Section III. Biochemical and Physiological Adaptations

Size: px
Start display at page:

Download "Section III. Biochemical and Physiological Adaptations"

Transcription

1 Section III Biochemical and Physiological Adaptations

2 Introduction S.N. ARCHER and M.B.A. DJAMGOZ For a sensory system to function optimally, it must be adapted to receiving and responding to specific sets of physical stimuli. If there exists the possibility that the characteristics of the stimulus can change over time, then the sensory system must further adapt to those changes in order to remain functionally expedient. From this type of simple assumption, we can make some basic predictions about the adaptation of a sensory system: I) Where we observe the widest range of stimuli characteristics we should expect to see the greatest adaptation in the sensory system. 2) Where the range of stimulus characteristics, become restricted or specialised, we should expect to see a corresponding focus of sensory system adaptation. 3) If the characteristics of the sensory stimuli are changing over a period of time, then we should expect to find adaptive mechanisms in the sensory system that are able to respond within the same time scale. When John Lythgoe first wrote 'The Ecology of Vision' (1979) he was exploring the natural environment for evidence of correlations between the visual system and the behavioural ecology of an animal. He was essentially documenting examples of where the above predictions were obviously in operation. Many of these examples are found in fish that inhabit a wide diversity of spectral environments and are perhaps presented with the greatest set of spectral stimuli as well as extreme light-limiting conditions. As light fades and becomes monochromatic in the deep sea it is not surprising to discover that many deepliving species shift their spectral sensitivity to match the precious narrow band of penetrating light. Although this correlation is easy to understand, the ecological approach to vision often identifies other mechanisms that are much more subtle components of the complex adaptation. This section of the book looks at how the function of the visual system relates to the ecology of vision and how evolution has been able to work upon biochemical and physiological aspects of function to produce adaptation to the environment. Adaptations of visual pigments to the aquatic environment are discussed in detail by Partridge and Cummings in Chapter 8. This chapter begins by making the important point that past correlations between vision and the environment highlighted by the ecology of vision have been extremely useful in identifying interesting areas for further research but, importantly, have not always addressed specific questions. Thus, it is not enough to observe an interesting correlation but it is also necessary to understand how the particular adaptation benefits the overall biology of the organism. In other words, what evolutionary pressures have been instrumental in selecting the adaptation? For example, S.N. Archer et al. (eds.), Adaptive Mechanisms in the Ecology of Vision, Kluwer Academic Publishers. 247

3 248 although most deep-sea fishes are maximally sensitive to blue light around nm, the deep-sea fish Aristostomias tittmanni also has a visual pigment that is maximally sensitive to red light (Partridge & Douglas, 1995). In order to understand this apparent rule-breaking adaptation, it is necessary to know that the fish also emits red bioluminescence and is probably using this visual pigment for a private communication channel. This is an example of the visual system focusing on a specialised stimulus. But, as Partridge and Cummings point out, for an explanation such as this to be without doubt we must be sure that the adaptation of red sensitivity has been selected in this fish because it confers to the animal the real advantage of a private communication channel. In Chapter 9, Marshall, Kent and Cronin review the visual pigment sensitivity adaptation found in the crustaceans. These animals inhabit a similar variety of niches to fish but have not produced such diversity in visual pigment adaptation. Most crustaceans have only a pair of visual pigments in the UV Iviolet and blue/green regions of the spectrum. These sensitivities are well separated and it is not clear if the pigments interact to provide colour vision. In freshwater crayfish these pigments can become further separated as the sensitivity of the blue/green pigment is pushed up towards the red end of the spectrum. As in fish, this adaptation has been achieved by replacing rhodopsin with porphyropsin pigments (or a variable mixture) and presumably the selection pressure has also been the same (i.e. that freshwater generally transmits more longer wavelength light). In the crustaceans it is not so easy to find precise correlations between spectral sensitivity and environmental light. For many crustaceans the spectral sensitivity of their visual pigments is not exactly matched to the light available for vision (as in deep-sea crustaceans). This may be due to the fact that they have a limited number of visual pigments available and compromises have to be made as regards matching spectral sensitivity to the underwater light spectrum, matching the spectrum at different times, being receptive to bioluminescent light sources or being tuned for species specific behavioural tasks. Within the crustaceans there are probably more examples where the ecology of vision approach identifies correlations that are composed of many subtle elements. Another overriding pressure may come from the requirement to possess polarised light sensitivity. Sensitivity to polarised light could be achieved by the spectral positioning of a visual pigment either side of the polarisation minimum and this could further influence visual pigment adaptation. Lastly, it should be remembered that the crustaceans also give us the most numerous set of visual pigments yet encountered in an organism. The stomatopods can have up to 16 different visual pigments that show a high degree of potential specialisation in function. In these animals, it appears that selection pressure from behaviour has had a large influence in the adaptation of visual pigments. In 'The Ecology of Vision',John Lythgoe emphasized mainly the relevance of photoreceptor/photopigment characteristics to visual ecology. However, the last

