Do Neurons Process Information Efficiently?

Size: px
Start display at page:

Download "Do Neurons Process Information Efficiently?"

Transcription

1 Do Neurons Process Information Efficiently? James V Stone, University of Sheffield Claude Shannon,

2 Nothing in biology makes sense except in the light of evolution. Theodosius Dobzhansky, Question What is the main driver in the evolution of brains: 1 Energy? 2 Information? 3 Information per Joule? 4 Something else? 2

3 How expensive are neurons? Structure What is information? How does the cost of information vary with information rate? Do neurons maximise information/s or information/joule? (eg firing rate, axon diameter, synaptic efficacy) Colour aftereffects how and why. Do ganglion cells transmit information efficiently? Conclusion 3

4 Entropy and Information are two sides of the same coin In terms of Shannon s information theory (1948), entropy = uncertainty. The uncertainty (entropy) you have about which side a coin will land on is 1 bit. If I tell you which side it landed on then: I have reduced the entropy you have about the coin by 1 bit, and (equivalently) I have given you 1 bit of information. 4

5 Energetic Brains Child Body Brain 50% 50% In a child, the brain uses 50% of the body s energy at rest (the adult brain uses 20%). Lennie (2003). Maintenance Action potentials Energy budget 5

6 Energy Efficiency (with or without neurons) How does information transmission vary with signal power in general? Shannon s model communication channel. Axon = output line The neuron as a communication channel. 6

7 Diminishing returns on signal power Given a signal with power S picojoules per second (pj/s) in a communication channel (eg neuron) which has noise with power N pj/s, the maximum rate at which information can be transmitted is MI = log S + N N bits/s MI = mutual information. Doubling power does not double information rate. Power (pw or pj/s) 7

8 Energy efficiency with no baseline power cost bits/s energy efficiency = bits/pj pj/s (bits/s = mutual information) Efficiency (bits/pj) Efficiency Information Information rate Energy efficiency Information (bits/s) Energy efficiency peaks at a power cost of 0 J/s! Power, E (pj/s) 8

9 Efficiency with a baseline power cost = 1pJ/s bits/s energy efficiency = bits/pj baseline + pj/s Efficiency (bits/pj) Energy efficiency Power, E (pj/s) Baseline cost Information rate Efficiency Information Information (bits/s) With a nonzero baseline cost, energy efficiency peaks above 0 pj/s (here, at power cost of 3 pj/s) 9

10 Optimal Firing Rate When we see, we are not interpreting the pattern of light intensity that falls on our retina; we are interpreting the pattern of spikes that the million cells of our optic nerve send to the brain. Rieke, Warland, de Ruyter van Steveninck, and Bialek,

11 The visual system Ganglion cell axons (1 million) 11

12 Coding Efficiency (Barlow) Optimal Firing Rate Information transmitted / total information capacity Energy Efficiency Information transmitted / energy (= bits/joule). Question: Does the mean firing rate maximise 1) Coding Efficiency or 2) Energy Efficiency? But before we can answer this, we need to know about how information varies with energy in general... 12

13 Measuring firing rates We can estimate the firing rate of a neuron by dividing time into small intervals dt... the firing rate is then y = N/T spikes/s 13

14 Diminishing returns in Neurons For a neuron with a firing rate of y spikes/s, the MI is approximately MI = ky log 1 ydt bits/s k=constant=0.7 Axon = output line Neuron Based on Harris

15 Optimal firing rate to maximise coding efficiency Maximum MI at 50 spikes/s (ie half max firing rate) Mutual information (bits/s) 15

16 Optimal firing rate to maximise energy efficiency Maximum energy efficiency at 2 spikes/s Ganglion cells (for example) have mean firing rates that maximise energy efficiency (Levy and Baxter, 1996). 16

17 Optimal Axon Diameter 17

18 Axon Diameter MI increases approximately as a logarithmic function of diameter (Perge et al 2009). So it is always better to use many thin axons than one thick axon if the objective is to maximise information per second (ie MI). Effect of sharing fixed axon cross-section area between 1, 2 and 3 axons. So, thinner is better. But how thin is best? 18

19 Optimal Axon Diameter Thus coding efficiency would be maximised by many axons with small diameters. The smallest (MY) diameter ganglion cell axon is dmin=0.46 micrometres. If the baseline cost=0 then d=dmin would maximise energy efficiency and coding efficiency. But baseline>0, and the mean diameter is not d=dmin. The mean diameter is d=0.7micrometres, which maximises energy efficiency, NOT coding efficiency (Perge et al 2009). Maximum energy efficiency is at d=0.7=the mean diameter observed in ganglion axons. Maximum coding efficiency is at d=0.46. Energy efficiency (bits/pj) Myelinated axons Unmyelinated axons 19

20 Optimal synaptic efficacy at the LGN 20

21 No Yellow Receptors Here Not just how but why... 21

22

23

24 24

25 25

26 Cone cells responsive to blue dots, green and red light in the retina Very few blue cones, and... NO YELLOW CONES.

27 Retinal Output The data from 126 million photoreceptors (rods and cones) leaves the eye via 1 million axons of retinal ganglion cells. 27

28 Constructing opponent pairs Blue-yellow channel Red+green channel Red-green channel Sum Ganglion cells Difference Difference Blue cone Green cone Red cone This tells us how to make a yellow channel, but not why it is made.

