Population Coding. Maneesh Sahani Gatsby Computational Neuroscience Unit University College London

Size: px
Start display at page:

Download "Population Coding. Maneesh Sahani Gatsby Computational Neuroscience Unit University College London"

Transcription

1 Population Coding Maneesh Sahani Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2010

2 Coding so far... Time-series for both spikes and stimuli Empirical estimate function(s) given measured stimuli or movements and spikes

3 Population codes High dimensionality (cells stimulus time). usually limited to simple rate codes. even prosthetic work assumes instantaneous (lagged) coding Limited empirical data can record 10s - 100s of neurons. population size more like theoretical inferences, based on single-cell and aggregate (fmri, LFP, optical) measurements.

4 Common approach The most common sort of questions asked of population codes: given assumed encoding functions, how well can we (or downstream areas) decode the encoded stimulus value? what encoding schemes would be optimal, in the sense of allowing decoders to estimate stimulus values as well as possible. Before considering populations, we need to formulate some ideas about rate coding in the context of single cells.

5 Rate coding In the rate coding context, we imagine that the firing rate of a cell r represents a single (possibly multidimensional) stimulus value s at any one time: r = f (s). Even if s and r are embedded in time-series we assume: 1. that coding is instantaneous (with a fixed lag), 2. that r (and therefore s) is constant over a short time. The actual number of spikes n produced in is then taken to be distributed around r, often according to a Poisson distribution.

6 Tuning curves The function f (s) is known as a tuning curve. Commonly assumed forms: Gaussian r 0 + r max exp [ 1 ] 2σ 2(x x pref) 2 Cosine r 0 + r max cos(θ θ pref ) Wrapped Gaussian r 0 + r max n exp von Mises ( circular Gaussian ) r 0 + r max exp [ κcos(θ θ pref ) ] [ 1 ] 2σ 2(θ θ pref 2πn) 2

7 Measuring the performance of rate codes: Discrete choice Suppose we want to make a binary choice based on firing rate: present / absent (signal detection) up / down horizontal / vertical Call one potential stimulus s 0, the other s 1. P(n s): probability density P(n s 0 ) P(n s 1 ) response

8 ROC curves probability density P(n s 0 ) P(n s 1 ) 1 response hit rate false alarm rate

9 ROC curves probability density P(n s 0 ) P(n s 1 ) 1 response hit rate false alarm rate

10 Summary measures area under the ROC curve given n 1 P(n s 1 ) and n 0 P(n s 0 ), this equals P(n 1 > n 0 ) discriminability d for equal variance Gaussians d = µ 1 µ 0 σ. for any threshold d = Φ 1 (1 FA) Φ 1 (1 HR) where Φ is a standard normal cdf. definition unclear for non-gaussian distributions.

11 Continuous estimation Now consider a (one dimensional) stimulus that takes any real value (or angle). contrast orientation motion direction movement speed Consider a neuron that fires n spikes in response to a stimulus s, according P(n f (s) ) Given n we attempt to estimate s. How well can we do?

12 Continuous estimation Useful to consider a limit given N measurements n i all generated by the same stimulus s. Then the posterior over s is log P(s {n i }) = i log P(n i s) + log P(s) log Z({n i }) and so taking N 1 N log P(s {n i}) log P(n s) n s + 0 log Z(s ) and so P(s {n i }) e N log P(n s) n s /Z = e NKL [P(n s ) P(n s)] /Z

13 Continuous estimation Now, Taylor expand the KL divergence in s around s : KL [ P(n s ) P(n s) ] = log P(n s) + log P(n s ) n s n s = log P(n s ) d log P(n s) (s s ) n s ds + log P(n s ) n s = 1 d 2 (s s ) 2 2 log P(n s) s +... ds 2 s = 1 2 (s s ) 2 J(s ) +... So in asymptopia, the posterior N (s, 1/J(s )). J(s ) is called the Fisher Information. d J(s 2 log P(n s) (d s log P(n s) ) = ds 2 ds s = s 1 d s 2 (s s ) 2 2 log P(n s) s +... ds 2 s s ) 2 (You will show that these are identical in the homework.) s

14 Cramér-Rao bound The Fisher Information is important even outside the large data limit due to a deeper result that is due to Cramér and Rao. This states that for any N, any unbiased estimator ŝ({n i }) of s will have the property that (ŝ({ni }) s ) 2 n i s 1 J(s ). Thus, Fisher Information gives a lower bound on the variance of any unbiased estimator. This is called the Cramér-Rao bound. (There is also a version for biased estimators). The Fisher Information will be our primary tool to quantify the performance of a population code.

