+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

Size: px
Start display at page:

Download "+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing"

Transcription

1 Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable in presence of weak background activity output input In this case, firing rate is relative to baseline rate Rough, but often useful approximation: calculate dynamics of linear network, apply nonlinearity to solution B τ = + + =

2 Solution for symmetric M and timeindependent input h: Idea: Express firing rate v in terms of eigenvectors of M and solve for timedependent coefficients c µ ( ) = v µ= µ ( ) µ For a real symmetric matrix this is always possible. The eigenvectors satisfy output B input τ = + + µ = λ µ µ They are orthogonal and can be normalized to unit length µ ν = δ µν The eigenvalues λ ν are real for real symmetric matrices.

3 Substituting into the network equation yields v τ µ= ( ) = µ µ = v µ= v µ= µ ( ) µ ( λ µ ) µ ( ) µ + output B input τ = + + Taking the dot product of each side with e ν yields: τ ν = ( λ ν) ν ( ) + ν This involves only one coefficient c µ, i.e. the different components are decoupled

4 The solution of τ ν = ( λ ν) ν ( ) + ν ν ( ) = ν λ ν with initial condition ( ) for time-independent input h is ( ( ( λ ν) τ ν ( ) = ν ( ) The full solution is then obtained by )) output input The above equation for c µ (t) has a number of important characteristics to be discussed in the following! B + ν ( ) ( ) = τ = + + v µ= ( ( λ ) ν) τ µ ( ) µ

5 ν ( ) = ν λ ν ( ( ( λ )) ν) τ + ν ( ) ( ( λ ) ν) τ Discussion If λ v >1, the exponential functions grow without bound, reflecting a fundamental instability If λ v <1, c µ approaches the steady-state value exponentially The time constant is τ /( λ ν ) ν /( λ ν ) Thus, strictly speaking, the system has no memory, i.e. the effect of the initial condition decays to zero exponentially However, the time constant of decay can be very large, much larger than the time constant τ r of an individual neuron.

6 ν ( ) = ν λ ν ( ( ( λ )) ν) τ The steady state value is proportional to, the projection of the input vector onto the relevant eigenvector The steady state value of the firing rate is = v ν= ( ν ) λ ν ν ν Selective amplification: If one eigenvalue is close to one and all others are significantly different from one: ( ) λ + ν ( ) ( ( λ ν) τ ) More general: Projection onto k-dimensional subspace, in case of k degenerate eigenvalues close to one

7 Note: the steady-state solution of a recurrent network with time-independent input is also a solution of a feedforward network To see this, consider: Fixed point with steady state output: (for λ ν <1 and constant input u) τ = + + This can be rewritten as a feedforward network = + with = = ( )

8 Neural Decoding Forward mapping: how will neurons respond to a given stimulus? Backward mapping: how can you know something about the stimulus from the neural responses?

9 Perception an inverse problem Consider an experiment where we record from a neuron: let s be a stimulus parameter (like orientation of moving edge) let r be the response of the neuron (e.g. spike count firing rate) Then we can define: P[s], the probability of stimulus s being presented P[r], the probability of response r being recorded P[r,s], the probability of stimulus s being presented and response r being recorded (joint probability) P[r s], the conditional probability of evoking response r given that stimulus s was presented P[s r], the conditional probability that stimulus s was presented given the response r was evoked Bayes theorem: P[s r] = P[r s] P[s] P[r] Neural decoding! P[s]: prior P[s r]: posterior probability

10 Formalizing Neural Variability: Elements of information Theory Mutual information: Difference between total response entropy and average response entropy on trials that involve presentation of the same stimulus. Entropy of the responses evoked by repeated presentations of a given stimulus s: = Average over all the stimuli: = =, Noise entropy Entropy associated with that part of the response variability that is not due to changes in the stimulus, but arises from other sources.

11 Mutual information: The mutual information is the difference between the total response entropy and the average response entropy on trials that involve repetitive presentation of the same stimulus. = = +, With = one gets =, ( ) ( ) and with stimulus, = = =, ( ),, Which is the mutual information expressed by the KL-divergence

12 Mutual information is symmetric with respect to Interchanges of r and s =, ( ),, = +, = +, Average uncertainty about identity of stimulus given response.

