21 Cochlea to brain, Source Localization Tues. April 3, 2018 1 Ear pinna auditory canal cochlea outer middle inner 2 Eye Ear Lens? Retina? Photoreceptors (light -> chemical) Ganglion cells

More information

Cell division takes place next to the RPE. Neuroblastic cells have the capacity to differentiate into any of the cell types found in the mature retina

Cell division takes place next to the RPE. Neuroblastic cells have the capacity to differentiate into any of the cell types found in the mature retina RPE is a monolayer of hexagonal shaped neural epithelial cells that have the same embryological origin as the neural retina. They mature before the neural retina and play a key role in metabolic support

More information

SENSORY PROCESSES PROVIDE INFORMATION ON ANIMALS EXTERNAL ENVIRONMENT AND INTERNAL STATUS 34.4

SENSORY PROCESSES PROVIDE INFORMATION ON ANIMALS EXTERNAL ENVIRONMENT AND INTERNAL STATUS 34.4 SENSORY PROCESSES PROVIDE INFORMATION ON ANIMALS EXTERNAL ENVIRONMENT AND INTERNAL STATUS 34.4 INTRODUCTION Animals need information about their external environments to move, locate food, find mates,

More information

Identify the structure labelled 1.

Identify the structure labelled 1. Identify the structure labelled 1. Identify the structure labelled 1. Cornea Identify the structure labelled 2. Identify the structure labelled 2. Sclera 1 2 Identify the structure labelled 1. Pupil Identify

More information

Fine structure of the retina of black bass, Micropterus salmoides (Centrarchidae, Teleostei)

Fine structure of the retina of black bass, Micropterus salmoides (Centrarchidae, Teleostei) Histol Histopathol (1 999) 14: 1053-1 065 http://www.ehu.es/histoi-hlstopathol Histology and Histopathology Fine structure of the retina of black bass, Micropterus salmoides (Centrarchidae, Teleostei)

More information

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing Tuning tuning curves So far: Receptive fields Representation of stimuli Population vectors Today: Contrast enhancment, cortical processing Firing frequency N 3 s max (N 1 ) = 40 o N4 N 1 N N 5 2 s max

More information

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p.

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. 5 Signaling in Nerve Cells p. 9 Cellular and Molecular Biology of Neurons

More information

What is a receptive field? Why a sensory neuron has such particular RF How a RF was developed?

What is a receptive field? Why a sensory neuron has such particular RF How a RF was developed? What is a receptive field? Why a sensory neuron has such particular RF How a RF was developed? x 1 x 2 x 3 y f w 1 w 2 w 3 T x y = f (wx i i T ) i y The receptive field of a receptor is simply

More information

Natural Image Statistics and Neural Representations

Natural Image Statistics and Neural Representations Natural Image Statistics and Neural Representations Michael Lewicki Center for the Neural Basis of Cognition & Department of Computer Science Carnegie Mellon University? 1 Outline 1. Information theory

More information

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2017

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2017 CPSC 340: Machine Learning and Data Mining Sparse Matrix Factorization Fall 2017 Admin Assignment 4: Due Friday. Assignment 5: Posted, due Monday of last week of classes Last Time: PCA with Orthogonal/Sequential

More information

Sensory Systems (con t)

Sensory Systems (con t) 10 th or 11 th Lecture Fri/Mon 06/09 Feb 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh Sensory Processing II Chapter 13 Housekeeping, Fri 06

More information

Sensory Processing II Chapter 13

Sensory Processing II Chapter 13 10 th or 11 th Lecture Fri/Mon 06/09 Feb 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh Sensory Processing II Chapter 13 1 Housekeeping, Fri

More information

Sensory Processing II

Sensory Processing II 10 th or 11 th Lecture Fri/Mon 06/09 Feb 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh Sensory Processing II Chapter 13 1 Housekeeping, Fri

More information

Visual Imaging and the Electronic Age Color Science

Visual Imaging and the Electronic Age Color Science Visual Imaging and the Electronic Age Color Science Grassman s Experiments & Trichromacy Lecture #5 September 6, 2016 Prof. Donald P. Greenberg Light as Rays Light as Waves Light as Photons What is Color