4 249 two decades have seen tremendous advances in our understanding of the postreceptoral neuronal wiring of the vertebrate retina, and how this varies in animals with different visual requirements. Furthermore, we now appreciate that the adult retina is remarkably plastic, especially in lower vertebrates (fish, amphibians), and retinal functional organization can be modified significantly by light/dark adaptational mechanisms with distinct neurochemical control (Wagner and Djamgoz, 1993). The next two chapters (10 and 11) deal with these aspects as regards outer and inner retinal signalling, respectively. Djamgoz, Vallerga and Wagner (Chapter 10) adopt a comparative approach to terrestrial mammals and fish as examples of vertebrates living in markedly different visual environments and review the functional connectivity of photoreceptors, horizontal cells and bipolar cells. Emphasis is placed upon mechanisms of synaptic transfer and spatio - chromatic signalling. The role played by dopamine in mediating light/dark adaptational synaptic plasticity is covered in some detail. Frishman and Robsin (Chapter 11) complement this by a parallel account of the inner retina. In the latter case, however, the mammalian retina is covered in greater detail due to the imbalance in the available information. In fact, much work remains to be done on understanding the functional organization of the inner retinae in fish in relation to visual ecology. As already noted, for a sensory system to remain efficient it must be capable of responding to changing stimuli, some times within the same time scale. In Chapter 12, Beaudet and Hawryshyn describe ontogenetic mechanisms in fish that enable them to adapt their visual systems rapidly in response to the changing light environments that are encountered during migration. Flatfish larvae occupy bright, surface water and have pure-cone retinae with a single visual pigment. When they metamorphose and become bottom dwellers their visual system adapts to more dim light conditions by developing rods and expressing new visual pigments (in addition to a rather spectacular eye migration). Juvenile salmon migrate from the streams where they were hatched to live in ocean water. During this migration they lose a class of photoreceptors from their retinal mosaic that provided them with UV sensitivity. The UV sensitivity must be beneficial to the juveniles in shallow freshwater but is no longer required when they migrate into deeper sea water. As John Lythgoe (1979) pointed out, a cone that contains a non-functional visual pigment is occupying valuable space in the retinal mosaic. Interestingly, there is also evidence that the UV-sensitive pigment may reappear when the adults return to streams to reproduce. An opposite sense of migration occurs in the European eel where mature adults leave freshwater to return to deep-sea breeding grounds. Here the sensitivity of the rod-dominated retina shift from being green to blue sensitive, presumably as an adaptation to deep sea light conditions. In this adaptation the visual pigments of the rod photoreceptors become entirely composed of rhodopsins and a new opsin is introduced that shifts the maximum spectral sensitivity to the blue region of the spectrum. The switch in opsin has been shown to be brought about by a change in opsin

5 250 gene expression and, because of the high levels of opsin protein turnover in outer segments, this adaptation can occur very rapidly. All these examples clearly demonstrate further that the visual system has a high degree of in-built plasticity. This plasticity provides the visual system of a particular species with the mechanisms to adapt quickly to changes in external stimuli but must also provide the variation upon which selection pressure can drive evolution of the visual system. In the final chapter (13) of this section, Bowmaker and Hunt examine in detail the molecular mechanisms that determine the spectral sensitivity of visual pigments. The visual pigments are the molecular interfaces between the outside environment and the visual system. All visually coded information passes through the visual pigments and an understanding of how they encode the information and transduce photons into electrical signals is essential. The molecular dissection of visual pigments has allowed us to understand how spectral sensitivity can be altered by changing opsin structure. From this we can appreciate how evolutionary selection pressure has been able to adapt visual pigment spectral sensitivity and how plasticity during development can be achieved by changes in opsin gene expression. Knowledge of the molecular biology of visual pigments has also allowed us to determine the molecular basis for our own colour vision deficiencies. References Lythoe, J. N. (1979) The Ecology o/vision. Clarendon Press, Oxford. Partridge, J. C. and Douglas, R. H. (1995) Far-red sensitivity of dragon fish. Nature 375, Wagner, H.-J. and Djamgoz, M. B. A. (1993) Spinules: A case for retinal synaptic plasticity. Trends in Neuroscience 16,

SENSORY PROCESSES PROVIDE INFORMATION ON ANIMALS EXTERNAL ENVIRONMENT AND INTERNAL STATUS 34.4

SENSORY PROCESSES PROVIDE INFORMATION ON ANIMALS EXTERNAL ENVIRONMENT AND INTERNAL STATUS 34.4 SENSORY PROCESSES PROVIDE INFORMATION ON ANIMALS EXTERNAL ENVIRONMENT AND INTERNAL STATUS 34.4 INTRODUCTION Animals need information about their external environments to move, locate food, find mates,

More information

Sensors. Sensory Physiology. Transduction. Types of Environmental Stimuli. Chemoreception. Taste Buds (Contact Chemoreceptors)

Sensors. Sensory Physiology. Transduction. Types of Environmental Stimuli. Chemoreception. Taste Buds (Contact Chemoreceptors) Sensors Sensory Physiology Chapter 13 Detect changes in environmental conditions Primary Sensors neurons modified to undergo action potentials in response to specific stimuli (e.g. chemical, mechanical)