15 Fisher Info and tuning curves n = r + noise; r = f (s) ( d ) 2 J(s )= ds log P(n s) s s ( d ) 2 = dr log P(n r ) f (s ) f (s ) s = J noise (r ) 2 f (s ) 2 f(s) J(s) firing rate / Fisher info s

16 Fisher info for Poisson neurons For Poisson neurons so and P(n f (s)) = e f (s) f (s) n J noise [ f (s )]= = n! ( d d f ( d d f ) 2 log P(n f (s)) f (s ) s ) 2 f (s) + n log f (s) log n! f (s ) ( ) 2 = 1 + n/ f (s ) = (n f (s )) 2 f (s ) 2 = f (s ) f (s ) 2= 1 f (s ) J[s ]= f (s ) 2 / f (s ) s s [not surprising! f (s) = n] s

17 Cooperative coding Labelled Line Scalar coding firing rate firing rate s s Distributed encoding firing rate firing rate s s

18 Cooperative coding All of these are found in biological systems. Issues: 1. redundancy and robustness (not scalar) 2. efficiency (not labelled line) 3. local computation (not scalar or distributed) 4. multiple values (not scalar)

19 Coding in multiple dimensions Cartesian Distributed s 2 s 2 s 1 s 1 efficient problems with multiple values represent multiple values may require more neurons

20 Cricket cercal system r a (s) = ra max [cos(θ θ a )] + = ra max [c T a v] + So, writing r a = r a /ra max : ( ) ( ) r1 r 3 c T = 1 r 2 r 4 c T v ( 2 ) r1 r v = (c 1 c 2 ) 3 = r r 2 r 1 c 1 r 3 c 3 + r 2 c 2 r 4 c 4 = 4 a c T 1 c 2 = 0 c 3 = c 1 c 4 = c 2 r a c a This is called population vector decoding.

21 Motor cortex (simplified) Cosine tuning, randomly distributed preferred directions. In general, population vector decoding works for cosine tuning cartesian or dense (tight) directions But: is it optimal? does it generalise? (Gaussian tuning curves) how accurate is it?

22 Bayesian decoding Take n a Poisson[ f a (s) ], independently for different cells. Then P(n s) = a e f a(s) ( f a (s) ) n a n a! and log P(s n) = a f a (s) + n a log( f a (s) ) log n a! + log P(s) Assume a f a(s) is independent of s for a homogeneous population, and prior is flat. d ds log P(s n) = d ds = a a n a log( f a (s) ) n a f a (s) f a(s)

23 Bayesian decoding Now, consider f a (s) = e (s s a) 2 /2σ 2, so f a(s) = (s s a )/σ 2 e (s s a) 2 /2σ 2 and set the derivative to 0: n a (s s a )/σ 2 = 0 a ŝ MAP = a n as a a n a So the MAP estimate is a population average of preferred directions. Not exactly a population vector.

24 Population Fisher Info Fisher Informations for independent random variates add: J n (s) = d2 log P(n s) ds2 = d2 log P(n ds 2 a s) a = d2 ds log P(n a s) = J 2 na (s). a a = a f a(s) 2 f a (s)

25 Optimal tuning properties A considerable amount of work has been done in recent years on finding optimal properties of tuning curves for rate-based population codes. Here, we reproduce one such argument (from Zhang and Sejnowski, 1999). Consider a population of cells that codes the value of a D dimensional stimulus, s. Let the ath cell emit r spikes in an interval τ with probability distribution that is conditionally independent of the other cells (given s) and has the form P a (r s, τ) = S (r, f a (s), τ). The tuning curve of the ath cell, f a (s), has the form f a (s) = F φ ( (ξ a ) 2) ; (ξ a ) 2 = D i (ξ a i ) 2 ; ξ a i = s i c a i σ, where F is a maximal rate and the function φ is monotically decreasing. The parameters c a and σ give the centre of the ath tuning curve and the (common) width.