More information

Artificial Neural Network and Fuzzy Logic

Artificial Neural Network and Fuzzy Logic Artificial Neural Network and Fuzzy Logic 1 Syllabus 2 Syllabus 3 Books 1. Artificial Neural Networks by B. Yagnanarayan, PHI - (Cover Topologies part of unit 1 and All part of Unit 2) 2. Neural Networks

More information

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2016

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2016 CPSC 340: Machine Learning and Data Mining More PCA Fall 2016 A2/Midterm: Admin Grades/solutions posted. Midterms can be viewed during office hours. Assignment 4: Due Monday. Extra office hours: Thursdays

More information

Introduction Biologically Motivated Crude Model Backpropagation

Introduction Biologically Motivated Crude Model Backpropagation Introduction Biologically Motivated Crude Model Backpropagation 1 McCulloch-Pitts Neurons In 1943 Warren S. McCulloch, a neuroscientist, and Walter Pitts, a logician, published A logical calculus of the

More information

Visual Motion Analysis by a Neural Network

Visual Motion Analysis by a Neural Network Visual Motion Analysis by a Neural Network Kansai University Takatsuki, Osaka 569 1095, Japan E-mail: fukushima@m.ieice.org (Submitted on December 12, 2006) Abstract In the visual systems of mammals, visual

More information

Theory of colour measurement Contemporary wool dyeing and finishing

Theory of colour measurement Contemporary wool dyeing and finishing Theory of colour measurement Contemporary wool dyeing and finishing Dr Rex Brady Deakin University Colour measurement theory Topics 1. How we see colour 2. Generation of colours 3. Measurement of colour

More information

CLINICAL VISUAL OPTICS (OPTO 223) Weeks XII & XIII Dr Salwa Alsaleh

CLINICAL VISUAL OPTICS (OPTO 223) Weeks XII & XIII Dr Salwa Alsaleh CLINICAL VISUAL OPTICS (OPTO 223) Weeks XII & XIII Dr Salwa Alsaleh OUTLINE OF WEEKS XII & XIII Temporal resolution Temporal Summation. Broca-Sulzer effect. Critical flicker frequency (CFF). Temporal Contrast

More information

Visual System. Anatomy of the Visual System. Advanced article

Visual System. Anatomy of the Visual System. Advanced article Stephen D Van Hooser, Brandeis University, Waltham, Massachusetts, USA Sacha B Nelson, Brandeis University, Waltham, Massachusetts, USA Humans and many other animals obtain much of their information about

More information

Perception of colour, form, depth and movement; organization of associative visual fields. Seminar Prof Maja Valić

Perception of colour, form, depth and movement; organization of associative visual fields. Seminar Prof Maja Valić Perception of colour, form, depth and movement; organization of associative visual fields Seminar Prof Maja Valić Perception of colour, form, depth and movement binding problem in the visual system: how

More information

Extracellular Electrical Stimulation of Retinal Ganglion Cells

Extracellular Electrical Stimulation of Retinal Ganglion Cells Extracellular Electrical Stimulation of Retinal Ganglion Cells by Andrew Eli Grumet Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements

More information

Note on Posted Slides. History of Light. History of Light

Note on Posted Slides. History of Light. History of Light Note on Posted Slides These are the slides that I intended to show in class on Wed. Mar. 27, 2013. They contain important ideas and questions from your reading. Due to time constraints, I was probably

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,9 6, M Open access books available International authors and editors Downloads Our authors are

More information

Lecture 07, 13 Sept 2005 Chapters 12 and 13. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005

Lecture 07, 13 Sept 2005 Chapters 12 and 13. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 Lecture 07, 13 Sept 2005 Chapters 12 and 13 Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 instr: Kevin Bonine t.a.: Kristen Potter Vertebrate Physiology 437 Chapter

More information

Do Neurons Process Information Efficiently?