29 Colour Aftereffects How and Why The following refers to red-green aftereffect, but the same logic applies to blue-yellow. 29

30 HOW: Colour aftereffect: A neuronal model Stimulus Perception a) Pre-adaptation White Red channel Green channel Compare White b) Adaptation Red Red channel Green channel Compare Red c) Post-adaptation White Red channel Compare Green Green channel This tells us how colour aftereffects could occur, but not why they should occur.

31 Not HOW but WHY aftereffect? Red and green cone have similar tuning curves, so the responses of red and green cones are correlated. Without recoding in the retina, these two correlated signals would be sent along two ganglion cell axons. Cone outputs Cone tuning curves Green cone output Output r G r r Red cone output Wavelength (nm) 31

32 Why aftereffect? Recoding red and green cone outputs as two new signals that are the sum g R+G =(r R + r G ) (yellow, luminance) and difference g R-G =(r R - r G ) ensures that these new signals are uncorrelated. GC difference output Ganglion cell outputs g R+G UNcorrelated with g R-G. So there is little wasted capacity in sending these two recoded signals down two ganglion cell axons. GC sum output 32

33 Ganglion cells Red+Green Red-Green b Ganglion cell outputs are uncorrelated. Cones Green Red a Cone outputs are correlated.

34 Optimal ganglion cell (GC) receptive field (RF) size If RF is small => mutual information lost If RF large => correlations between GC outputs increase. In the limit, all GCs convey the same information, but the total information is small. Optimal RF size = 2sigma, as observed in the retina. Maximum MI at 2*sigma Mutual information (bits) Borghuis et al (2008) Receptive field spacing 34

35 GC receptive fields adapt to maximise information Data points are from human subjects in different lighting conditions Curves are information theoretic predictions. This model has no free parameters. Atick

36 Correlation between ganglion cell outputs in salamander 0.5 Correlation between image luminances Correlation Median correlation between GC outputs Distance on retina (micrometres) Pitkow et al,

37 Conclusion Information theory explains not just how, but why. It does not specify how evolution builds brains, but it does place severe limits on the cost per bit of what can be built. To return to the question posed at start... A plausible candidate for the major driver in the evolution of brains is: not minimising energy expended (Joules), not maximising information received (bits), but maximising bits received per Joule expended. To understand life, one has to understand not just the flow of energy, but also the flow of information. William Bialek,

38 38

encoding and estimation bottleneck and limits to visual fidelity

encoding and estimation bottleneck and limits to visual fidelity Retina Light Optic Nerve photoreceptors encoding and estimation bottleneck and limits to visual fidelity interneurons ganglion cells light The Neural Coding Problem s(t) {t i } Central goals for today:

More information

Principles of Neural Information Theory

Principles of Neural Information Theory Principles of Neural Information Theory Computational Neuroscience and Metabolic E ciency James V Stone Title: Principles of Neural Information Theory Author: James V Stone c 2017 Sebtel Press All rights

More information

Adaptation in the Neural Code of the Retina

Adaptation in the Neural Code of the Retina Adaptation in the Neural Code of the Retina Lens Retina Fovea Optic Nerve Optic Nerve Bottleneck Neurons Information Receptors: 108 95% Optic Nerve 106 5% After Polyak 1941 Visual Cortex ~1010 Mean Intensity

More information

Information Theory. Mark van Rossum. January 24, School of Informatics, University of Edinburgh 1 / 35

Information Theory. Mark van Rossum. January 24, School of Informatics, University of Edinburgh 1 / 35 1 / 35 Information Theory Mark van Rossum School of Informatics, University of Edinburgh January 24, 2018 0 Version: January 24, 2018 Why information theory 2 / 35 Understanding the neural code. Encoding

More information

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1)

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Lecture 6 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2015 1 Chapter 2 remnants 2 Receptive field:

More information

Principles of Neural Information Theory

Principles of Neural Information Theory Principles of Neural Information Theory Computational Neuroscience and the E cient Coding Hypothesis James V Stone Title: Principles of Neural Information Theory Author: James V Stone c 2017 Sebtel Press

More information

Searching for simple models

Searching for simple models Searching for simple models 9th Annual Pinkel Endowed Lecture Institute for Research in Cognitive Science University of Pennsylvania Friday April 7 William Bialek Joseph Henry Laboratories of Physics,

More information

Information Theory (Information Theory by J. V. Stone, 2015)

Information Theory (Information Theory by J. V. Stone, 2015) Information Theory (Information Theory by J. V. Stone, 2015) Claude Shannon (1916 2001) Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27:379 423. A mathematical

More information

Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment

Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment Jean-Pierre Nadal CNRS & EHESS Laboratoire de Physique Statistique (LPS, UMR 8550 CNRS - ENS UPMC Univ.