13 Neural Example: neuron in MT Middle temporal cortex: large receptive fields sensitive to object motion record from single neuron during movement patterns such as the ones below animal is trained to decide if the coherent movement is upwards or downwards

14 Left: behavioral performance of the animal and of an ideal observer considering single neuron Right: histograms (thinned) of average firing rate for different stimuli (up/down) at different coherence levels

15 Likelihood Consider probability distribution depending on parameter θ Likelihood: L( x) =P (x ) The likelihood of parameter value θ given an observed (fixed) outcome x is equal to the probability of x given the parameter value θ Example Given that I have flipped a coin 100 times and it is a fair coin, what is the probability of it landing heads-up every time? "Given that I have flipped a coin 100 times and it has landed heads-up 100 times, what is the likelihood that the coin is fair?

16 Optimal discrimination Optimal strategy for discriminating between two alternative signals presented in background of noise? Assume we must base our decisions on the observation of a single observable x x could be e.g. the firing rate of a neuron when a particular stimulus is present If the signal is blue then the values of x are chosen from P(x blue) If the signal is red then the values of x are chosen from P(x red) If we have seen a particular value of x, can we tell which signal was presented? Intuition: Divide x axis at critical point x 0 : Everything to right is called a blue, everything to the left a red. How should we choose x 0?

17 More difficult decision problem: was stimulus blue or red present? 0.2 Optimal decision threshold Probability density Firing rate Compare firing rate to threshold If larger than 7.5: blue; else: red

18 More difficult decision problem: was stimulus blue or red present? 0.2 Optimal decision threshold Probability density Firing rate Choose decision boundary based on likelihood ratio: L( x) L( x) = p(x ) p(x )

19 A general result Applies also to multimodal and multivariate distributions 0.5 Probability density Firing rate Choose decision boundary based on likelihood ratio: L( x) L( x) = p(x ) p(x )

20 Likelihood ratio, loss, bias L+: penalty associated with answering plus when the correct answer is minus L- : penalty associated with answering minus when the correct answer is plus Given firing rate r, the probabilities that the correct answer is - : P[- r] Probabilities that the correct answer is + : P[+ r]

21 Average loss expected for a plus answer given r: loss associated with being wrong times the probability of being the loss wrong associated Loss + = L + P[ r] = + Average loss expected for a minus answer given r: oss + = L + P[ r]. S Loss = L P[+ r]. plusî if Loss + Lo= L P[+ r]. A r Loss + Loss this strategy giv Strategy: cut losses. Answer plus if Using P[+ r] = p[r +]P[+] p[r] and P[ r] = p[r ]P[ ] p[r] yields l(r) = p[r +] p[r ] L + P[ ] L P[+]

22 Interpretation of l(r) = p[r +] p[r ] L + P[ ] L P[+] Likelihood ratio is compared to a threshold Threshold composed of two terms: penalty prior

23 Continuous variable. Example: Cricket cercal system (degrees) maximum likelihood 8 Bayesian error (degrees) wind direction (degrees) wind direction (degrees)

24 Optimal General Decoding Methods Optimal methods: Bayesian, maximum a posteriori (MAP), maximum likelihood (ML) MAP estimation: start with Bayes rule = This allows to calculate probability of each possible stimulus s given the neural response r. (But requires knowledge of p(r s), which is (still) difficult to estimate.) Bayesian decoding.: = The MAP estimate of s is the value s* which maximizes p(s r). If p(s) does not depend on s then s* maximizes p(r s). This is called the maximum likelihood (ML) estimate.

25 Decoding arbitrary stimulus parameter by a population of independent Poisson-neurons Instructive example: Array of N neurons, preferred stimulus value uniformly distributed Tuning curves ( ) = ( ( ) ) σ

26 The homogeneous Poisson process during very short time interval Δt there is a fixed probability of an event (spike) occurring independent of what happened previously if r is the rate of the Poisson process, then the probability of finding a spike in a short interval Δt is given by r Δt. ( ) The probability of seeing exactly n spikes in a (long) interval T is given by the Poisson distribution: = = (r ) ( r )

27 Gaussian fit ( ) = = (r ) Properties: mean: E[n] = rt variance: E[ (n - E[n]) 2 ] = rt Fano factor: variance/mean = 1 ( r ) good approximation by Gaussian for large rt (see fig. B)