Do Neurons Process Information Efficiently? Do Neurons Process Information Efficiently? James V Stone, University of Sheffield Claude Shannon, 1916-2001 Nothing in biology makes sense except in the light of evolution. Theodosius Dobzhansky, 1973.

More information

In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required.

In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required. In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required. In humans, association is known to be a prominent feature of memory.

More information

Neural Networks. Henrik I. Christensen. Computer Science and Engineering University of California, San Diego

Neural Networks. Henrik I. Christensen. Computer Science and Engineering University of California, San Diego Neural Networks Henrik I. Christensen Computer Science and Engineering University of California, San Diego http://www.hichristensen.net Henrik I. Christensen (UCSD) Neural Networks 1 / 39 Introduction

More information

Lecture 4: Feed Forward Neural Networks

Lecture 4: Feed Forward Neural Networks Lecture 4: Feed Forward Neural Networks Dr. Roman V Belavkin Middlesex University BIS4435 Biological neurons and the brain A Model of A Single Neuron Neurons as data-driven models Neural Networks Training

More information

OPTO 5320 VISION SCIENCE I

OPTO 5320 VISION SCIENCE I OPTO 5320 VISION SCIENCE I Monocular Sensory Processes of Vision: Color Vision Mechanisms of Color Processing VI. Retinal fundamentals A. Retinal fundamentals and cone photopigments B. Properties of cone

More information

Visual pigments. Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2015

Visual pigments. Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2015 Visual pigments Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2015 References Photoreceptors and visual pigments Webvision: The Organization of the Retina and Visual System (http://www.ncbi.nlm.nih.gov/books/nbk11522/#a127)

More information

Visual Imaging and the Electronic Age Color Science

Visual Imaging and the Electronic Age Color Science Visual Imaging and the Electronic Age Color Science Grassman s Experiments & Trichromacy Lecture #5 September 8, 2015 Prof. Donald P. Greenberg What is Color Science? Quantifying the physical energy which

More information

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References 24th March 2011 Update Hierarchical Model Rao and Ballard (1999) presented a hierarchical model of visual cortex to show how classical and extra-classical Receptive Field (RF) effects could be explained

More information

CHAPTER 3. Pattern Association. Neural Networks

CHAPTER 3. Pattern Association. Neural Networks CHAPTER 3 Pattern Association Neural Networks Pattern Association learning is the process of forming associations between related patterns. The patterns we associate together may be of the same type or

More information

Fundamentals of Computational Neuroscience 2e

Fundamentals of Computational Neuroscience 2e Fundamentals of Computational Neuroscience 2e January 1, 2010 Chapter 10: The cognitive brain Hierarchical maps and attentive vision A. Ventral visual pathway B. Layered cortical maps Receptive field size

More information

Neural Encoding II: Reverse Correlation and Visual Receptive Fields

Neural Encoding II: Reverse Correlation and Visual Receptive Fields Chapter 2 Neural Encoding II: Reverse Correlation and Visual Receptive Fields 2.1 Introduction The spike-triggered average stimulus introduced in chapter 1 is a standard way of characterizing the selectivity

More information

Mid Year Project Report: Statistical models of visual neurons

Mid Year Project Report: Statistical models of visual neurons Mid Year Project Report: Statistical models of visual neurons Anna Sotnikova asotniko@math.umd.edu Project Advisor: Prof. Daniel A. Butts dab@umd.edu Department of Biology Abstract Studying visual neurons

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory Announcements Be making progress on your projects! Three Types of Learning Unsupervised Supervised Reinforcement

More information

/639 Final Solutions, Part a) Equating the electrochemical potentials of H + and X on outside and inside: = RT ln H in

/639 Final Solutions, Part a) Equating the electrochemical potentials of H + and X on outside and inside: = RT ln H in 580.439/639 Final Solutions, 2014 Question 1 Part a) Equating the electrochemical potentials of H + and X on outside and inside: RT ln H out + zf 0 + RT ln X out = RT ln H in F 60 + RT ln X in 60 mv =