More information

Membrane equation. VCl. dv dt + V = V Na G Na + V K G K + V Cl G Cl. G total. C m. G total = G Na + G K + G Cl

Membrane equation. VCl. dv dt + V = V Na G Na + V K G K + V Cl G Cl. G total. C m. G total = G Na + G K + G Cl Spiking neurons Membrane equation V GNa GK GCl Cm VNa VK VCl dv dt + V = V Na G Na + V K G K + V Cl G Cl G total G total = G Na + G K + G Cl = C m G total Membrane with synaptic inputs V Gleak GNa GK

More information

Fisher Information Quantifies Task-Specific Performance in the Blowfly Photoreceptor

Fisher Information Quantifies Task-Specific Performance in the Blowfly Photoreceptor Fisher Information Quantifies Task-Specific Performance in the Blowfly Photoreceptor Peng Xu and Pamela Abshire Department of Electrical and Computer Engineering and the Institute for Systems Research

More information

arxiv:cond-mat/ v2 27 Jun 1997

arxiv:cond-mat/ v2 27 Jun 1997 Entropy and Information in Neural Spike rains Steven P. Strong, 1 Roland Koberle, 1,2 Rob R. de Ruyter van Steveninck, 1 and William Bialek 1 1 NEC Research Institute, 4 Independence Way, Princeton, New

More information

Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell

Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell 1. Abstract Matthew Dunlevie Clement Lee Indrani Mikkilineni mdunlevi@ucsd.edu cll008@ucsd.edu imikkili@ucsd.edu Isolated

More information

Adaptive contrast gain control and information maximization $

Adaptive contrast gain control and information maximization $ Neurocomputing 65 66 (2005) 6 www.elsevier.com/locate/neucom Adaptive contrast gain control and information maximization $ Yuguo Yu a,, Tai Sing Lee b a Center for the Neural Basis of Cognition, Carnegie

More information

4.2 Entropy lost and information gained

4.2 Entropy lost and information gained 4.2. ENTROPY LOST AND INFORMATION GAINED 101 4.2 Entropy lost and information gained Returning to the conversation between Max and Allan, we assumed that Max would receive a complete answer to his question,

More information

15 Grossberg Network 1

15 Grossberg Network 1 Grossberg Network Biological Motivation: Vision Bipolar Cell Amacrine Cell Ganglion Cell Optic Nerve Cone Light Lens Rod Horizontal Cell Retina Optic Nerve Fiber Eyeball and Retina Layers of Retina The

More information

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011 Crab cam (Barlow et al., 2001) self inhibition recurrent inhibition lateral inhibition - L16. Neural processing in Linear Systems: Temporal and Spatial Filtering C. D. Hopkins Sept. 21, 2011 The Neural

More information

Estimation of information-theoretic quantities

Estimation of information-theoretic quantities Estimation of information-theoretic quantities Liam Paninski Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/ liam liam@gatsby.ucl.ac.uk November 16, 2004 Some

More information

Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons

Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons Yan Karklin and Eero P. Simoncelli NYU Overview Efficient coding is a well-known objective for the evaluation and

More information

arxiv: v2 [cs.it] 20 Feb 2018

arxiv: v2 [cs.it] 20 Feb 2018 Information Theory: A Tutorial Introduction James V Stone, Psychology Department, University of Sheffield, England. j.v.stone@sheffield.ac.uk File: main InformationTheory JVStone v3.tex arxiv:82.5968v2

More information

Receptive fields and functional architecture in the retina

Receptive fields and functional architecture in the retina J Physiol 587.12 (2009) pp 2753 2767 2753 TOPICAL REVIEW Receptive fields and functional architecture in the retina Vijay Balasubramanian 1,2 and Peter Sterling 1 1 Department of Neuroscience, University

More information

Analyzing Neuroscience Signals using Information Theory and Complexity

Analyzing Neuroscience Signals using Information Theory and Complexity 12th INCF Workshop on Node Communication and Collaborative Neuroinformatics Warsaw, April 16-17, 2015 Co-Authors: Analyzing Neuroscience Signals using Information Theory and Complexity Shannon Communication

More information

What do V1 neurons like about natural signals

What do V1 neurons like about natural signals What do V1 neurons like about natural signals Yuguo Yu Richard Romero Tai Sing Lee Center for the Neural Computer Science Computer Science Basis of Cognition Department Department Carnegie Mellon University