28 Poisson neurons: Average rate to stimulus s determined by tuning curve Probability of stimulus evoking spikes = ( ( ) ) ( ) Assume independent neurons: = = ( ( ) ) Apply ML, use logarithm and only consider terms depending on s = ( ( ) ) +... Find maximum of r.h.s. by setting derivative to zero: = ( ) ( ( ) ) = ( ) ( ( ) ) = ( ) (remember) = (r ) = ( r ) ( ) ( ) = =

29 ML estimate Reproduced from previous slide = ( ) ( ) = For Gaussians we can use ( )/ ( ) = ( )/σ and thus obtain = /σ /σ and if all tuning curves have the same width = Intuitive explanation: firing rate weighted average of preferred values of encoding neurons

30 MAP estimate: include prior information Prior information is taken into account ( ) We now have = ( ( ) ) Derivative to zero: = = ( ) ( ) + = which leads to = /σ + /σ /σ + /σ Solid: constant stimulus distribution Dashed: s prior = -2, σ prior =

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern.

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern. 1 Exercises Chapter 1 1. Generate spike sequences with a constant firing rate r 0 using a Poisson spike generator. Then, add a refractory period to the model by allowing the firing rate r(t) to depend

More information

3.3 Population Decoding

3.3 Population Decoding 3.3 Population Decoding 97 We have thus far considered discriminating between two quite distinct stimulus values, plus and minus. Often we are interested in discriminating between two stimulus values s

More information

Signal detection theory

Signal detection theory Signal detection theory z p[r -] p[r +] - + Role of priors: Find z by maximizing P[correct] = p[+] b(z) + p[-](1 a(z)) Is there a better test to use than r? z p[r -] p[r +] - + The optimal

More information

Encoding or decoding

Encoding or decoding Encoding or decoding Decoding How well can we learn what the stimulus is by looking at the neural responses? We will discuss two approaches: devise and evaluate explicit algorithms for extracting a stimulus

More information

The homogeneous Poisson process

The homogeneous Poisson process The homogeneous Poisson process during very short time interval Δt there is a fixed probability of an event (spike) occurring independent of what happened previously if r is the rate of the Poisson process,

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

3 Neural Decoding. 3.1 Encoding and Decoding. (r 1, r 2,..., r N ) for N neurons is a list of spike-count firing rates, although,

3 Neural Decoding. 3.1 Encoding and Decoding. (r 1, r 2,..., r N ) for N neurons is a list of spike-count firing rates, although, 3 Neural Decoding 3.1 Encoding and Decoding In chapters 1 and 2, we considered the problem of predicting neural responses to known stimuli. The nervous system faces the reverse problem, determining what

More information

Neural Decoding. Chapter Encoding and Decoding

Neural Decoding. Chapter Encoding and Decoding Chapter 3 Neural Decoding 3.1 Encoding and Decoding In chapters 1 and 2, we considered the problem of predicting neural responses to known stimuli. The nervous system faces the reverse problem, determining

More information

What is the neural code? Sekuler lab, Brandeis

What is the neural code? Sekuler lab, Brandeis What is the neural code? Sekuler lab, Brandeis What is the neural code? What is the neural code? Alan Litke, UCSD What is the neural code? What is the neural code? What is the neural code? Encoding: how

More information

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be Supplementary Materials General case: computing log likelihood We first describe the general case of computing the log likelihood of a sensory parameter θ that is encoded by the activity of neurons. Each

More information

1/12/2017. Computational neuroscience. Neurotechnology.

1/12/2017. Computational neuroscience. Neurotechnology. Computational neuroscience Neurotechnology https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/ 1 Neurotechnology http://www.lce.hut.fi/research/cogntech/neurophysiology Recording

More information

Exercise Sheet 4: Covariance and Correlation, Bayes theorem, and Linear discriminant analysis

Exercise Sheet 4: Covariance and Correlation, Bayes theorem, and Linear discriminant analysis Exercise Sheet 4: Covariance and Correlation, Bayes theorem, and Linear discriminant analysis Younesse Kaddar. Covariance and Correlation Assume that we have recorded two neurons in the two-alternative-forced

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Population Coding. Maneesh Sahani Gatsby Computational Neuroscience Unit University College London

Population Coding. Maneesh Sahani Gatsby Computational Neuroscience Unit University College London Population Coding Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2010 Coding so far... Time-series for both spikes and stimuli Empirical

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

Bayesian Models in Machine Learning

Bayesian Models in Machine Learning Bayesian Models in Machine Learning Lukáš Burget Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017 Frequentist vs. Bayesian Frequentist point of view: Probability is the frequency of

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 206 Jonathan Pillow Homework 8: Logistic Regression & Information Theory Due: Tuesday, April 26, 9:59am Optimization Toolbox One

More information

Concerns of the Psychophysicist. Three methods for measuring perception. Yes/no method of constant stimuli. Detection / discrimination.