More information

Chapter 26: Properties of Light

Chapter 26: Properties of Light Lecture Outline Chapter 26: Properties of Light This lecture will help you understand: Electromagnetic Waves The Electromagnetic Spectrum Transparent Materials Opaque Materials Seeing Light The Eye Electromagnetic

More information

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon Neuron Detector Model 1 The detector model. 2 Biological properties of the neuron. 3 The computational unit. Each neuron is detecting some set of conditions (e.g., smoke detector). Representation is what

More information

A Biologically-Inspired Model for Recognition of Overlapped Patterns

A Biologically-Inspired Model for Recognition of Overlapped Patterns A Biologically-Inspired Model for Recognition of Overlapped Patterns Mohammad Saifullah Department of Computer and Information Science Linkoping University, Sweden Mohammad.saifullah@liu.se Abstract. In

More information

Extracellular Electrical Stimulation of Retinal Ganglion Cells

Extracellular Electrical Stimulation of Retinal Ganglion Cells Extracellular Electrical Stimulation of Retinal Ganglion Cells by Andrew Eli Grumet Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements

More information

Vision & Perception. Simple model: simple reflectance/illumination model. image: x(n 1,n 2 )=i(n 1,n 2 )r(n 1,n 2 ) 0 < r(n 1,n 2 ) < 1

Vision & Perception. Simple model: simple reflectance/illumination model. image: x(n 1,n 2 )=i(n 1,n 2 )r(n 1,n 2 ) 0 < r(n 1,n 2 ) < 1 Simple model: simple reflectance/illumination model Eye illumination source i(n 1,n 2 ) image: x(n 1,n 2 )=i(n 1,n 2 )r(n 1,n 2 ) reflectance term r(n 1,n 2 ) where 0 < i(n 1,n 2 ) < 0 < r(n 1,n 2 )

More information

Danjon noticed that the length (cusp to cusp) of the new crescent. moon was less than 180 degrees and suggested that the cause of the

Danjon noticed that the length (cusp to cusp) of the new crescent. moon was less than 180 degrees and suggested that the cause of the From The Observatory, Vol. 125, No. 1187, pp. 227-232, 2005 August EXPLAINING AND CALCULATING THE LENGTH OF THE NEW CRESCENT MOON By A. H. Sultan Physics Department, Sana a University, Yemen Danjon noticed

More information

Basic Model of the Retina

Basic Model of the Retina Chapter 3 Basic Model of the Retina In this chapter we will present a simplified model of the retinal circuits. Starting from the electrical properties of the cellular membrane, we will build a linear

More information

Natural Image Statistics

Natural Image Statistics Natural Image Statistics A probabilistic approach to modelling early visual processing in the cortex Dept of Computer Science Early visual processing LGN V1 retina From the eye to the primary visual cortex

More information

Color vision and colorimetry

Color vision and colorimetry Color vision and colorimetry Photoreceptor types Rods Scotopic vision (low illumination) Do not mediate color perception High density in the periphery to capture many quanta Low spatial resolution Many-to-one

More information

Part 8: Neural Networks

Part 8: Neural Networks METU Informatics Institute Min720 Pattern Classification ith Bio-Medical Applications Part 8: Neural Netors - INTRODUCTION: BIOLOGICAL VS. ARTIFICIAL Biological Neural Netors A Neuron: - A nerve cell as

More information

Lecture 14 Population dynamics and associative memory; stable learning

Lecture 14 Population dynamics and associative memory; stable learning Lecture 14 Population dynamics and associative memory; stable learning -Introduction -Associative Memory -Dense networks (mean-ield) -Population dynamics and Associative Memory -Discussion Systems or computing

More information

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2018

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2018 CPSC 340: Machine Learning and Data Mining Sparse Matrix Factorization Fall 2018 Last Time: PCA with Orthogonal/Sequential Basis When k = 1, PCA has a scaling problem. When k > 1, have scaling, rotation,

More information

Color perception SINA 08/09

Color perception SINA 08/09 Color perception Color adds another dimension to visual perception Enhances our visual experience Increase contrast between objects of similar lightness Helps recognizing objects However, it is clear that

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Computational Explorations in Cognitive Neuroscience Chapter 4: Hebbian Model Learning

Computational Explorations in Cognitive Neuroscience Chapter 4: Hebbian Model Learning Computational Explorations in Cognitive Neuroscience Chapter 4: Hebbian Model Learning 4.1 Overview Learning is a general phenomenon that allows a complex system to replicate some of the structure in its

More information

The Hebb rule Neurons that fire together wire together.