More information

BASIC VISUAL SCIENCE CORE

BASIC VISUAL SCIENCE CORE BASIC VISUAL SCIENCE CORE Absolute and Increment Thresholds Ronald S. Harwerth Fall, 2016 1. Psychophysics of Vision 2. Light and Dark Adaptation Michael Kalloniatis and Charles Luu 1 The Neuron Doctrine

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Name: Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Department of Mechanical Engineering 6.5J/2.J Information and Entropy Spring 24 Issued: April 2, 24,

More information

Vision & Perception. Simple model: simple reflectance/illumination model. image: x(n 1,n 2 )=i(n 1,n 2 )r(n 1,n 2 ) 0 < r(n 1,n 2 ) < 1

Vision & Perception. Simple model: simple reflectance/illumination model. image: x(n 1,n 2 )=i(n 1,n 2 )r(n 1,n 2 ) 0 < r(n 1,n 2 ) < 1 Simple model: simple reflectance/illumination model Eye illumination source i(n 1,n 2 ) image: x(n 1,n 2 )=i(n 1,n 2 )r(n 1,n 2 ) reflectance term r(n 1,n 2 ) where 0 < i(n 1,n 2 ) < 0 < r(n 1,n 2 )

More information

Transmission of Nerve Impulses (see Fig , p. 403)

Transmission of Nerve Impulses (see Fig , p. 403) How a nerve impulse works Transmission of Nerve Impulses (see Fig. 12.13, p. 403) 1. At Rest (Polarization) outside of neuron is positively charged compared to inside (sodium ions outside, chloride and

More information

Design principles for contrast gain control from an information theoretic perspective

Design principles for contrast gain control from an information theoretic perspective Design principles for contrast gain control from an information theoretic perspective Yuguo Yu Brian Potetz Tai Sing Lee Center for the Neural Computer Science Computer Science Basis of Cognition Department

More information

Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons

Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons To appear in: Neural Information Processing Systems (NIPS), http://nips.cc/ Granada, Spain. December 12-15, 211. Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons Yan

More information

Optimal Filtering in the Salamander Retina

Optimal Filtering in the Salamander Retina Optimal Filtering in the Salamander Retina Fred Riekea,c, W. Geoffrey Owenb and William Bialeka,b,c Departments of Physicsa and Molecular and Cell Biologyb University of California Berkeley, California

More information

Visual System. Anatomy of the Visual System. Advanced article

Visual System. Anatomy of the Visual System. Advanced article Stephen D Van Hooser, Brandeis University, Waltham, Massachusetts, USA Sacha B Nelson, Brandeis University, Waltham, Massachusetts, USA Humans and many other animals obtain much of their information about

More information

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2016

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2016 CPSC 340: Machine Learning and Data Mining More PCA Fall 2016 A2/Midterm: Admin Grades/solutions posted. Midterms can be viewed during office hours. Assignment 4: Due Monday. Extra office hours: Thursdays

More information

Transformation of stimulus correlations by the retina

Transformation of stimulus correlations by the retina Transformation of stimulus correlations by the retina Kristina Simmons (University of Pennsylvania) and Jason Prentice, (now Princeton University) with Gasper Tkacik (IST Austria) Jan Homann (now Princeton

More information

Modeling and Characterization of Neural Gain Control. Odelia Schwartz. A dissertation submitted in partial fulfillment

Modeling and Characterization of Neural Gain Control. Odelia Schwartz. A dissertation submitted in partial fulfillment Modeling and Characterization of Neural Gain Control by Odelia Schwartz A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Center for Neural Science

More information

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing Tuning tuning curves So far: Receptive fields Representation of stimuli Population vectors Today: Contrast enhancment, cortical processing Firing frequency N 3 s max (N 1 ) = 40 o N4 N 1 N N 5 2 s max

More information

The Hebb rule Neurons that fire together wire together.

The Hebb rule Neurons that fire together wire together. Unsupervised learning The Hebb rule Neurons that fire together wire together. PCA RF development with PCA Classical Conditioning and Hebbʼs rule Ear A Nose B Tongue When an axon in cell A is near enough

More information

Modeling retinal high and low contrast sensitivity lters. T. Lourens. Abstract

Modeling retinal high and low contrast sensitivity lters. T. Lourens. Abstract Modeling retinal high and low contrast sensitivity lters T. Lourens Department of Computer Science University of Groningen P.O. Box 800, 9700 AV Groningen, The Netherlands E-mail: tino@cs.rug.nl Abstract