More information

OPTO 5320 VISION SCIENCE I

OPTO 5320 VISION SCIENCE I OPTO 5320 VISION SCIENCE I Monocular Sensory Processes of Vision: Color Vision Mechanisms of Color Processing VI. Retinal fundamentals A. Retinal fundamentals and cone photopigments B. Properties of cone

More information

Fine structure of the retina of black bass, Micropterus salmoides (Centrarchidae, Teleostei)

Fine structure of the retina of black bass, Micropterus salmoides (Centrarchidae, Teleostei) Histol Histopathol (1 999) 14: 1053-1 065 http://www.ehu.es/histoi-hlstopathol Histology and Histopathology Fine structure of the retina of black bass, Micropterus salmoides (Centrarchidae, Teleostei)

More information

Visual pigments. Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2015

Visual pigments. Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2015 Visual pigments Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2015 References Photoreceptors and visual pigments Webvision: The Organization of the Retina and Visual System (http://www.ncbi.nlm.nih.gov/books/nbk11522/#a127)

More information

Visual pigments. Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2019

Visual pigments. Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2019 Visual pigments Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2019 References Webvision: The Organization of the Retina and Visual System (http://www.ncbi.nlm.nih.gov/books/nbk11522/#a 127) The

More information

Color vision and colorimetry

Color vision and colorimetry Color vision and colorimetry Photoreceptor types Rods Scotopic vision (low illumination) Do not mediate color perception High density in the periphery to capture many quanta Low spatial resolution Many-to-one

More information

Sensory Systems (con t)

Sensory Systems (con t) 10 th or 11 th Lecture Fri/Mon 06/09 Feb 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh Sensory Processing II Chapter 13 Housekeeping, Fri 06

More information

Sensory Processing II Chapter 13

Sensory Processing II Chapter 13 10 th or 11 th Lecture Fri/Mon 06/09 Feb 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh Sensory Processing II Chapter 13 1 Housekeeping, Fri

More information

Sensory Processing II

Sensory Processing II 10 th or 11 th Lecture Fri/Mon 06/09 Feb 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh Sensory Processing II Chapter 13 1 Housekeeping, Fri

More information

A Three-dimensional Physiologically Realistic Model of the Retina

A Three-dimensional Physiologically Realistic Model of the Retina A Three-dimensional Physiologically Realistic Model of the Retina Michael Tadross, Cameron Whitehouse, Melissa Hornstein, Vicky Eng and Evangelia Micheli-Tzanakou Department of Biomedical Engineering 617

More information

Some sensory receptors are specialized neurons while others are specialized cells that regulate neurons Figure 50.4

Some sensory receptors are specialized neurons while others are specialized cells that regulate neurons Figure 50.4 1 2 3 4 5 6 7 8 9 10 Sensory and Motor Mechanisms Chapter 50 Sensory receptors transduce stimulus energy and transmit signals to the central nervous system Sensory Pathways Sensory pathways have four basic

More information

Lecture 07, 13 Sept 2005 Chapters 12 and 13. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005

Lecture 07, 13 Sept 2005 Chapters 12 and 13. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 Lecture 07, 13 Sept 2005 Chapters 12 and 13 Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 instr: Kevin Bonine t.a.: Kristen Potter Vertebrate Physiology 437 Chapter

More information

Adaptation in the Neural Code of the Retina

Adaptation in the Neural Code of the Retina Adaptation in the Neural Code of the Retina Lens Retina Fovea Optic Nerve Optic Nerve Bottleneck Neurons Information Receptors: 108 95% Optic Nerve 106 5% After Polyak 1941 Visual Cortex ~1010 Mean Intensity

More information

Functional diversity in colour vision of fish

Functional diversity in colour vision of fish Functional diversity in colour vision of fish By Shai Sabbah A thesis submitted to the Department of Biology In conformity with the requirements for the degree of Doctor of Philosophy Queen s University

More information

BASIC VISUAL SCIENCE CORE

BASIC VISUAL SCIENCE CORE BASIC VISUAL SCIENCE CORE Absolute and Increment Thresholds Ronald S. Harwerth Fall, 2016 1. Psychophysics of Vision 2. Light and Dark Adaptation Michael Kalloniatis and Charles Luu 1 The Neuron Doctrine

More information

Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell

Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell 1. Abstract Matthew Dunlevie Clement Lee Indrani Mikkilineni mdunlevi@ucsd.edu cll008@ucsd.edu imikkili@ucsd.edu Isolated

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/11/eaao4709/dc1 Supplementary Materials for Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides Fanny

More information

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles 1 Response Mechanism tropism Definition A growth movement of part of plant in response to a directional stimulus examples Positive:

More information

Introduction to CNS neurobiology: focus on retina

Introduction to CNS neurobiology: focus on retina Introduction to CNS neurobiology: focus on retina September 27, 2017 The retina is part of the CNS Calloway et al., 2009) 1 Retinal circuits: neurons and synapses Rods and Cones Bipolar cells Horizontal

More information

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p.