Concerns of the Psychophysicist. Three methods for measuring perception. Yes/no method of constant stimuli. Detection / discrimination. Three methods for measuring perception Concerns of the Psychophysicist. Magnitude estimation 2. Matching 3. Detection/discrimination Bias/ Attentiveness Strategy/Artifactual Cues History of stimulation

More information

How Behavioral Constraints May Determine Optimal Sensory Representations

How Behavioral Constraints May Determine Optimal Sensory Representations How Behavioral Constraints May Determine Optimal Sensory Representations by Salinas (2006) CPSC 644 Presented by Yoonsuck Choe Motivation Neural response is typically characterized in terms of a tuning

More information

Neural Encoding: Firing Rates and Spike Statistics

Neural Encoding: Firing Rates and Spike Statistics Neural Encoding: Firing Rates and Spike Statistics Dayan and Abbott (21) Chapter 1 Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks Background: Dirac δ Function Dirac δ function has the following

More information

Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment

Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment Jean-Pierre Nadal CNRS & EHESS Laboratoire de Physique Statistique (LPS, UMR 8550 CNRS - ENS UPMC Univ.

More information

encoding and estimation bottleneck and limits to visual fidelity

encoding and estimation bottleneck and limits to visual fidelity Retina Light Optic Nerve photoreceptors encoding and estimation bottleneck and limits to visual fidelity interneurons ganglion cells light The Neural Coding Problem s(t) {t i } Central goals for today:

More information

Bayesian probability theory and generative models

Bayesian probability theory and generative models Bayesian probability theory and generative models Bruno A. Olshausen November 8, 2006 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using

More information

A Brief Review of Probability, Bayesian Statistics, and Information Theory

A Brief Review of Probability, Bayesian Statistics, and Information Theory A Brief Review of Probability, Bayesian Statistics, and Information Theory Brendan Frey Electrical and Computer Engineering University of Toronto frey@psi.toronto.edu http://www.psi.toronto.edu A system

More information

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience An Introductory Course in Computational Neuroscience Contents Series Foreword Acknowledgments Preface 1 Preliminary Material 1.1. Introduction 1.1.1 The Cell, the Circuit, and the Brain 1.1.2 Physics of

More information

Bayesian Inference. 2 CS295-7 cfl Michael J. Black,

Bayesian Inference. 2 CS295-7 cfl Michael J. Black, Population Coding Now listen to me closely, young gentlemen. That brain is thinking. Maybe it s thinking about music. Maybe it has a great symphony all thought out or a mathematical formula that would

More information

Ways to make neural networks generalize better

Ways to make neural networks generalize better Ways to make neural networks generalize better Seminar in Deep Learning University of Tartu 04 / 10 / 2014 Pihel Saatmann Topics Overview of ways to improve generalization Limiting the size of the weights

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551, Fall 2017 c 2017, Selim Aksoy (Bilkent University) 1 / 46 Bayesian

More information

Lateral organization & computation

Lateral organization & computation Lateral organization & computation review Population encoding & decoding lateral organization Efficient representations that reduce or exploit redundancy Fixation task 1rst order Retinotopic maps Log-polar

More information

Statistics for the LHC Lecture 1: Introduction

Statistics for the LHC Lecture 1: Introduction Statistics for the LHC Lecture 1: Introduction Academic Training Lectures CERN, 14 17 June, 2010 indico.cern.ch/conferencedisplay.py?confid=77830 Glen Cowan Physics Department Royal Holloway, University

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) HW 1 due today Parameter Estimation Biometrics CSE 190 Lecture 7 Today s lecture was on the blackboard. These slides are an alternative presentation of the material. CSE190, Winter10 CSE190, Winter10 Chapter