26 Optimal tuning properties Now, the (i j)th term in the FI matrix for the ath cell is (by definition) [ Ji a j(s) = E log P a (r s, τ) ] log P a (r s, τ) s i s j Applying the chain rule repeatedly, we find that log P a 1 (r s, τ) = S (r, f a (s), τ) s i S (r, f a (s), τ) s i = S (2) (r, f a (s), τ) f a (s) S (r, f a (s), τ) s i (where S (2) indicates differentiation with respect to the second argument) = S (2) (r, f a (s), τ) S (r, f a (s), τ) Fφ ( (ξ a ) 2) s i D (ξi a ) 2 = S (2) (r, f a (s), τ) ( S (r, f a (s), τ) Fφ (ξ a ) 2) 2(s i c a i ) (σ a i )2 i

27 Optimal tuning properties So, [ (S Ji a (2) (r, f a ) 2 ] (s), τ) j(s) = E 4F ( 2 φ ( (ξ a ) 2)) 2 (s i c a i )(s j c a j ) S (r, f a (s), τ) σ 4 ( = A φ (ξ a ) 2, F, τ ) (s i c a i )(s j c a j ) σ 4 where the function A φ does not depend explicitly on σ.

28 Optimal tuning properties We assumed neurons were independent Fisher information adds. Approximate by integral over the tuning curve centres, assuming uniform density η of neurons. J i j (s) = a J a i j(s) = + + dc a 1 dc a dc a D ηj a i j(s) dc a D ηa φ ( (ξ a ) 2, F, τ ) (s i c a i )(s j c a j ) σ 4 Change variables: c a i ξ a i = + = σd σ 2 η σdξ a dξ a 1 + σdξ a D ηa φ ( (ξ a ) 2, F, τ ) ξa i ξa j σ 2 dξ a D A φ ( (ξ a ) 2, F, τ ) ξ a i ξ a j Now, if i j, integral is odd in both ξi a and ξ a j, and thus vanishes. If i = j, then the integral has some value D K φ (F, τ, D), independent of σ. Thus, J ii = σ D 2 ηdk φ (F, τ, D) and the total Fisher information is proportional to σ D 2.

29 Optimal tuning properties Thus optimal tuning width depends on the stimulus dimension. D = 1 σ 0 (although a lower limit is encountered when the tuning width falls below the inter-cell spacing) D = 2 J independent of σ. D > 2 σ (actual limit set by valid stimuli).

30 More... Correlated noise Extended s (feature maps etc.) Uncertainty

Encoding or decoding

Encoding or decoding Encoding or decoding Decoding How well can we learn what the stimulus is by looking at the neural responses? We will discuss two approaches: devise and evaluate explicit algorithms for extracting a stimulus

More information

3.3 Population Decoding

3.3 Population Decoding 3.3 Population Decoding 97 We have thus far considered discriminating between two quite distinct stimulus values, plus and minus. Often we are interested in discriminating between two stimulus values s

More information

Signal detection theory

Signal detection theory Signal detection theory z p[r -] p[r +] - + Role of priors: Find z by maximizing P[correct] = p[+] b(z) + p[-](1 a(z)) Is there a better test to use than r? z p[r -] p[r +] - + The optimal

More information

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be Supplementary Materials General case: computing log likelihood We first describe the general case of computing the log likelihood of a sensory parameter θ that is encoded by the activity of neurons. Each

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern.

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern. 1 Exercises Chapter 1 1. Generate spike sequences with a constant firing rate r 0 using a Poisson spike generator. Then, add a refractory period to the model by allowing the firing rate r(t) to depend

More information

3 Neural Decoding. 3.1 Encoding and Decoding. (r 1, r 2,..., r N ) for N neurons is a list of spike-count firing rates, although,

3 Neural Decoding. 3.1 Encoding and Decoding. (r 1, r 2,..., r N ) for N neurons is a list of spike-count firing rates, although, 3 Neural Decoding 3.1 Encoding and Decoding In chapters 1 and 2, we considered the problem of predicting neural responses to known stimuli. The nervous system faces the reverse problem, determining what

More information

Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data

Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data Maneesh Sahani Gatsby Computational Neuroscience Unit University College, London Jennifer

More information

Neural Decoding. Chapter Encoding and Decoding

Neural Decoding. Chapter Encoding and Decoding Chapter 3 Neural Decoding 3.1 Encoding and Decoding In chapters 1 and 2, we considered the problem of predicting neural responses to known stimuli. The nervous system faces the reverse problem, determining

More information

Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment

Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment Jean-Pierre Nadal CNRS & EHESS Laboratoire de Physique Statistique (LPS, UMR 8550 CNRS - ENS UPMC Univ.