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. 5 Signaling in Nerve Cells p. 9 Cellular and Molecular Biology of Neurons

More information

CLINICAL VISUAL OPTICS (OPTO 223) Weeks XII & XIII Dr Salwa Alsaleh

CLINICAL VISUAL OPTICS (OPTO 223) Weeks XII & XIII Dr Salwa Alsaleh CLINICAL VISUAL OPTICS (OPTO 223) Weeks XII & XIII Dr Salwa Alsaleh OUTLINE OF WEEKS XII & XIII Temporal resolution Temporal Summation. Broca-Sulzer effect. Critical flicker frequency (CFF). Temporal Contrast

More information

Fairfax Collegiate Animal Physiology 7-9 Syllabus. Course Goals. Course Topics

Fairfax Collegiate Animal Physiology 7-9 Syllabus. Course Goals. Course Topics Fairfax Collegiate 703 481-3080 www.fairfaxcollegiate.com FCS FAIRFAX COLLEGIATE Animal Physiology 7-9 Syllabus SUMMER PROGRAM Course Goals 1 Anatomical Names and Structures Students learn anatomical names

More information

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1)

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Lecture 6 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2015 1 Chapter 2 remnants 2 Receptive field:

More information

Outline. Photosensors in biology and in semiconductors. The visual pathway Bottom view. The visual pathway Side view

Outline. Photosensors in biology and in semiconductors. The visual pathway Bottom view. The visual pathway Side view Outline Photosensors in biology and in semiconductors CNS WS07-08 Class 1 Photosensors in biology The visual pathway and the retina Photoreceptors and the fovea Giacomo Indiveri Institute of Neuroinformatics

More information

15 Grossberg Network 1

15 Grossberg Network 1 Grossberg Network Biological Motivation: Vision Bipolar Cell Amacrine Cell Ganglion Cell Optic Nerve Cone Light Lens Rod Horizontal Cell Retina Optic Nerve Fiber Eyeball and Retina Layers of Retina The

More information

Plasticity of opsin gene expression in cichlids from Lake Malawi

Plasticity of opsin gene expression in cichlids from Lake Malawi Molecular Ecology (21) 19, 264 274 doi: 1.1111/j.1365-294X.21.4621.x Plasticity of opsin gene expression in cichlids from Lake Malawi CHRISTOPHER M. HOFMANN, KELLY E. O QUIN, ADAM R. SMITH and KAREN L.

More information

Cell division takes place next to the RPE. Neuroblastic cells have the capacity to differentiate into any of the cell types found in the mature retina

Cell division takes place next to the RPE. Neuroblastic cells have the capacity to differentiate into any of the cell types found in the mature retina RPE is a monolayer of hexagonal shaped neural epithelial cells that have the same embryological origin as the neural retina. They mature before the neural retina and play a key role in metabolic support

More information

Topic 6: Light Absorption and Color in Biomolecules

Topic 6: Light Absorption and Color in Biomolecules 1 6.1 INTRODUCTION Topic 6: Light Absorption and Color in Biomolecules Why are trees green? Blood red? Carrots orange? Most colors in biological tissues arise from natural pigments. A pigment is a molecule

More information

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011 Crab cam (Barlow et al., 2001) self inhibition recurrent inhibition lateral inhibition - L16. Neural processing in Linear Systems: Temporal and Spatial Filtering C. D. Hopkins Sept. 21, 2011 The Neural

More information

Do Neurons Process Information Efficiently?

Do Neurons Process Information Efficiently? Do Neurons Process Information Efficiently? James V Stone, University of Sheffield Claude Shannon, 1916-2001 Nothing in biology makes sense except in the light of evolution. Theodosius Dobzhansky, 1973.

More information

Endocrine Physiology. Introduction to Endocrine Principles

Endocrine Physiology. Introduction to Endocrine Principles Endocrine Physiology Introduction to Endocrine Principles There are TWO major groups of hormones Peptide and protein hormones Amine hormones Peptide and protein hormones act through cell membrane receptors

More information

Sensory and Motor Mechanisms Chapter 50. Sensory Pathways. Transmission. Perception 11/6/2017

Sensory and Motor Mechanisms Chapter 50. Sensory Pathways. Transmission. Perception 11/6/2017 Sensory and Motor Mechanisms Chapter 50 Sensory receptors transduce stimulus energy and transmit signals to the CNS Sensory Pathways Four basic functions Sensory reception Tranduction Conversion of stimulus

More information

The ecology of visual pigment tuning in an Australian marsupial: the honey possum Tarsipes rostratus

The ecology of visual pigment tuning in an Australian marsupial: the honey possum Tarsipes rostratus The Journal of Experimental Biology 208, 1803-1815 Published by The Company of Biologists 2005 doi:10.1242/jeb.01610 1803 The ecology of visual pigment tuning in an Australian marsupial: the honey possum

More information

Variation in Response to Artificial Selection for Light Sensitivity in Guppies (Poecilia reticulate)

Variation in Response to Artificial Selection for Light Sensitivity in Guppies (Poecilia reticulate) University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 7-001 Variation in Response to Artificial

More information

CUTTLEFISH. Phylum: Mollusca. Class :Cephalopoda. (It s a not a fish)

CUTTLEFISH. Phylum: Mollusca. Class :Cephalopoda. (It s a not a fish) CUTTLEFISH Phylum: Mollusca Class :Cephalopoda (It s a not a fish) CUTTLEFISH CAMOUFLAGE How to avoid becoming this (or a version of this) Chemical Defense Physical Defense Run (or Swim) Fast Hide! Linguine

More information

Unit 4 Lesson 5 How Do Animals Grow and Reproduce? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 4 Lesson 5 How Do Animals Grow and Reproduce? Copyright Houghton Mifflin Harcourt Publishing Company Meerkats Have a Backbone? How are birds and fish similar? One of the major factors scientists use when classifying animals is whether an animal has a backbone. Have a Backbone? Vertebrates are animals

More information

2. Examine the external anatomy of the squid and identify the following structures: tentacles, arms, fins, siphon, mantle, eyes and collar.