More information

SENSORY PROCESSES PROVIDE INFORMATION ON ANIMALS EXTERNAL ENVIRONMENT AND INTERNAL STATUS 34.4

SENSORY PROCESSES PROVIDE INFORMATION ON ANIMALS EXTERNAL ENVIRONMENT AND INTERNAL STATUS 34.4 SENSORY PROCESSES PROVIDE INFORMATION ON ANIMALS EXTERNAL ENVIRONMENT AND INTERNAL STATUS 34.4 INTRODUCTION Animals need information about their external environments to move, locate food, find mates,

More information

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials Nerve Signal Conduction Resting Potential Action Potential Conduction of Action Potentials Resting Potential Resting neurons are always prepared to send a nerve signal. Neuron possesses potential energy

More information

Natural Image Statistics and Neural Representations

Natural Image Statistics and Neural Representations Natural Image Statistics and Neural Representations Michael Lewicki Center for the Neural Basis of Cognition & Department of Computer Science Carnegie Mellon University? 1 Outline 1. Information theory

More information

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles 1 Response Mechanism tropism Definition A growth movement of part of plant in response to a directional stimulus examples Positive:

More information

Color vision and colorimetry

Color vision and colorimetry Color vision and colorimetry Photoreceptor types Rods Scotopic vision (low illumination) Do not mediate color perception High density in the periphery to capture many quanta Low spatial resolution Many-to-one

More information

Nervous Tissue. Neurons Neural communication Nervous Systems

Nervous Tissue. Neurons Neural communication Nervous Systems Nervous Tissue Neurons Neural communication Nervous Systems What is the function of nervous tissue? Maintain homeostasis & respond to stimuli Sense & transmit information rapidly, to specific cells and

More information

Population Coding in Retinal Ganglion Cells

Population Coding in Retinal Ganglion Cells Population Coding in Retinal Ganglion Cells Reza Abbasi Asl Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-218-23 http://www2.eecs.berkeley.edu/pubs/techrpts/218/eecs-218-23.html

More information

Prising the secrets of energy efficiency out of brains Simon Laughlin Department of Zoology University of Cambridge UK

Prising the secrets of energy efficiency out of brains Simon Laughlin Department of Zoology University of Cambridge UK Prising the secrets of energy efficiency out of brains Simon Laughlin Department of Zoology University of Cambridge UK Principles of Neural Design, P Sterling, S B Laughlin MIT Press due Fall 2012 Neuroscience

More information

arxiv: v1 [q-bio.nc] 9 Mar 2016

arxiv: v1 [q-bio.nc] 9 Mar 2016 Temporal code versus rate code for binary Information Sources Agnieszka Pregowska a, Janusz Szczepanski a,, Eligiusz Wajnryb a arxiv:1603.02798v1 [q-bio.nc] 9 Mar 2016 a Institute of Fundamental Technological

More information

Lecture 11: Information theory THURSDAY, FEBRUARY 21, 2019

Lecture 11: Information theory THURSDAY, FEBRUARY 21, 2019 Lecture 11: Information theory DANIEL WELLER THURSDAY, FEBRUARY 21, 2019 Agenda Information and probability Entropy and coding Mutual information and capacity Both images contain the same fraction of black

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

Synergy, Redundancy, and Independence in Population Codes, Revisited

Synergy, Redundancy, and Independence in Population Codes, Revisited The Journal of Neuroscience, May 25, 2005 25(21):5195 5206 5195 Behavioral/Systems/Cognitive Synergy, Redundancy, and Independence in Population Codes, Revisited Peter E. Latham 1 and Sheila Nirenberg

More information

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 Page 1 of 43 Information maximization as a principle for contrast gain control Journal: Manuscript ID: Manuscript Type: Manuscript Section: Conflict of Interest: Date Submitted by the Author: Keywords:

More information

Karhunen-Loève Transformation for Optimal Color Feature Generation

Karhunen-Loève Transformation for Optimal Color Feature Generation Karhunen-Loève Transformation for Optimal Color Feature Generation Mehmet Celenk and Ivan Chang School of Electrical Engineering & Computer Science Ohio University, Stocker Center Athens,Ohio,USA Abstract

More information

Visual Imaging and the Electronic Age Color Science

Visual Imaging and the Electronic Age Color Science Visual Imaging and the Electronic Age Color Science Grassman s Experiments & Trichromacy Lecture #5 September 6, 2016 Prof. Donald P. Greenberg Light as Rays Light as Waves Light as Photons What is Color

More information

Section III. Biochemical and Physiological Adaptations

Section III. Biochemical and Physiological Adaptations Section III Biochemical and Physiological Adaptations Introduction S.N. ARCHER and M.B.A. DJAMGOZ For a sensory system to function optimally, it must be adapted to receiving and responding to specific

More information

Danjon noticed that the length (cusp to cusp) of the new crescent. moon was less than 180 degrees and suggested that the cause of the

Danjon noticed that the length (cusp to cusp) of the new crescent. moon was less than 180 degrees and suggested that the cause of the From The Observatory, Vol. 125, No. 1187, pp. 227-232, 2005 August EXPLAINING AND CALCULATING THE LENGTH OF THE NEW CRESCENT MOON By A. H. Sultan Physics Department, Sana a University, Yemen Danjon noticed

More information

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2017

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2017 CPSC 340: Machine Learning and Data Mining Sparse Matrix Factorization Fall 2017 Admin Assignment 4: Due Friday. Assignment 5: Posted, due Monday of last week of classes Last Time: PCA with Orthogonal/Sequential

More information

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p.