More information

Lateral organization & computation

Lateral organization & computation Lateral organization & computation review Population encoding & decoding lateral organization Efficient representations that reduce or exploit redundancy Fixation task 1rst order Retinotopic maps Log-polar

More information

What is the neural code? Sekuler lab, Brandeis

What is the neural code? Sekuler lab, Brandeis What is the neural code? Sekuler lab, Brandeis What is the neural code? What is the neural code? Alan Litke, UCSD What is the neural code? What is the neural code? What is the neural code? Encoding: how

More information

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture CSE/NB 528 Final Lecture: All Good Things Must 1 Course Summary Where have we been? Course Highlights Where do we go from here? Challenges and Open Problems Further Reading 2 What is the neural code? What

More information

Information Theory. Mark van Rossum. January 24, School of Informatics, University of Edinburgh 1 / 35

Information Theory. Mark van Rossum. January 24, School of Informatics, University of Edinburgh 1 / 35 1 / 35 Information Theory Mark van Rossum School of Informatics, University of Edinburgh January 24, 2018 0 Version: January 24, 2018 Why information theory 2 / 35 Understanding the neural code. Encoding

More information

Neuronal Tuning: To Sharpen or Broaden?

Neuronal Tuning: To Sharpen or Broaden? NOTE Communicated by Laurence Abbott Neuronal Tuning: To Sharpen or Broaden? Kechen Zhang Howard Hughes Medical Institute, Computational Neurobiology Laboratory, Salk Institute for Biological Studies,

More information

1/12/2017. Computational neuroscience. Neurotechnology.

1/12/2017. Computational neuroscience. Neurotechnology. Computational neuroscience Neurotechnology https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/ 1 Neurotechnology http://www.lce.hut.fi/research/cogntech/neurophysiology Recording

More information

Describing Spike-Trains

Describing Spike-Trains Describing Spike-Trains Maneesh Sahani Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2012 Neural Coding The brain manipulates information by combining and generating action

More information

Neural Encoding Models

Neural Encoding Models Neural Encoding Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2011 Studying sensory systems x(t) y(t) Decoding: ˆx(t)= G[y(t)]

More information

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Jonathan Pillow HHMI and NYU http://www.cns.nyu.edu/~pillow Oct 5, Course lecture: Computational Modeling of Neuronal Systems

More information

Detection theory 101 ELEC-E5410 Signal Processing for Communications

Detection theory 101 ELEC-E5410 Signal Processing for Communications Detection theory 101 ELEC-E5410 Signal Processing for Communications Binary hypothesis testing Null hypothesis H 0 : e.g. noise only Alternative hypothesis H 1 : signal + noise p(x;h 0 ) γ p(x;h 1 ) Trade-off

More information

Concerns of the Psychophysicist. Three methods for measuring perception. Yes/no method of constant stimuli. Detection / discrimination.

Concerns of the Psychophysicist. Three methods for measuring perception. Yes/no method of constant stimuli. Detection / discrimination. Three methods for measuring perception Concerns of the Psychophysicist. Magnitude estimation 2. Matching 3. Detection/discrimination Bias/ Attentiveness Strategy/Artifactual Cues History of stimulation

More information

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 206 Jonathan Pillow Homework 8: Logistic Regression & Information Theory Due: Tuesday, April 26, 9:59am Optimization Toolbox One

More information

Exercise Sheet 4: Covariance and Correlation, Bayes theorem, and Linear discriminant analysis

Exercise Sheet 4: Covariance and Correlation, Bayes theorem, and Linear discriminant analysis Exercise Sheet 4: Covariance and Correlation, Bayes theorem, and Linear discriminant analysis Younesse Kaddar. Covariance and Correlation Assume that we have recorded two neurons in the two-alternative-forced

More information

Probabilistic Models in Theoretical Neuroscience

Probabilistic Models in Theoretical Neuroscience Probabilistic Models in Theoretical Neuroscience visible unit Boltzmann machine semi-restricted Boltzmann machine restricted Boltzmann machine hidden unit Neural models of probabilistic sampling: introduction

More information

Sean Escola. Center for Theoretical Neuroscience

Sean Escola. Center for Theoretical Neuroscience Employing hidden Markov models of neural spike-trains toward the improved estimation of linear receptive fields and the decoding of multiple firing regimes Sean Escola Center for Theoretical Neuroscience

More information

Estimation of information-theoretic quantities

Estimation of information-theoretic quantities Estimation of information-theoretic quantities Liam Paninski Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/ liam liam@gatsby.ucl.ac.uk November 16, 2004 Some

More information

Bayesian Inference. 2 CS295-7 cfl Michael J. Black,

Bayesian Inference. 2 CS295-7 cfl Michael J. Black, Population Coding Now listen to me closely, young gentlemen. That brain is thinking. Maybe it s thinking about music. Maybe it has a great symphony all thought out or a mathematical formula that would

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

Statistical models for neural encoding

Statistical models for neural encoding Statistical models for neural encoding Part 1: discrete-time models Liam Paninski Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/ liam liam@gatsby.ucl.ac.uk