2. Examine the external anatomy of the squid and identify the following structures: tentacles, arms, fins, siphon, mantle, eyes and collar. Cephalopod Anatomy As their name implies, members of the class Cephalopoda have modified head-foot which bears an array of prehensile tentacles and arms at the cranial end of the body. The visceral mass

More information

Survival of the Sweetest

Survival of the Sweetest Biology Survival of the Sweetest A Tasty Tale of Natural Selection and Community Dynamics MATERIALS AND RESOURCES EACH GROUP teacher-provided materials 2 dice TEACHER bags, brown paper, small 3 bags Skittles,

More information

Color perception SINA 08/09

Color perception SINA 08/09 Color perception Color adds another dimension to visual perception Enhances our visual experience Increase contrast between objects of similar lightness Helps recognizing objects However, it is clear that

More information

Campbell Biology AP Edition 11 th Edition, 2018

Campbell Biology AP Edition 11 th Edition, 2018 A Correlation and Narrative Summary of Campbell Biology AP Edition 11 th Edition, 2018 To the AP Biology Curriculum Framework AP is a trademark registered and/or owned by the College Board, which was not

More information

Visual Imaging and the Electronic Age Color Science

Visual Imaging and the Electronic Age Color Science Visual Imaging and the Electronic Age Color Science Grassman s Experiments & Trichromacy Lecture #5 September 6, 2016 Prof. Donald P. Greenberg Light as Rays Light as Waves Light as Photons What is Color

More information

Theory of colour measurement Contemporary wool dyeing and finishing

Theory of colour measurement Contemporary wool dyeing and finishing Theory of colour measurement Contemporary wool dyeing and finishing Dr Rex Brady Deakin University Colour measurement theory Topics 1. How we see colour 2. Generation of colours 3. Measurement of colour

More information

Evolutionary variation in the expression of phenotypically. plastic color vision in Caribbean mantis shrimps, genus Neogonodactylus.

Evolutionary variation in the expression of phenotypically. plastic color vision in Caribbean mantis shrimps, genus Neogonodactylus. Evolutionary variation in the expression of phenotypically plastic color vision in Caribbean mantis shrimps, genus Neogonodactylus. ALEXANDER G. CHEROSKE 1 *, PAUL H. BARBER 2, & THOMAS W. CRONIN 1 1 Department

More information

The Ecology of Animal Senses

The Ecology of Animal Senses The Ecology of Animal Senses ThiS is a FM Blank Page Gerhard von der Emde Eric Warrant Editors The Ecology of Animal Senses Matched Filters for Economical Sensing Editors Gerhard von der Emde Institut

More information

Impact of Climate Change on Chinook Salmon

Impact of Climate Change on Chinook Salmon Region: Western Coastlines Grade Level(s): 5-8 Impact of Climate Change on Chinook Salmon Time Required: 2-3 class periods Focus Question(s): How will long term climate changes impact northwest Pacific

More information

College of Arts and Sciences, University of Oregon (Fall 2014)

College of Arts and Sciences, University of Oregon (Fall 2014) Curriculum map Biology B.S./B.A. (Marine Biology LOs on page 4) Learning outcomes (LOs): Having completed a major in Biology, a student will demonstrate: 1. A broad-based knowledge of biology at multiple

More information

Converting energy into nerve impulses, resting potentials and action potentials Sensory receptors

Converting energy into nerve impulses, resting potentials and action potentials Sensory receptors D 1.3 s Converting energy into nerve impulses, resting potentials and action potentials Sensory receptors A receptor converts an external or internal stimulus into an electrical signal. Sensory receptors

More information

Chapter 9: The Perceptron

Chapter 9: The Perceptron Chapter 9: The Perceptron 9.1 INTRODUCTION At this point in the book, we have completed all of the exercises that we are going to do with the James program. These exercises have shown that distributed

More information

Danjon noticed that the length (cusp to cusp) of the new crescent. moon was less than 180 degrees and suggested that the cause of the

Danjon noticed that the length (cusp to cusp) of the new crescent. moon was less than 180 degrees and suggested that the cause of the From The Observatory, Vol. 125, No. 1187, pp. 227-232, 2005 August EXPLAINING AND CALCULATING THE LENGTH OF THE NEW CRESCENT MOON By A. H. Sultan Physics Department, Sana a University, Yemen Danjon noticed

More information

1.3.1 The discrete aspect of light is most apparent at extremely low intensity The photoelectric effect 30

1.3.1 The discrete aspect of light is most apparent at extremely low intensity The photoelectric effect 30 Detailed contents Web resources To the student To the instructor xx xxi xxv Prologue: Preliminaries 1 0.1 Signpost: Uncertainty 1 0.2 Discrete Probability Distributions 2 0.2.1 A probability distribution

More information

Evolution Common Assessment 1

Evolution Common Assessment 1 Evolution Common Assessment 1 1. The field of biology that includes the study of the origin of new species through time is known as 5. A. biochemistry B. evolution C. ecology D. embryology 2. Evidence

More information

Sensory Transduction

Sensory Transduction Sensory Transduction Gordon L. Fain University of California, Los Angeles with illustrations by Margery J. Fain Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A. Brief Contents Chapter

More information

Vertebrate Physiology 437 EXAM I NAME, Section (circle): am pm 23 September Exam is worth 100 points. You have 75 minutes.