The Hebb rule Neurons that fire together wire together. Unsupervised learning The Hebb rule Neurons that fire together wire together. PCA RF development with PCA Classical Conditioning and Hebbʼs rule Ear A Nose B Tongue When an axon in cell A is near enough

More information

THE retina in general consists of three layers: photoreceptors

THE retina in general consists of three layers: photoreceptors CS229 MACHINE LEARNING, STANFORD UNIVERSITY, DECEMBER 2016 1 Models of Neuron Coding in Retinal Ganglion Cells and Clustering by Receptive Field Kevin Fegelis, SUID: 005996192, Claire Hebert, SUID: 006122438,

More information

COMPUTATIONAL ROLE OF DISINHIBITION IN BRAIN FUNCTION. A Dissertation YINGWEI YU

COMPUTATIONAL ROLE OF DISINHIBITION IN BRAIN FUNCTION. A Dissertation YINGWEI YU COMPUTATIONAL ROLE OF DISINHIBITION IN BRAIN FUNCTION A Dissertation by YINGWEI YU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the

More information

Nonlinear reverse-correlation with synthesized naturalistic noise

Nonlinear reverse-correlation with synthesized naturalistic noise Cognitive Science Online, Vol1, pp1 7, 2003 http://cogsci-onlineucsdedu Nonlinear reverse-correlation with synthesized naturalistic noise Hsin-Hao Yu Department of Cognitive Science University of California

More information

Physics E1bx April 28 May 5, 2015

Physics E1bx April 28 May 5, 2015 Physics E1bx: Assignment for April 28 May 5 Homework #9: Sound and Diffraction Due Tuesday, May 5, at 6:00PM This assignment must be turned in by 6:00PM on Tuesday, May 5. Late homework will not be accepted.

More information

Mechanistic modeling of the retinogeniculate circuit in cat

Mechanistic modeling of the retinogeniculate circuit in cat Neurocomputing 44 46 (2002) 973 978 www.elsevier.com/locate/neucom Mechanistic modeling of the retinogeniculate circuit in cat Hans E. Plesser a;, Gaute T. Einevoll a, Paul Heggelund b a Physics Section=ITF,

More information

A Model of Local Adaptation supplementary information

A Model of Local Adaptation supplementary information A Model of Local Adaptation supplementary information Peter Vangorp Bangor University, UK & MPI Informatik, Germany Karol Myszkowski MPI Informatik, Germany Erich W. Graf University of Southampton, United

More information

A Neurocomputational Model of Smooth Pursuit Control to Interact with the Real World

A Neurocomputational Model of Smooth Pursuit Control to Interact with the Real World A Neurocomputational Model of Smooth Pursuit Control to Interact with the Real World by Seyed Omid Sadat Rezai A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

Model-Free Stochastic Perturbative Adaptation and Optimization

Model-Free Stochastic Perturbative Adaptation and Optimization Model-Free Stochastic Perturbative Adaptation and Optimization Gert Cauwenberghs Johns Hopkins University gert@jhu.edu 520.776 Learning on Silicon http://bach.ece.jhu.edu/gert/courses/776 Model-Free Stochastic

More information

Information Processing in Neural Populations

Information Processing in Neural Populations Information Processing in Neural Populations selective tutorial introduction KITP, UCSB July 2011 Jonathan Victor Neurology and Neuroscience Weill Cornell Medical College Disclaimers The visual system