More information

encoding and estimation bottleneck and limits to visual fidelity

encoding and estimation bottleneck and limits to visual fidelity Retina Light Optic Nerve photoreceptors encoding and estimation bottleneck and limits to visual fidelity interneurons ganglion cells light The Neural Coding Problem s(t) {t i } Central goals for today:

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Gaussian Processes Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College London

More information

Week 3: The EM algorithm

Week 3: The EM algorithm Week 3: The EM algorithm Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2005 Mixtures of Gaussians Data: Y = {y 1... y N } Latent

More information

Inferring Elapsed Time from Stochastic Neural Processes

Inferring Elapsed Time from Stochastic Neural Processes Inferring Elapsed Time from Stochastic Neural Processes Misha B. Ahrens and Maneesh Sahani Gatsby Computational Neuroscience Unit, UCL Alexandra House, 17 Queen Square, London, WC1N 3AR {ahrens, maneesh}@gatsby.ucl.ac.uk

More information

Lecture 7 Introduction to Statistical Decision Theory

Lecture 7 Introduction to Statistical Decision Theory Lecture 7 Introduction to Statistical Decision Theory I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 20, 2016 1 / 55 I-Hsiang Wang IT Lecture 7

More information

If there exists a threshold k 0 such that. then we can take k = k 0 γ =0 and achieve a test of size α. c 2004 by Mark R. Bell,

If there exists a threshold k 0 such that. then we can take k = k 0 γ =0 and achieve a test of size α. c 2004 by Mark R. Bell, Recall The Neyman-Pearson Lemma Neyman-Pearson Lemma: Let Θ = {θ 0, θ }, and let F θ0 (x) be the cdf of the random vector X under hypothesis and F θ (x) be its cdf under hypothesis. Assume that the cdfs

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set 2 MAS 622J/1.126J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

Comparing integrate-and-fire models estimated using intracellular and extracellular data 1

Comparing integrate-and-fire models estimated using intracellular and extracellular data 1 Comparing integrate-and-fire models estimated using intracellular and extracellular data 1 Liam Paninski a,b,2 Jonathan Pillow b Eero Simoncelli b a Gatsby Computational Neuroscience Unit, University College

More information

Detection theory. H 0 : x[n] = w[n]

Detection theory. H 0 : x[n] = w[n] Detection Theory Detection theory A the last topic of the course, we will briefly consider detection theory. The methods are based on estimation theory and attempt to answer questions such as Is a signal

More information

Computing with Inter-spike Interval Codes in Networks of Integrate and Fire Neurons

Computing with Inter-spike Interval Codes in Networks of Integrate and Fire Neurons Computing with Inter-spike Interval Codes in Networks of Integrate and Fire Neurons Dileep George a,b Friedrich T. Sommer b a Dept. of Electrical Engineering, Stanford University 350 Serra Mall, Stanford,

More information

The homogeneous Poisson process

The homogeneous Poisson process The homogeneous Poisson process during very short time interval Δt there is a fixed probability of an event (spike) occurring independent of what happened previously if r is the rate of the Poisson process,

More information

Correlations and neural information coding Shlens et al. 09

Correlations and neural information coding Shlens et al. 09 Correlations and neural information coding Shlens et al. 09 Joel Zylberberg www.jzlab.org The neural code is not one-to-one ρ = 0.52 ρ = 0.80 d 3s [Max Turner, UW] b # of trials trial 1!! trial 2!!.!.!.

More information

The Mixed States of Associative Memories Realize Unimodal Distribution of Dominance Durations in Multistable Perception

The Mixed States of Associative Memories Realize Unimodal Distribution of Dominance Durations in Multistable Perception The Mixed States of Associative Memories Realize Unimodal Distribution of Dominance Durations in Multistable Perception Takashi Kanamaru Department of Mechanical Science and ngineering, School of Advanced

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 23, 2015 1 / 50 I-Hsiang

More information

Comparison of receptive fields to polar and Cartesian stimuli computed with two kinds of models

Comparison of receptive fields to polar and Cartesian stimuli computed with two kinds of models Supplemental Material Comparison of receptive fields to polar and Cartesian stimuli computed with two kinds of models Motivation The purpose of this analysis is to verify that context dependent changes

More information

Finding a Basis for the Neural State

Finding a Basis for the Neural State Finding a Basis for the Neural State Chris Cueva ccueva@stanford.edu I. INTRODUCTION How is information represented in the brain? For example, consider arm movement. Neurons in dorsal premotor cortex (PMd)

More information

Encoding and Decoding Spikes for Dynamic Stimuli

Encoding and Decoding Spikes for Dynamic Stimuli LETTER Communicated by Uri Eden Encoding and Decoding Spikes for Dynamic Stimuli Rama Natarajan rama@cs.toronto.edu Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 3G4

More information

Stephen Scott.