Vertebrate Physiology 437 EXAM I NAME, Section (circle): am pm 23 September Exam is worth 100 points. You have 75 minutes. 1 Vertebrate Physiology 437 EXAM I NAME, Section (circle): am pm 23 September 2004. Exam is worth 100 points. You have 75 minutes. True or False (write true or false ; 10 points total; 1 point each) 1.

More information

All living things share the characteristics of life.

All living things share the characteristics of life. Section 1: All living things share the characteristics of life. K What I Know W What I Want to Find Out L What I Learned Essential Questions What is biology? What are possible benefits of studying biology?

More information

What is it? Where is it? How strong is it? Perceived quantity. Intensity Coding in Sensory Systems. What must sensory systems encode?

What is it? Where is it? How strong is it? Perceived quantity. Intensity Coding in Sensory Systems. What must sensory systems encode? Sensory Neurophysiology Neural response Intensity Coding in Sensory Systems Behavioral Neuroscience Psychophysics Percept What must sensory systems encode? What is it? Where is it? How strong is it? Perceived

More information

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing Tuning tuning curves So far: Receptive fields Representation of stimuli Population vectors Today: Contrast enhancment, cortical processing Firing frequency N 3 s max (N 1 ) = 40 o N4 N 1 N N 5 2 s max

More information

Use evidence of characteristics of life to differentiate between living and nonliving things.

Use evidence of characteristics of life to differentiate between living and nonliving things. Grade Big Idea Essential Questions Concepts Competencies Vocabulary 2002 Standards All living things have a common set characteristic needs and functions that separate them from nonliving things such as:

More information

SCOTCAT Credits: 20 SCQF Level 7 Semester 1 Academic year: 2018/ am, Practical classes one per week pm Mon, Tue, or Wed

SCOTCAT Credits: 20 SCQF Level 7 Semester 1 Academic year: 2018/ am, Practical classes one per week pm Mon, Tue, or Wed Biology (BL) modules BL1101 Biology 1 SCOTCAT Credits: 20 SCQF Level 7 Semester 1 10.00 am; Practical classes one per week 2.00-5.00 pm Mon, Tue, or Wed This module is an introduction to molecular and

More information

Essential knowledge 1.A.2: Natural selection

Essential knowledge 1.A.2: Natural selection Appendix C AP Biology Concepts at a Glance Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring understanding 1.A: Change in the genetic makeup of a population over time

More information

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science 7 th grade

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science 7 th grade B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science 7 th grade ORGANIZING THEME/TOPIC UNIT 1: CELLS Structure and Function of Cells MS-LS1-1. Conduct an investigation to provide evidence that

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Eye size in Drosophila melanogaster and how it affects peripheral motion vision. Abstract

Eye size in Drosophila melanogaster and how it affects peripheral motion vision. Abstract Varkey 1 Justin Varkey Anthony McGoron 4 December 2015 Eye size in Drosophila melanogaster and how it affects peripheral motion vision Abstract Drosophila melanogaster, the fruit fly, is a holometabolous

More information

TOPOGRAPHY OF DIFFERENT PHOTORECEPTOR CELL TYPES IN THE LARVAL RETINA OF ATLANTIC HALIBUT (HIPPOGLOSSUS HIPPOGLOSSUS)

TOPOGRAPHY OF DIFFERENT PHOTORECEPTOR CELL TYPES IN THE LARVAL RETINA OF ATLANTIC HALIBUT (HIPPOGLOSSUS HIPPOGLOSSUS) The Journal of Experimental Biology 204, 2553 2559 (2001) Printed in Great Britain The Company of Biologists Limited 2001 JEB3331 2553 TOPOGRAPHY OF DIFFERENT PHOTORECEPTOR CELL TYPES IN THE LARVAL RETINA

More information

Science Curriculum. Fourth Grade

Science Curriculum. Fourth Grade Science Curriculum Fourth Grade The performance expectations in fourth grade help students formulate answers to questions such as: What are waves and what are some things they can do? How can water, ice,

More information

AP Biology Curriculum Framework

AP Biology Curriculum Framework AP Biology Curriculum Framework This chart correlates the College Board s Advanced Placement Biology Curriculum Framework to the corresponding chapters and Key Concept numbers in Campbell BIOLOGY IN FOCUS,

More information

The Science of Life. Introduction to Biology

The Science of Life. Introduction to Biology The Science of Life Introduction to Biology What is Biology Bio = life logos = knowledge many branches - different things to study in biology Botany study of plants all types of plants - trees, flowers,