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. 5 Signaling in Nerve Cells p. 9 Cellular and Molecular Biology of Neurons

More information

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation Nervous Tissue Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation What is the function of nervous tissue? Maintain homeostasis & respond to stimuli

More information

Biosciences in the 21st century

Biosciences in the 21st century Biosciences in the 21st century Lecture 1: Neurons, Synapses, and Signaling Dr. Michael Burger Outline: 1. Why neuroscience? 2. The neuron 3. Action potentials 4. Synapses 5. Organization of the nervous

More information

Note on Posted Slides. History of Light. History of Light

Note on Posted Slides. History of Light. History of Light Note on Posted Slides These are the slides that I intended to show in class on Wed. Mar. 27, 2013. They contain important ideas and questions from your reading. Due to time constraints, I was probably

More information

Theory of colour measurement Contemporary wool dyeing and finishing

Theory of colour measurement Contemporary wool dyeing and finishing Theory of colour measurement Contemporary wool dyeing and finishing Dr Rex Brady Deakin University Colour measurement theory Topics 1. How we see colour 2. Generation of colours 3. Measurement of colour

More information

Basic information theory

Basic information theory Basic information theory Communication system performance is limited by Available signal power Background noise Bandwidth limits. Can we postulate an ideal system based on physical principles, against

More information

Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model

Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model ACCEPTED FOR NIPS: DRAFT VERSION Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model Sander M. Bohte CWI, Life Sciences Amsterdam, The Netherlands S.M.Bohte@cwi.nl September

More information

SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017

SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017 SPIKE TRIGGERED APPROACHES Odelia Schwartz Computational Neuroscience Course 2017 LINEAR NONLINEAR MODELS Linear Nonlinear o Often constrain to some form of Linear, Nonlinear computations, e.g. visual

More information

Tilt-aftereffect and adaptation of V1 neurons

Tilt-aftereffect and adaptation of V1 neurons Tilt-aftereffect and adaptation of V1 neurons Dezhe Jin Department of Physics The Pennsylvania State University Outline The tilt aftereffect (TAE) Classical model of neural basis of TAE Neural data on

More information

Neural Encoding II: Reverse Correlation and Visual Receptive Fields

Neural Encoding II: Reverse Correlation and Visual Receptive Fields Chapter 2 Neural Encoding II: Reverse Correlation and Visual Receptive Fields 2.1 Introduction The spike-triggered average stimulus introduced in chapter 1 is a standard way of characterizing the selectivity

More information

Motion Perception 1. PSY305 Lecture 12 JV Stone

Motion Perception 1. PSY305 Lecture 12 JV Stone Motion Perception 1 PSY305 Lecture 12 JV Stone 1 Structure Human visual system as a band-pass filter. Neuronal motion detection, the Reichardt detector. The aperture problem. 2 The visual system is a temporal

More information

Chapter 9: The Perceptron

Chapter 9: The Perceptron Chapter 9: The Perceptron 9.1 INTRODUCTION At this point in the book, we have completed all of the exercises that we are going to do with the James program. These exercises have shown that distributed

More information

Structure and Measurement of the brain lecture notes

Structure and Measurement of the brain lecture notes Structure and Measurement of the brain lecture notes Marty Sereno 2009/2010!"#$%&'(&#)*%$#&+,'-&.)"/*"&.*)*-'(0&1223 Neurons and Models Lecture 1 Topics Membrane (Nernst) Potential Action potential/voltage-gated

More information

Efficient Coding. Odelia Schwartz 2017

Efficient Coding. Odelia Schwartz 2017 Efficient Coding Odelia Schwartz 2017 1 Levels of modeling Descriptive (what) Mechanistic (how) Interpretive (why) 2 Levels of modeling Fitting a receptive field model to experimental data (e.g., using

More information

Encoding of Visual Information by LGN Bursts

Encoding of Visual Information by LGN Bursts Encoding of Visual Information by LGN Bursts PAMELA REINAGEL, 1 DWAYNE GODWIN, 2 S. MURRAY SHERMAN, 2 AND CHRISTOF KOCH 3 1 Sloan Center for Theoretical Neuroscience, California Institute of Technology,

More information

Nervous Systems: Neuron Structure and Function

Nervous Systems: Neuron Structure and Function Nervous Systems: Neuron Structure and Function Integration An animal needs to function like a coherent organism, not like a loose collection of cells. Integration = refers to processes such as summation

