Latent state estimation using control theory

Size: px
Start display at page:

Download "Latent state estimation using control theory"

Transcription

1 Latent state estimation using control theory Bert Kappen SNN Donders Institute, Radboud University, Nijmegen Gatsby Unit, UCL London August 3, 7 with Hans Christian Ruiz Bert Kappen

2 Smoothing problem Given observed data y :T, estimate (statistics of) marginal posteriors p(x t y :T ) with p(x :T y :T ) = p(x :T)p(y :T x :T ) p(y :T ) p(y :T ) = x :T p(x :T )p(y :T x :T ) NB is different from filtering problem p(x t y :t ). Bert Kappen

3 Smoothing problem Given observed data y :T, estimate (statistics of) marginal posteriors p(x t y :T ) with p(x :T y :T ) = p(x :T)p(y :T x :T ) p(y :T ) p(y :T ) = x :T p(x :T )p(y :T x :T ) NB is different from filtering problem p(x t y :t ). Common approaches: Kalman Filtering: exact for linear dynamics and Gaussian observations Variational, EP, extended Kalman Filter: valid for simple posterior distributions Particle filtering, SMC: generic, but inefficient Bert Kappen

4 Time series inference Prior process p(x :T x ): dx t = dw t x = Observation at end time only: p(y T x T ) = exp( βx T ) t Red: p(x t y :t, x ) (exact) Blue: p(x t y :t, x ) (PF) Black: p(x t y :T, x ) (exact) Bert Kappen 3

5 Time series inference Prior process p(x :T x ): dx t = dw t x = Observation at end time only: p(y T x T ) = exp( βx T ) t Red: p(x t y :t, x ) (exact) Blue: p(x t y :t, x ) (PF + resampling) Black: p(x t y :T, x ) (exact) Bert Kappen 4

6 Time series inference Prior process p(x :T x ): dx t = dw t x = Observation at end time only: p(y T x T ) = exp( βx T ) t t Samples from filtered distribution do not well represent smoothed distribution. Bert Kappen 5

7 Control approach to time-series inference Outline: Introduction to control theory and path integral control theory Optimal control optimal sampling Adaptive importance sampler: Estimate improved sampler from self-generated data fmri application Bert Kappen 6

8 Control theory.5.5 Consider a stochastic dynamical system dx t = f (X t, u)dt + dw t E(dW t,i dw t. j ) = ν i j dt Given X find control function u(x, t) that minimizes the expected future cost C = E ( φ(x T ) + T ) dtv(x t, u(x t, t)) Bert Kappen 7

9 Control theory Standard approach: define J(x, t) is optimal cost-to-go from x, t. J(x, t) = min u t:t E u (φ(x T ) + T t ) dtv(x t, u(x t, t)) X t = x J satisfies a partial differential equation t J(t, x) = min u ( V(x, u) + f (x, u) x J(x, t) + ) ν xj(x, t) J(x, T) = φ(x) with u = u(x, t).this is HJB equation. Optimal control u (x, t) defines distribution over trajectories p (τ) (= p(τ x, )). Bert Kappen 8

10 Path integral control theory.5.5 dx t = f (X t, t)dt + g(x t, t)(u(x t, t)dt + dw t ) X = x Goal is to find function u(x, t) that minimizes C = E u ( S (τ) + T dt u(x t, t) ) S (τ) = φ(x T ) + T V(X t, t) Bert Kappen 9

11 Path integral control theory Equivalent formulation: Find distribution over trajectories p that minimizes C(p) = dτp(τ) ( S (τ) + log p(τ) ) q(τ) q(τ x, ) is distribution over uncontrolled trajectories. The optimal solution is given by p (τ) = (τ) ψq(τ)e S E u T dt u(x t, t) = dτp(τ) log p(τ) q(τ). Bert Kappen

12 Path integral control theory Equivalent formulation: Find distribution over trajectories p that minimizes C(p) = dτp(τ) ( S (τ) + log p(τ) ) q(τ) q(τ x, ) is distribution over uncontrolled trajectories. The optimal solution is given by p (τ) = ψ q(τ)e S (τ) = p(τ u ). Equivalence of optimal control and discounted cost (Girsanov) Bert Kappen

13 Path integral control theory The optimal control cost is C(p ) = log ψ = J(x, ) with ψ = dτq(τ)e S (τ) = E q e S J(x, t) can be computed by forward sampling from q. Bert Kappen

14 Estimating ψ = Ee S ESS =.8, C= Sample N trajectories from uncontrolled dynamics τ i q(τ) w i = e S (τ i) ˆψ = N i w i ˆψ unbiased estimate of ψ. Sampling efficiency is inversely proportional to variance in (normalized) w i. ES S = N + N Var(w) Bert Kappen 3