More information

ACUITY AND THE CONE CELL DISTRIBUTION

ACUITY AND THE CONE CELL DISTRIBUTION Brit. J. Ophthal. (1953) 37, 538. VISUALI ACUITY AND THE CONE CELL DISTRIBUTION OF THE RETINA* BY E. R. HARRISON Harwell, Didcot, Berks. BoTH Polyak (1941) and Ludvigh (1941) have discussed the acuity

More information

Visual System. Anatomy of the Visual System. Advanced article

Visual System. Anatomy of the Visual System. Advanced article Stephen D Van Hooser, Brandeis University, Waltham, Massachusetts, USA Sacha B Nelson, Brandeis University, Waltham, Massachusetts, USA Humans and many other animals obtain much of their information about

More information

Madhya Pradesh Bhoj Open University. Bhopal M.sc Zoology Final Year

Madhya Pradesh Bhoj Open University. Bhopal M.sc Zoology Final Year Subject : Comparative Anatomy of Vertebrates Q.1 Describe the inter-relationship of Uro chords and cephalochordates and their relationship with other deuterostomes. Q.2 Describe origin, evolution and general

More information

Intraspecific variation of spectral sensitivity in threespine stickleback (Gasterosteus aculeatu$) from different photic regimes

Intraspecific variation of spectral sensitivity in threespine stickleback (Gasterosteus aculeatu$) from different photic regimes J Comp Physiol A (1995) 176:255-260 9 Springer-Verlag 1995 C.G. McDonald. C.W. Hawryshyn Intraspecific variation of spectral sensitivity in threespine stickleback (Gasterosteus aculeatu$) from different

More information

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution. The AP Biology course is designed to enable you to develop advanced inquiry and reasoning skills, such as designing a plan for collecting data, analyzing data, applying mathematical routines, and connecting

More information

A A A A B B1

A A A A B B1 LEARNING OBJECTIVES FOR EACH BIG IDEA WITH ASSOCIATED SCIENCE PRACTICES AND ESSENTIAL KNOWLEDGE Learning Objectives will be the target for AP Biology exam questions Learning Objectives Sci Prac Es Knowl

More information

Computer Simulations on Evolution BiologyLabs On-line. Laboratory 1 for Section B. Laboratory 2 for Section A

Computer Simulations on Evolution BiologyLabs On-line. Laboratory 1 for Section B. Laboratory 2 for Section A Computer Simulations on Evolution BiologyLabs On-line Laboratory 1 for Section B Laboratory 2 for Section A The following was taken from http://www.biologylabsonline.com/protected/evolutionlab/ Introduction

More information

Visual Motion Analysis by a Neural Network

Visual Motion Analysis by a Neural Network Visual Motion Analysis by a Neural Network Kansai University Takatsuki, Osaka 569 1095, Japan E-mail: fukushima@m.ieice.org (Submitted on December 12, 2006) Abstract In the visual systems of mammals, visual

More information

Oceanography Page 1 of 9 Lab: Pond Water M.Sewell rm #70

Oceanography Page 1 of 9 Lab: Pond Water M.Sewell rm #70 Oceanography Page 1 of 9 Pond Water Lab Introduction: Why Study Pond Microlife? Right, what are all those little things really good for? Well, for one thing, without bacteria no fish, no frogs, no birds,

More information

WTHS Biology Keystone Exams

WTHS Biology Keystone Exams WTHS Biology Keystone Exams Biology Keystone Review Packet 10 th / 11 th Grade Keystone Test Prep This packet contains helpful information for you to prepare for the upcoming Biology Keystone Test on May

More information

Homeotic Genes and Body Patterns

Homeotic Genes and Body Patterns Homeotic Genes and Body Patterns Every organism has a unique body pattern. Although specialized body structures, such as arms and legs, may be similar in makeup (both are made of muscle and bone), their

More information

Life Science Curriculum Sixth Grade

Life Science Curriculum Sixth Grade Life Science Curriculum Sixth Grade The Sixth Grade life science curriculum emphasizes a more complex understanding of cycles, patterns and relationships in the living world. Students build on basic principles

More information

Color vision and colorimetry

Color vision and colorimetry Color vision and colorimetry Photoreceptor types Rods Scotopic vision (low illumination) Do not mediate color perception High density in the periphery to capture many quanta Low spatial resolution Many-to-one

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

AP Curriculum Framework with Learning Objectives

AP Curriculum Framework with Learning Objectives Big Ideas Big Idea 1: The process of evolution drives the diversity and unity of life. AP Curriculum Framework with Learning Objectives Understanding 1.A: Change in the genetic makeup of a population over

More information

School of Biology. Biology (BL) modules. Biology & 2000 Level /8 - August BL1101 Biology 1

School of Biology. Biology (BL) modules. Biology & 2000 Level /8 - August BL1101 Biology 1 School of Biology Biology (BL) modules BL1101 Biology 1 SCOTCAT Credits: 20 SCQF Level 7 Semester: 1 10.00 am; Practical classes one per week 2.00-5.00 pm Mon, Tue, or Wed This module is an introduction