More information

Edge Detection in Computer Vision Systems

Edge Detection in Computer Vision Systems 1 CS332 Visual Processing in Computer and Biological Vision Systems Edge Detection in Computer Vision Systems This handout summarizes much of the material on the detection and description of intensity

More information

PHYSICS A 2825/02 Health Physics

PHYSICS A 2825/02 Health Physics THIS IS A LEGACY SPECIFICATION ADVANCED GCE PHYSICS A 2825/02 Health Physics *CUP/T60952* Candidates answer on the question paper OCR Supplied Materials: None Other Materials Required: Electronic calculator

More information

k k k 1 Lecture 9: Applying Backpropagation Lecture 9: Applying Backpropagation 3 Lecture 9: Applying Backpropagation

k k k 1 Lecture 9: Applying Backpropagation Lecture 9: Applying Backpropagation 3 Lecture 9: Applying Backpropagation K-Class Classification Problem Let us denote the -th class by C, with n exemplars or training samples, forming the sets T for = 1,, K: {( x, ) p = 1 n } T = d,..., p p The complete training set is T =

More information

EXTENSIONS OF ICA AS MODELS OF NATURAL IMAGES AND VISUAL PROCESSING. Aapo Hyvärinen, Patrik O. Hoyer and Jarmo Hurri

EXTENSIONS OF ICA AS MODELS OF NATURAL IMAGES AND VISUAL PROCESSING. Aapo Hyvärinen, Patrik O. Hoyer and Jarmo Hurri EXTENSIONS OF ICA AS MODELS OF NATURAL IMAGES AND VISUAL PROCESSING Aapo Hyvärinen, Patrik O. Hoyer and Jarmo Hurri Neural Networks Research Centre Helsinki University of Technology P.O. Box 5400, FIN-02015

More information

Leo Kadanoff and 2d XY Models with Symmetry-Breaking Fields. renormalization group study of higher order gradients, cosines and vortices

Leo Kadanoff and 2d XY Models with Symmetry-Breaking Fields. renormalization group study of higher order gradients, cosines and vortices Leo Kadanoff and d XY Models with Symmetry-Breaking Fields renormalization group study of higher order gradients, cosines and vortices Leo Kadanoff and Random Matrix Theory Non-Hermitian Localization in

More information

Synaptic Input. Linear Model of Synaptic Transmission. Professor David Heeger. September 5, 2000

Synaptic Input. Linear Model of Synaptic Transmission. Professor David Heeger. September 5, 2000 Synaptic Input Professor David Heeger September 5, 2000 The purpose of this handout is to go a bit beyond the discussion in Ch. 6 of The Book of Genesis on synaptic input, and give some examples of how

More information

A Bio-inspired Computer Fovea Model based on Hexagonal-type Cellular Neural Networks

A Bio-inspired Computer Fovea Model based on Hexagonal-type Cellular Neural Networks 2006 International Joint Conference on Neural Networks Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July 16-21, 2006 A Bio-inspired Computer Fovea Model based on Hexagonal-type Cellular

More information

Drift-Diffusion Simulation of the Ephaptic Effect in the Triad Synapse of the Retina

Drift-Diffusion Simulation of the Ephaptic Effect in the Triad Synapse of the Retina Drift-Diffusion Simulation of the Ephaptic Effect in the Triad Synapse of the Retina Jeremiah Jones PhD Thesis Defense, Applied Mathematics SCHOOL OF MATHEMATICAL AND STATISTICAL SCIENCES April 5, 2013

More information

SEEING A Photons Journey Across Space, Time and Mind

SEEING A Photons Journey Across Space, Time and Mind PART OF THE SEEING A Photons Journey Across Space, Time and Mind Mark Ma=son-Shupnick Jobson Medical InformaBon LLC INTRODUCTION The digital planetarium program SEEING! follows a photon s creabon and journey

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

Human Visual System Neural Network

Human Visual System Neural Network Proceedings of Student-Faculty Research Day, CSIS, Pace University, May 7 th, 2010 Human Visual System Neural Network Stanley Alphonso, Imran Afzal, Anand Phadake, Putta Reddy Shankar, and Charles Tappert