Stephen Scott. 1 / 35 (Adapted from Ethem Alpaydin and Tom Mitchell) sscott@cse.unl.edu In Homework 1, you are (supposedly) 1 Choosing a data set 2 Extracting a test set of size > 30 3 Building a tree on the training

More information

Neural Decoding. Mark van Rossum. School of Informatics, University of Edinburgh. January 2012

Neural Decoding. Mark van Rossum. School of Informatics, University of Edinburgh. January 2012 Neural Decoding Mark van Rossum School of Informatics, University of Edinburgh January 2012 0 Acknowledgements: Chris Williams and slides from Gatsby Liam Paninski. Version: January 31, 2018 1 / 63 2 /

More information

Implementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics

Implementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics Implementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics arxiv:1512.07839v4 [cs.lg] 7 Jun 2017 Sacha Sokoloski Max Planck Institute for Mathematics in the Sciences Abstract

More information

Design of experiments via information theory

Design of experiments via information theory Design of experiments via information theory Liam Paninski Center for Neural Science New York University New York, NY 10003 liam@cns.nyu.edu Abstract We discuss an idea for collecting data in a relatively

More information

The Effect of Correlated Variability on the Accuracy of a Population Code

The Effect of Correlated Variability on the Accuracy of a Population Code LETTER Communicated by Michael Shadlen The Effect of Correlated Variability on the Accuracy of a Population Code L. F. Abbott Volen Center and Department of Biology, Brandeis University, Waltham, MA 02454-9110,

More information

Neural Encoding: Firing Rates and Spike Statistics

Neural Encoding: Firing Rates and Spike Statistics Neural Encoding: Firing Rates and Spike Statistics Dayan and Abbott (21) Chapter 1 Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks Background: Dirac δ Function Dirac δ function has the following

More information

Correlations in Populations: Information-Theoretic Limits

Correlations in Populations: Information-Theoretic Limits Correlations in Populations: Information-Theoretic Limits Don H. Johnson Ilan N. Goodman dhj@rice.edu Department of Electrical & Computer Engineering Rice University, Houston, Texas Population coding Describe

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

12/2/15. G Perception. Bayesian Decision Theory. Laurence T. Maloney. Perceptual Tasks. Testing hypotheses. Estimation

12/2/15. G Perception. Bayesian Decision Theory. Laurence T. Maloney. Perceptual Tasks. Testing hypotheses. Estimation G89.2223 Perception Bayesian Decision Theory Laurence T. Maloney Perceptual Tasks Testing hypotheses signal detection theory psychometric function Estimation previous lecture Selection of actions this

More information

Improved characterization of neural and behavioral response. state-space framework

Improved characterization of neural and behavioral response. state-space framework Improved characterization of neural and behavioral response properties using point-process state-space framework Anna Alexandra Dreyer Harvard-MIT Division of Health Sciences and Technology Speech and

More information

Quantum estimation for quantum technology

Quantum estimation for quantum technology Quantum estimation for quantum technology Matteo G A Paris Applied Quantum Mechanics group Dipartimento di Fisica @ UniMI CNISM - Udr Milano IQIS 2008 -- CAMERINO Quantum estimation for quantum technology

More information

Linking non-binned spike train kernels to several existing spike train metrics

Linking non-binned spike train kernels to several existing spike train metrics Linking non-binned spike train kernels to several existing spike train metrics Benjamin Schrauwen Jan Van Campenhout ELIS, Ghent University, Belgium Benjamin.Schrauwen@UGent.be Abstract. This work presents

More information

Latent state estimation using control theory

Latent state estimation using control theory Latent state estimation using control theory Bert Kappen SNN Donders Institute, Radboud University, Nijmegen Gatsby Unit, UCL London August 3, 7 with Hans Christian Ruiz Bert Kappen Smoothing problem Given

More information

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES CHARACTERIZATION OF NONLINEAR NEURON RESPONSES Matt Whiteway whit8022@umd.edu Dr. Daniel A. Butts dab@umd.edu Neuroscience and Cognitive Science (NACS) Applied Mathematics and Scientific Computation (AMSC)

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Bayesian Model Comparison Zoubin Ghahramani zoubin@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College