More information

Bayesian probability theory and generative models

Bayesian probability theory and generative models Bayesian probability theory and generative models Bruno A. Olshausen November 8, 2006 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using

More information

Developmental genetics: finding the genes that regulate development

Developmental genetics: finding the genes that regulate development Developmental Biology BY1101 P. Murphy Lecture 9 Developmental genetics: finding the genes that regulate development Introduction The application of genetic analysis and DNA technology to the study of

More information

Multiple choice questions (1 pt each)

Multiple choice questions (1 pt each) Ant1050 Exam 1 Spring 2012 Name: 1 Multiple choice questions (1 pt each) 1. Which of the following items of evidence supports the view that change occurs within species? a. polyploid hybridization in plants

More information

Transformation of AAVSO Archive Visual Data to the Johnson V System

Transformation of AAVSO Archive Visual Data to the Johnson V System 128 Zissell, JAAVSO Volume 31, 2003 Transformation of AAVSO Archive Visual Data to the Johnson V System Ronald E. Zissell Williston Observatory, Mount Holyoke College, South Hadley, MA 01075 Presented

More information

Topic outline: Review: evolution and natural selection. Evolution 1. Geologic processes 2. Climate change 3. Catastrophes. Niche.

Topic outline: Review: evolution and natural selection. Evolution 1. Geologic processes 2. Climate change 3. Catastrophes. Niche. Topic outline: Review: evolution and natural selection Evolution 1. Geologic processes 2. Climate change 3. Catastrophes Niche Speciation Extinction Biodiversity Genetic engineering http://www.cengage.com/cgi-wadsworth/course_products_wp.pl?fid=m20b&product_isbn_issn=9780495015987&discipline_number=22

More information

Note on Posted Slides

Note on Posted Slides Note on Posted Slides These are the slides that I intended to show in class on Tue. Apr. 1, 2014. Since it is April 1 st, there is an April Fools Day joke in here one of the slides is complete nonsense

More information

Vertebrate Photoreceptors

Vertebrate Photoreceptors Takahisa Furukawa James B. Hurley Satoru Kawamura Editors Vertebrate Photoreceptors Functional Molecular Bases Vertebrate Photoreceptors Takahisa Furukawa James B. Hurley Satoru Kawamura Editors Vertebrate

More information

Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603)

Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603) NCEA Level 3 Biology (91603) 2013 page 1 of 6 Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603) Assessment Criteria

More information

Vertebrate Physiology 437 EXAM I 26 September 2002 NAME

Vertebrate Physiology 437 EXAM I 26 September 2002 NAME 437 EXAM1.DOC Vertebrate Physiology 437 EXAM I 26 September 2002 NAME 0. When you gaze at the stars, why do you have to look slightly away from the really faint ones in order to be able to see them? (1

More information

Characteristics of Animals

Characteristics of Animals Animal Adaptations Notes Characteristics of Animals Animals are in Kingdom a. b. eukaryotic c. cells lack. do not have a backbone. Ex. do have a backbone. Ex. Animals survive by doing the following essential

More information

1 of 13 8/11/2014 10:32 AM Units: Teacher: APBiology, CORE Course: APBiology Year: 2012-13 Chemistry of Life Chapters 1-4 Big Idea 1, 2 & 4 Change in the genetic population over time is feedback mechanisms

More information

Phenotypic variation 3/6/17. Phenotypic plasticity in amphibians

Phenotypic variation 3/6/17. Phenotypic plasticity in amphibians Phenotypic plasticity in amphibians Goals Overview of phenotypic plasticity Summary of different types of plasticity Discuss costs and benefits of plasticity Discuss complexity of plasticity Readings Wells:

More information

A Model of Local Adaptation supplementary information

A Model of Local Adaptation supplementary information A Model of Local Adaptation supplementary information Peter Vangorp Bangor University, UK & MPI Informatik, Germany Karol Myszkowski MPI Informatik, Germany Erich W. Graf University of Southampton, United

More information

COLOR SCIENCE. Concepts and Methods, Quantitative Data and Formulae, 2nd Edition. John Wiley & Sons New York Chichester Brisbane Toronto Singapore

COLOR SCIENCE. Concepts and Methods, Quantitative Data and Formulae, 2nd Edition. John Wiley & Sons New York Chichester Brisbane Toronto Singapore COLOR SCIENCE Concepts and Methods, Quantitative Data and Formulae, 2nd Edition GÜNTER WYSZECKI National Research Council, Ottawa, Ontario, Canada W. S. STILES Richmond, Surrey, England t^- n M 1982 A

More information

Treasure Coast Science Scope and Sequence

Treasure Coast Science Scope and Sequence Course: Marine Science I Honors Course Code: 2002510 Quarter: 3 Topic(s) of Study: Marine Organisms and Ecosystems Bodies of Knowledge: Nature of Science and Life Science Standard(s): 1: The Practice of

More information

Unit code: R/503/1742 QCF level: 5 Credit value: 15

Unit code: R/503/1742 QCF level: 5 Credit value: 15 Unit 23: Animal Adaptations Unit code: R/503/1742 QCF level: 5 Credit value: 15 Aim The aim of this unit is to give learners an overview of the trends in the evolution of the animal kingdom. It develops

More information