More information

Section III. Biochemical and Physiological Adaptations

Section III. Biochemical and Physiological Adaptations Section III Biochemical and Physiological Adaptations Introduction S.N. ARCHER and M.B.A. DJAMGOZ For a sensory system to function optimally, it must be adapted to receiving and responding to specific

More information

3 Detector vs. Computer

3 Detector vs. Computer 1 Neurons 1. The detector model. Also keep in mind this material gets elaborated w/the simulations, and the earliest material is often hardest for those w/primarily psych background. 2. Biological properties

More information

Supervised (BPL) verses Hybrid (RBF) Learning. By: Shahed Shahir

Supervised (BPL) verses Hybrid (RBF) Learning. By: Shahed Shahir Supervised (BPL) verses Hybrid (RBF) Learning By: Shahed Shahir 1 Outline I. Introduction II. Supervised Learning III. Hybrid Learning IV. BPL Verses RBF V. Supervised verses Hybrid learning VI. Conclusion

More information

Telescopes (Chapter 6)

Telescopes (Chapter 6) Telescopes (Chapter 6) Based on Chapter 6 This material will be useful for understanding Chapters 7 and 10 on Our planetary system and Jovian planet systems Chapter 5 on Light will be useful for understanding

More information

Linear Regression, Neural Networks, etc.

Linear Regression, Neural Networks, etc. Linear Regression, Neural Networks, etc. Gradient Descent Many machine learning problems can be cast as optimization problems Define a function that corresponds to learning error. (More on this later)

More information

IMPLEMENTING THE MULTILAYER RETINAL MODEL ON THE COMPLEX-CELL CNN-UM CHIP PROTOTYPE

IMPLEMENTING THE MULTILAYER RETINAL MODEL ON THE COMPLEX-CELL CNN-UM CHIP PROTOTYPE International Journal of Bifurcation and Chaos, Vol. 14, No. 2 (2004) 427 451 c World Scientific Publishing Company IMPLEMENTING THE MULTILAYER RETINAL MODEL ON THE COMPLEX-CELL CNN-UM CHIP PROTOTYPE DÁVID

More information

Marr's Theory of the Hippocampus: Part I

Marr's Theory of the Hippocampus: Part I Marr's Theory of the Hippocampus: Part I Computational Models of Neural Systems Lecture 3.3 David S. Touretzky October, 2015 David Marr: 1945-1980 10/05/15 Computational Models of Neural Systems 2 Marr

More information

The functional organization of the visual cortex in primates

The functional organization of the visual cortex in primates The functional organization of the visual cortex in primates Dominated by LGN M-cell input Drosal stream for motion perception & spatial localization V5 LIP/7a V2 V4 IT Ventral stream for object recognition

More information

background light falling not only on the tested region, but also on surrounding stimuli, whereas here we were dealing with an adaptation rather

background light falling not only on the tested region, but also on surrounding stimuli, whereas here we were dealing with an adaptation rather J. Physiol. (197), 26, pp. 129-143 129 With 1 text-figures Printed in Great Britain DISTANCE EFFECTS IN HUMAN SCOTOPIC RETINAL INTERACTION BY GERALD WESTHEIMER AND R. W. WILEY* From the Department of Physiology-Anatomy,

More information

Techniques For Better Viewing

Techniques For Better Viewing Techniques For Better Viewing Some tips on using your scope to better advantage How do you get the most out of using your telescope? Astronomers have been collecting and swapping observing tips for years.

More information

Neural networks: Associative memory

Neural networks: Associative memory Neural networs: Associative memory Prof. Sven Lončarić sven.loncaric@fer.hr http://www.fer.hr/ipg 1 Overview of topics l Introduction l Associative memories l Correlation matrix as an associative memory

More information

Neural Networks Lecture 7: Self Organizing Maps

Neural Networks Lecture 7: Self Organizing Maps Neural Networks Lecture 7: Self Organizing Maps H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011 H. A. Talebi, Farzaneh Abdollahi Neural

More information