More information

INTRODUCTION TO PATTERN RECOGNITION

INTRODUCTION TO PATTERN RECOGNITION INTRODUCTION TO PATTERN RECOGNITION INSTRUCTOR: WEI DING 1 Pattern Recognition Automatic discovery of regularities in data through the use of computer algorithms With the use of these regularities to take

More information

Sean Escola. Center for Theoretical Neuroscience

Sean Escola. Center for Theoretical Neuroscience Employing hidden Markov models of neural spike-trains toward the improved estimation of linear receptive fields and the decoding of multiple firing regimes Sean Escola Center for Theoretical Neuroscience

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Information Theory. Mark van Rossum. January 24, School of Informatics, University of Edinburgh 1 / 35

Information Theory. Mark van Rossum. January 24, School of Informatics, University of Edinburgh 1 / 35 1 / 35 Information Theory Mark van Rossum School of Informatics, University of Edinburgh January 24, 2018 0 Version: January 24, 2018 Why information theory 2 / 35 Understanding the neural code. Encoding

More information

Artificial Neural Networks Examination, March 2004

Artificial Neural Networks Examination, March 2004 Artificial Neural Networks Examination, March 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 5 part 3a :Three definitions of rate code Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 5 Variability and Noise: The question of the neural code Wulfram Gerstner EPFL, Lausanne,

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Probability theory basics

Probability theory basics Probability theory basics Michael Franke Basics of probability theory: axiomatic definition, interpretation, joint distributions, marginalization, conditional probability & Bayes rule. Random variables:

More information

Statistical Data Analysis Stat 3: p-values, parameter estimation

Statistical Data Analysis Stat 3: p-values, parameter estimation Statistical Data Analysis Stat 3: p-values, parameter estimation London Postgraduate Lectures on Particle Physics; University of London MSci course PH4515 Glen Cowan Physics Department Royal Holloway,

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

Machine Learning for Signal Processing Bayes Classification and Regression

Machine Learning for Signal Processing Bayes Classification and Regression Machine Learning for Signal Processing Bayes Classification and Regression Instructor: Bhiksha Raj 11755/18797 1 Recap: KNN A very effective and simple way of performing classification Simple model: For

More information

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture CSE/NB 528 Final Lecture: All Good Things Must 1 Course Summary Where have we been? Course Highlights Where do we go from here? Challenges and Open Problems Further Reading 2 What is the neural code? What

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Bayesian Decision Theory Bayesian classification for normal distributions Error Probabilities

More information

Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2

Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2 Logistics CSE 446: Point Estimation Winter 2012 PS2 out shortly Dan Weld Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2 Last Time Random variables, distributions Marginal, joint & conditional

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics October 17, 2017 CS 361: Probability & Statistics Inference Maximum likelihood: drawbacks A couple of things might trip up max likelihood estimation: 1) Finding the maximum of some functions can be quite

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Bayesian Methods: Naïve Bayes

Bayesian Methods: Naïve Bayes Bayesian Methods: aïve Bayes icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Last Time Parameter learning Learning the parameter of a simple coin flipping model Prior

More information

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides Probabilistic modeling The slides are closely adapted from Subhransu Maji s slides Overview So far the models and algorithms you have learned about are relatively disconnected Probabilistic modeling framework

More information

What does Bayes theorem give us? Lets revisit the ball in the box example.

What does Bayes theorem give us? Lets revisit the ball in the box example. ECE 6430 Pattern Recognition and Analysis Fall 2011 Lecture Notes - 2 What does Bayes theorem give us? Lets revisit the ball in the box example. Figure 1: Boxes with colored balls Last class we answered

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Bayesian Inference. Introduction

Bayesian Inference. Introduction Bayesian Inference Introduction The frequentist approach to inference holds that probabilities are intrinsicially tied (unsurprisingly) to frequencies. This interpretation is actually quite natural. What,

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Announcements Machine Learning Lecture 3 Eam dates We re in the process of fiing the first eam date Probability Density Estimation II 9.0.207 Eercises The first eercise sheet is available on L2P now First

More information

Error analysis for efficiency

Error analysis for efficiency Glen Cowan RHUL Physics 28 July, 2008 Error analysis for efficiency To estimate a selection efficiency using Monte Carlo one typically takes the number of events selected m divided by the number generated

More information

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Jonathan Pillow HHMI and NYU http://www.cns.nyu.edu/~pillow Oct 5, Course lecture: Computational Modeling of Neuronal Systems