More information

Membrane equation. VCl. dv dt + V = V Na G Na + V K G K + V Cl G Cl. G total. C m. G total = G Na + G K + G Cl

Membrane equation. VCl. dv dt + V = V Na G Na + V K G K + V Cl G Cl. G total. C m. G total = G Na + G K + G Cl Spiking neurons Membrane equation V GNa GK GCl Cm VNa VK VCl dv dt + V = V Na G Na + V K G K + V Cl G Cl G total G total = G Na + G K + G Cl = C m G total Membrane with synaptic inputs V Gleak GNa GK

More information

Artificial Neural Networks Examination, March 2004

Artificial Neural Networks Examination, March 2004 Artificial Neural Networks Examination, March 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Week 2: Latent Variable Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College

More information

Learning with Probabilities

Learning with Probabilities Learning with Probabilities CS194-10 Fall 2011 Lecture 15 CS194-10 Fall 2011 Lecture 15 1 Outline Bayesian learning eliminates arbitrary loss functions and regularizers facilitates incorporation of prior

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551, Fall 2017 c 2017, Selim Aksoy (Bilkent University) 1 / 46 Bayesian

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Generative models for amplitude modulation: Gaussian Modulation Cascade Processes

Generative models for amplitude modulation: Gaussian Modulation Cascade Processes Generative models for amplitude modulation: Gaussian Modulation Cascade Processes Richard Turner (turner@gatsby.ucl.ac.uk) Maneesh Sahani (maneesh@gatsby.ucl.ac.uk) Gatsby Computational Neuroscience Unit,

More information

1. Fisher Information

1. Fisher Information 1. Fisher Information Let f(x θ) be a density function with the property that log f(x θ) is differentiable in θ throughout the open p-dimensional parameter set Θ R p ; then the score statistic (or score

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 2. MLE, MAP, Bayes classification Barnabás Póczos & Aarti Singh 2014 Spring Administration http://www.cs.cmu.edu/~aarti/class/10701_spring14/index.html Blackboard

More information

Effective Connectivity & Dynamic Causal Modelling

Effective Connectivity & Dynamic Causal Modelling Effective Connectivity & Dynamic Causal Modelling Hanneke den Ouden Donders Centre for Cognitive Neuroimaging Radboud University Nijmegen Advanced SPM course Zurich, Februari 13-14, 2014 Functional Specialisation

More information

How Behavioral Constraints May Determine Optimal Sensory Representations

How Behavioral Constraints May Determine Optimal Sensory Representations How Behavioral Constraints May Determine Optimal Sensory Representations by Salinas (2006) CPSC 644 Presented by Yoonsuck Choe Motivation Neural response is typically characterized in terms of a tuning

More information

Statistical Tools and Techniques for Solar Astronomers

Statistical Tools and Techniques for Solar Astronomers Statistical Tools and Techniques for Solar Astronomers Alexander W Blocker Nathan Stein SolarStat 2012 Outline Outline 1 Introduction & Objectives 2 Statistical issues with astronomical data 3 Example:

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Homework 1 Due: Thursday 2/5/2015. Instructions: Turn in your homework in class on Thursday 2/5/2015

Homework 1 Due: Thursday 2/5/2015. Instructions: Turn in your homework in class on Thursday 2/5/2015 10-704 Homework 1 Due: Thursday 2/5/2015 Instructions: Turn in your homework in class on Thursday 2/5/2015 1. Information Theory Basics and Inequalities C&T 2.47, 2.29 (a) A deck of n cards in order 1,

More information

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept Computational Biology Lecture #3: Probability and Statistics Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept 26 2005 L2-1 Basic Probabilities L2-2 1 Random Variables L2-3 Examples

More information

A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain

A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain Dr. Ali Yener Mutlu Department of Electrical and Electronics Engineering, Izmir Katip Celebi

More information

Statistical models for neural encoding, decoding, information estimation, and optimal on-line stimulus design

Statistical models for neural encoding, decoding, information estimation, and optimal on-line stimulus design Statistical models for neural encoding, decoding, information estimation, and optimal on-line stimulus design Liam Paninski Department of Statistics and Center for Theoretical Neuroscience Columbia University

More information

Decision-making, inference, and learning theory. ECE 830 & CS 761, Spring 2016

Decision-making, inference, and learning theory. ECE 830 & CS 761, Spring 2016 Decision-making, inference, and learning theory ECE 830 & CS 761, Spring 2016 1 / 22 What do we have here? Given measurements or observations of some physical process, we ask the simple question what do

More information

Gentle Introduction to Infinite Gaussian Mixture Modeling

Gentle Introduction to Infinite Gaussian Mixture Modeling Gentle Introduction to Infinite Gaussian Mixture Modeling with an application in neuroscience By Frank Wood Rasmussen, NIPS 1999 Neuroscience Application: Spike Sorting Important in neuroscience and for

More information

Parameter estimation! and! forecasting! Cristiano Porciani! AIfA, Uni-Bonn!