More information

CLINICAL VISUAL OPTICS (OPTO 223) Weeks XII & XIII Dr Salwa Alsaleh

CLINICAL VISUAL OPTICS (OPTO 223) Weeks XII & XIII Dr Salwa Alsaleh CLINICAL VISUAL OPTICS (OPTO 223) Weeks XII & XIII Dr Salwa Alsaleh OUTLINE OF WEEKS XII & XIII Temporal resolution Temporal Summation. Broca-Sulzer effect. Critical flicker frequency (CFF). Temporal Contrast

More information

An introduction to basic information theory. Hampus Wessman

An introduction to basic information theory. Hampus Wessman An introduction to basic information theory Hampus Wessman Abstract We give a short and simple introduction to basic information theory, by stripping away all the non-essentials. Theoretical bounds on

More information

Energy-Ef cient Coding with Discrete Stochastic Events

Energy-Ef cient Coding with Discrete Stochastic Events LETTER Communicated by Andreas Andreou Energy-Ef cient Coding with Discrete Stochastic Events Susanne Schreiber susanne@salk.edu Institute of Biology, Humboldt-University Berlin, 10115 Berlin, Germany,

More information

Ângelo Cardoso 27 May, Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico

Ângelo Cardoso 27 May, Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico BIOLOGICALLY INSPIRED COMPUTER MODELS FOR VISUAL RECOGNITION Ângelo Cardoso 27 May, 2010 Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico Index Human Vision Retinal Ganglion Cells Simple

More information

Leo Kadanoff and 2d XY Models with Symmetry-Breaking Fields. renormalization group study of higher order gradients, cosines and vortices

Leo Kadanoff and 2d XY Models with Symmetry-Breaking Fields. renormalization group study of higher order gradients, cosines and vortices Leo Kadanoff and d XY Models with Symmetry-Breaking Fields renormalization group study of higher order gradients, cosines and vortices Leo Kadanoff and Random Matrix Theory Non-Hermitian Localization in

More information

Natural Image Statistics

Natural Image Statistics Natural Image Statistics A probabilistic approach to modelling early visual processing in the cortex Dept of Computer Science Early visual processing LGN V1 retina From the eye to the primary visual cortex

More information

Learning Predictive Filters

Learning Predictive Filters Learning Predictive Filters Lane McIntosh Neurosciences Graduate Program, Stanford University Stanford, CA 94305 (Dated: December 13, 2013) We examine how a system intent on only keeping information maximally

More information

Lecture 07, 13 Sept 2005 Chapters 12 and 13. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005

Lecture 07, 13 Sept 2005 Chapters 12 and 13. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 Lecture 07, 13 Sept 2005 Chapters 12 and 13 Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 instr: Kevin Bonine t.a.: Kristen Potter Vertebrate Physiology 437 Chapter

More information

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon Neuron Detector Model 1 The detector model. 2 Biological properties of the neuron. 3 The computational unit. Each neuron is detecting some set of conditions (e.g., smoke detector). Representation is what

More information

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling Name: AP Biology Mr. Croft Section 1 1. What is a neuron? Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling 2. Neurons can be placed into three groups, based on their location and function.

More information

Synaptic Input. Linear Model of Synaptic Transmission. Professor David Heeger. September 5, 2000

Synaptic Input. Linear Model of Synaptic Transmission. Professor David Heeger. September 5, 2000 Synaptic Input Professor David Heeger September 5, 2000 The purpose of this handout is to go a bit beyond the discussion in Ch. 6 of The Book of Genesis on synaptic input, and give some examples of how

More information

UNIT I INFORMATION THEORY. I k log 2

UNIT I INFORMATION THEORY. I k log 2 UNIT I INFORMATION THEORY Claude Shannon 1916-2001 Creator of Information Theory, lays the foundation for implementing logic in digital circuits as part of his Masters Thesis! (1939) and published a paper

More information

Dendrites - receives information from other neuron cells - input receivers.

Dendrites - receives information from other neuron cells - input receivers. The Nerve Tissue Neuron - the nerve cell Dendrites - receives information from other neuron cells - input receivers. Cell body - includes usual parts of the organelles of a cell (nucleus, mitochondria)

More information

PERFECTLY secure key agreement has been studied recently

PERFECTLY secure key agreement has been studied recently IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 2, MARCH 1999 499 Unconditionally Secure Key Agreement the Intrinsic Conditional Information Ueli M. Maurer, Senior Member, IEEE, Stefan Wolf Abstract

More information

STUDY OVER LUMINOUS CHARACTERISTICS OF THE TRACER COMPOSITIONS

STUDY OVER LUMINOUS CHARACTERISTICS OF THE TRACER COMPOSITIONS STUDY OVER LUMINOUS CHARACTERISTICS OF THE TRACER COMPOSITIONS BOGDAN GABRIEL LUCIAN, ENG. S. C. UZINA MECANICA SADU S. A. e-mail: lucianbog@yahoo.com ABSTRACT: The study of the evolution of the luminous