More information

State-Space Methods for Inferring Spike Trains from Calcium Imaging

State-Space Methods for Inferring Spike Trains from Calcium Imaging State-Space Methods for Inferring Spike Trains from Calcium Imaging Joshua Vogelstein Johns Hopkins April 23, 2009 Joshua Vogelstein (Johns Hopkins) State-Space Calcium Imaging April 23, 2009 1 / 78 Outline

More information

Inconsistency of Bayesian inference when the model is wrong, and how to repair it

Inconsistency of Bayesian inference when the model is wrong, and how to repair it Inconsistency of Bayesian inference when the model is wrong, and how to repair it Peter Grünwald Thijs van Ommen Centrum Wiskunde & Informatica, Amsterdam Universiteit Leiden June 3, 2015 Outline 1 Introduction

More information

From perceptrons to word embeddings. Simon Šuster University of Groningen

From perceptrons to word embeddings. Simon Šuster University of Groningen From perceptrons to word embeddings Simon Šuster University of Groningen Outline A basic computational unit Weighting some input to produce an output: classification Perceptron Classify tweets Written

More information

The Diffusion Model of Speeded Choice, from a Rational Perspective

The Diffusion Model of Speeded Choice, from a Rational Perspective The Diffusion Model of Speeded Choice, from a Rational Perspective Matt Jones, University of Colorado August 7, 017 1 Binary Decision Tasks This chapter considers tasks in which an experimental subject

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

Neural Encoding Models

Neural Encoding Models Neural Encoding Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2011 Studying sensory systems x(t) y(t) Decoding: ˆx(t)= G[y(t)]

More information

Probabilistic Reasoning in Deep Learning

Probabilistic Reasoning in Deep Learning Probabilistic Reasoning in Deep Learning Dr Konstantina Palla, PhD palla@stats.ox.ac.uk September 2017 Deep Learning Indaba, Johannesburgh Konstantina Palla 1 / 39 OVERVIEW OF THE TALK Basics of Bayesian

More information

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES CHARACTERIZATION OF NONLINEAR NEURON RESPONSES Matt Whiteway whit8022@umd.edu Dr. Daniel A. Butts dab@umd.edu Neuroscience and Cognitive Science (NACS) Applied Mathematics and Scientific Computation (AMSC)

More information

SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017

SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017 SPIKE TRIGGERED APPROACHES Odelia Schwartz Computational Neuroscience Course 2017 LINEAR NONLINEAR MODELS Linear Nonlinear o Often constrain to some form of Linear, Nonlinear computations, e.g. visual

More information

A.I. in health informatics lecture 2 clinical reasoning & probabilistic inference, I. kevin small & byron wallace

A.I. in health informatics lecture 2 clinical reasoning & probabilistic inference, I. kevin small & byron wallace A.I. in health informatics lecture 2 clinical reasoning & probabilistic inference, I kevin small & byron wallace today a review of probability random variables, maximum likelihood, etc. crucial for clinical

More information

Lecture 18: Learning probabilistic models

Lecture 18: Learning probabilistic models Lecture 8: Learning probabilistic models Roger Grosse Overview In the first half of the course, we introduced backpropagation, a technique we used to train neural nets to minimize a variety of cost functions.

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Poisson Processes for Neuroscientists

Poisson Processes for Neuroscientists Poisson Processes for Neuroscientists Thibaud Taillefumier This note is an introduction to the key properties of Poisson processes, which are extensively used to simulate spike trains. For being mathematical

More information

Statistical Methods for Particle Physics (I)

Statistical Methods for Particle Physics (I) Statistical Methods for Particle Physics (I) https://agenda.infn.it/conferencedisplay.py?confid=14407 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons

Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons Yan Karklin and Eero P. Simoncelli NYU Overview Efficient coding is a well-known objective for the evaluation and

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

Classification & Information Theory Lecture #8

Classification & Information Theory Lecture #8 Classification & Information Theory Lecture #8 Introduction to Natural Language Processing CMPSCI 585, Fall 2007 University of Massachusetts Amherst Andrew McCallum Today s Main Points Automatically categorizing

More information

INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP

INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP Personal Healthcare Revolution Electronic health records (CFH) Personal genomics (DeCode, Navigenics, 23andMe) X-prize: first $10k human genome technology