Parameter estimation! and! forecasting! Cristiano Porciani! AIfA, Uni-Bonn! Parameter estimation! and! forecasting! Cristiano Porciani! AIfA, Uni-Bonn! Questions?! C. Porciani! Estimation & forecasting! 2! Cosmological parameters! A branch of modern cosmological research focuses

More information

A New Unsupervised Event Detector for Non-Intrusive Load Monitoring

A New Unsupervised Event Detector for Non-Intrusive Load Monitoring A New Unsupervised Event Detector for Non-Intrusive Load Monitoring GlobalSIP 2015, 14th Dec. Benjamin Wild, Karim Said Barsim, and Bin Yang Institute of Signal Processing and System Theory of,, Germany

More information

Statistical Data Analysis Stat 3: p-values, parameter estimation

Statistical Data Analysis Stat 3: p-values, parameter estimation Statistical Data Analysis Stat 3: p-values, parameter estimation London Postgraduate Lectures on Particle Physics; University of London MSci course PH4515 Glen Cowan Physics Department Royal Holloway,

More information

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture)

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture) ECE 564/645 - Digital Communications, Spring 018 Homework # Due: March 19 (In Lecture) 1. Consider a binary communication system over a 1-dimensional vector channel where message m 1 is sent by signaling

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

A Few Notes on Fisher Information (WIP)

A Few Notes on Fisher Information (WIP) A Few Notes on Fisher Information (WIP) David Meyer dmm@{-4-5.net,uoregon.edu} Last update: April 30, 208 Definitions There are so many interesting things about Fisher Information and its theoretical properties

More information

Supplemental Data: Appendix

Supplemental Data: Appendix Supplemental Data: Appendix A Demonstration of model identifiability A.1 Identifiability of of 2-ADC model In this section, we demonstrate that there is a one-to-one mapping from the set of parameters

More information

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

Basic concepts in estimation

Basic concepts in estimation Basic concepts in estimation Random and nonrandom parameters Definitions of estimates ML Maimum Lielihood MAP Maimum A Posteriori LS Least Squares MMS Minimum Mean square rror Measures of quality of estimates

More information

A Monte Carlo Sequential Estimation for Point Process Optimum Filtering

A Monte Carlo Sequential Estimation for Point Process Optimum Filtering 2006 International Joint Conference on Neural Networks Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July 16-21, 2006 A Monte Carlo Sequential Estimation for Point Process Optimum Filtering

More information

Neural spike statistics modify the impact of background noise

Neural spike statistics modify the impact of background noise Neurocomputing 38}40 (2001) 445}450 Neural spike statistics modify the impact of background noise Stefan D. Wilke*, Christian W. Eurich Institut fu( r Theoretische Physik, Universita( t Bremen, Postfach

More information

Minimum Message Length Analysis of the Behrens Fisher Problem

Minimum Message Length Analysis of the Behrens Fisher Problem Analysis of the Behrens Fisher Problem Enes Makalic and Daniel F Schmidt Centre for MEGA Epidemiology The University of Melbourne Solomonoff 85th Memorial Conference, 2011 Outline Introduction 1 Introduction

More information

Linear Models for Classification

Linear Models for Classification Linear Models for Classification Oliver Schulte - CMPT 726 Bishop PRML Ch. 4 Classification: Hand-written Digit Recognition CHINE INTELLIGENCE, VOL. 24, NO. 24, APRIL 2002 x i = t i = (0, 0, 0, 1, 0, 0,

More information

Probabilistic Modeling of Dependencies Among Visual Short-Term Memory Representations

Probabilistic Modeling of Dependencies Among Visual Short-Term Memory Representations Probabilistic Modeling of Dependencies Among Visual Short-Term Memory Representations A. Emin Orhan Robert A. Jacobs Department of Brain & Cognitive Sciences University of Rochester Rochester, NY 4627

More information

SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017

SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017 SPIKE TRIGGERED APPROACHES Odelia Schwartz Computational Neuroscience Course 2017 LINEAR NONLINEAR MODELS Linear Nonlinear o Often constrain to some form of Linear, Nonlinear computations, e.g. visual

More information