More information

Neural coding of naturalistic motion stimuli

Neural coding of naturalistic motion stimuli INSTITUTE OF PHYSICS PUBLISHING NETWORK: COMPUTATION IN NEURAL SYSTEMS Network: Comput. Neural Syst. 12 (21) 317 329 www.iop.org/journals/ne PII: S954-898X(1)23519-2 Neural coding of naturalistic motion

More information

Curtis et al. Il nuovo Invito alla biologia.blu BIOLOGY HIGHLIGHTS KEYS

Curtis et al. Il nuovo Invito alla biologia.blu BIOLOGY HIGHLIGHTS KEYS BIOLOGY HIGHLIGHTS KEYS Watch the videos and download the transcripts of this section at: online.scuola.zanichelli.it/curtisnuovoinvitoblu/clil > THE HUMAN NERVOUS SYSTEM 2. WARM UP a) The structures that

More information

The Nervous System. What did you learn at school today? Neurophysiology!

The Nervous System. What did you learn at school today? Neurophysiology! The Nervous System What did you learn at school today? Neurophysiology! The Nervous System Controls heart rate, emotions, memories, consciousness, and much more. The most intricate and beautifully complex

More information

Introduction to Information Theory

Introduction to Information Theory Introduction to Information Theory Gurinder Singh Mickey Atwal atwal@cshl.edu Center for Quantitative Biology Kullback-Leibler Divergence Summary Shannon s coding theorems Entropy Mutual Information Multi-information

More information

A Three-dimensional Physiologically Realistic Model of the Retina

A Three-dimensional Physiologically Realistic Model of the Retina A Three-dimensional Physiologically Realistic Model of the Retina Michael Tadross, Cameron Whitehouse, Melissa Hornstein, Vicky Eng and Evangelia Micheli-Tzanakou Department of Biomedical Engineering 617

More information

CSE468 Information Conflict

CSE468 Information Conflict CSE468 Information Conflict Lecturer: Dr Carlo Kopp, MIEEE, MAIAA, PEng Lecture 02 Introduction to Information Theory Concepts Reference Sources and Bibliography There is an abundance of websites and publications

More information

Activity Driven Adaptive Stochastic. Resonance. Gregor Wenning and Klaus Obermayer. Technical University of Berlin.

Activity Driven Adaptive Stochastic. Resonance. Gregor Wenning and Klaus Obermayer. Technical University of Berlin. Activity Driven Adaptive Stochastic Resonance Gregor Wenning and Klaus Obermayer Department of Electrical Engineering and Computer Science Technical University of Berlin Franklinstr. 8/9, 187 Berlin fgrewe,obyg@cs.tu-berlin.de

More information

Optimal quantization for energy-efficient information transfer in a population of neuron-like devices

Optimal quantization for energy-efficient information transfer in a population of neuron-like devices Optimal quantization for energy-efficient information transfer in a population of neuron-like devices Mark D. McDonnell a, Nigel G. Stocks b, Charles E. M. Pearce c, Derek Abbott a a Centre for Biomedical

More information

THE PLEISTOCHROME: OPTIMAL OPPONENT CODES FOR NATURAL COLOURS

THE PLEISTOCHROME: OPTIMAL OPPONENT CODES FOR NATURAL COLOURS 1 THE PLEISTOCHROME: OPTIMAL OPPONENT CODES FOR NATURAL COLOURS Donald I. A. MacLeod University of California at San Diego La Jolla, CA 92093-0109 USA Tassilo von der Twer Bergische Universitat Wuppertal

More information

Computing and Communications 2. Information Theory -Entropy

Computing and Communications 2. Information Theory -Entropy 1896 1920 1987 2006 Computing and Communications 2. Information Theory -Entropy Ying Cui Department of Electronic Engineering Shanghai Jiao Tong University, China 2017, Autumn 1 Outline Entropy Joint entropy

More information

1/12/2017. Computational neuroscience. Neurotechnology.

1/12/2017. Computational neuroscience. Neurotechnology. Computational neuroscience Neurotechnology https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/ 1 Neurotechnology http://www.lce.hut.fi/research/cogntech/neurophysiology Recording

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 48 Neurons, Synapses, and Signaling

More information

THE retina in general consists of three layers: photoreceptors

THE retina in general consists of three layers: photoreceptors CS229 MACHINE LEARNING, STANFORD UNIVERSITY, DECEMBER 2016 1 Models of Neuron Coding in Retinal Ganglion Cells and Clustering by Receptive Field Kevin Fegelis, SUID: 005996192, Claire Hebert, SUID: 006122438,

More information