More information

Design of experiments via information theory

Design of experiments via information theory Design of experiments via information theory Liam Paninski Center for Neural Science New York University New York, NY 10003 liam@cns.nyu.edu Abstract We discuss an idea for collecting data in a relatively

More information

COMP 551 Applied Machine Learning Lecture 19: Bayesian Inference

COMP 551 Applied Machine Learning Lecture 19: Bayesian Inference COMP 551 Applied Machine Learning Lecture 19: Bayesian Inference Associate Instructor: (herke.vanhoof@mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551 Unless otherwise noted, all material posted

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Application: Can we tell what people are looking at from their brain activity (in real time)? Gaussian Spatial Smooth

Application: Can we tell what people are looking at from their brain activity (in real time)? Gaussian Spatial Smooth Application: Can we tell what people are looking at from their brain activity (in real time? Gaussian Spatial Smooth 0 The Data Block Paradigm (six runs per subject Three Categories of Objects (counterbalanced

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 143 Part IV

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

Exam. Matrikelnummer: Points. Question Bonus. Total. Grade. Information Theory and Signal Reconstruction Summer term 2013

Exam. Matrikelnummer: Points. Question Bonus. Total. Grade. Information Theory and Signal Reconstruction Summer term 2013 Exam Name: Matrikelnummer: Question 1 2 3 4 5 Bonus Points Total Grade 1/6 Question 1 You are traveling to the beautiful country of Markovia. Your travel guide tells you that the weather w i in Markovia

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics March 14, 2018 CS 361: Probability & Statistics Inference The prior From Bayes rule, we know that we can express our function of interest as Likelihood Prior Posterior The right hand side contains the

More information

Supratim Ray

Supratim Ray Supratim Ray sray@cns.iisc.ernet.in Biophysics of Action Potentials Passive Properties neuron as an electrical circuit Passive Signaling cable theory Active properties generation of action potential Techniques

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Bayesian Computation in Recurrent Neural Circuits

Bayesian Computation in Recurrent Neural Circuits Bayesian Computation in Recurrent Neural Circuits Rajesh P. N. Rao Department of Computer Science and Engineering University of Washington Seattle, WA 98195 E-mail: rao@cs.washington.edu Appeared in: Neural

More information

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. CS 189 Spring 013 Introduction to Machine Learning Final You have 3 hours for the exam. The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. Please

More information

Lecture 3: Pattern Classification

Lecture 3: Pattern Classification EE E6820: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 1 2 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mixtures

More information

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics DS-GA 100 Lecture notes 11 Fall 016 Bayesian statistics In the frequentist paradigm we model the data as realizations from a distribution that depends on deterministic parameters. In contrast, in Bayesian

More information

Model Averaging (Bayesian Learning)

Model Averaging (Bayesian Learning) Model Averaging (Bayesian Learning) We want to predict the output Y of a new case that has input X = x given the training examples e: p(y x e) = m M P(Y m x e) = m M P(Y m x e)p(m x e) = m M P(Y m x)p(m

More information

CS 630 Basic Probability and Information Theory. Tim Campbell

CS 630 Basic Probability and Information Theory. Tim Campbell CS 630 Basic Probability and Information Theory Tim Campbell 21 January 2003 Probability Theory Probability Theory is the study of how best to predict outcomes of events. An experiment (or trial or event)

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set 2 MAS 622J/1.126J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

Learning with Probabilities

Learning with Probabilities Learning with Probabilities CS194-10 Fall 2011 Lecture 15 CS194-10 Fall 2011 Lecture 15 1 Outline Bayesian learning eliminates arbitrary loss functions and regularizers facilitates incorporation of prior

More information

Some Concepts of Probability (Review) Volker Tresp Summer 2018

Some Concepts of Probability (Review) Volker Tresp Summer 2018 Some Concepts of Probability (Review) Volker Tresp Summer 2018 1 Definition There are different way to define what a probability stands for Mathematically, the most rigorous definition is based on Kolmogorov

More information

An Introduction to Bioinformatics Algorithms Hidden Markov Models

An Introduction to Bioinformatics Algorithms   Hidden Markov Models Hidden Markov Models Outline 1. CG-Islands 2. The Fair Bet Casino 3. Hidden Markov Model 4. Decoding Algorithm 5. Forward-Backward Algorithm 6. Profile HMMs 7. HMM Parameter Estimation 8. Viterbi Training

More information