15 Importance sampling ESS =.8, C=3.7 ESS = 3.5, C=5. ESS=9.5, C= Sample N trajectories from controlled dynamics and reweight yields unbiased estimate of cost-to-go: τ i p(τ) w i = e S (τ i) q(τ i) p(τ i ) = e S u(τ i ) ˆψ = N i w i S u (τ) = S (τ) + T dt u(x t, t) + T u(x t, t)dw t Bert Kappen 4

16 Importance sampling ESS =.8, C=3.7 ESS = 3.5, C=5. ESS=9.5, C= S u (τ) = S (τ) + T dt u(x t, t) + T u(x t, t)dw t Thm: Better u (in the sense of optimal control) provides a better sampler (in the sense of effective sample size). Optimal u = u (in the sense of optimal control) requires only one sample and S u (τ) deterministic! Thijssen, Kappen 5 Bert Kappen 5

17 Proof Control cost is C(p) = E p ( S (τ) + log p(τ) q(τ)) = ES u Using Jensen s inequality: C = log q(τ)e S (τ) = log τ τ p(τ) S (τ) log p(τ)e q(τ) τ p(τ) ( S (τ) + log p(τ) ) q(τ) Bert Kappen 6

18 ( ) Control cost is C(p) = E p S (τ) + log p(τ) q(τ) Proof Using Jensen s inequality: C = log q(τ)e S (τ) = log τ τ p(τ) S (τ) log p(τ)e q(τ) τ p(τ) ( S (τ) + log p(τ) ) q(τ) = C(p) The inequality is saturated when S (τ) + log p(τ) q(τ) side evaluate to S (τ) + log p(τ) q(τ). has zero variance: left and right This is realized when p = p 3. 3 p exists when τ q(τ)e S (τ) < Bert Kappen 7

19 The Path Integral Cross Entropy (PICE) method We wish to estimate ψ = S (τ) dτq(τ)e The optimal (zero variance) importance sampler is p (τ) = ψ q(τ)e S (τ). We approximate p (τ) with p u (τ), where u(x, t θ) is a parametrized control function. Following the Cross Entropy method, we minimise KL(p p u ). θ KL(p p u ) θ E u e S u T dw t u(x t, t θ) θ u(x, t θ) is arbitrary. Estimate gradient by sampling. Kappen, Ruiz 6 Bert Kappen 8

20 Coordination of UAVs Chao Xu ACC 7 Bert Kappen 9

21 Control Inference Fleming, Mitter Bert Kappen

22 Path integral control theory Equivalent formulation: Find distribution over trajectories p that minimizes C(p) = dτp(τ) ( S (τ) + log p(τ) ) q(τ) q(τ x, ) is distribution over uncontrolled trajectories. The optimal solution is given by p (τ) = ψ q(τ)e S (τ) = p(τ u ). q(τ) is the prior process p(x :T x ) and e S (τ) = t p(y t x t ). Bert Kappen

23 Control versus particle smoothing Linear stochastic dynamics, Gaussian observations at t =, T. Control method with linear time dependent controller u(x, t) = a(t)x+b(t). N = particles, 5 IS iterations. ESS from.5% to 98%. FS with N = particles. ESS = %. FFBSi with N = M = forward and backward particles. ESS = 7%. Control error in posterior mean is orders of magnitude smaller than FFBSi error. Bert Kappen

24 Control versus particle smoothing Linear stochastic dynamics, Gaussian observations at t =, T. FFBSi error in posterior mean (average over time) increases with more unlikely observations, while control error does not. Bert Kappen 3

25 Control method scales with many observations Linear stochastic dynamics, Gaussian observations at t =, T. Bert Kappen 4

26 Non linear problem 5 dimensional neural network model with 4 observation of one neuron. Left: Number of iterations needed to reach ESS=. versus number of observations (N = 6). Annealing vital for large number of observations. Right: Number of iterations needed to reach ESS=. versus number of particles (5 observations). Annealing allows significant less number of particles. Bert Kappen 5

27 Non linear problem 5 dimensional neural network model with 4 observation of one neuron. Variance of posterior mean for APIS, FS and FFBSi versus number of observations. N = 6 forward particles. Backward particles such that APIS and FFBSi have similar CPU time. Bert Kappen 6

28 Non linear problem 5 dimensional neural network model with 4 observation of one neuron. ESS for typical run of APIS with annealing. N = 75 Bert Kappen 7

29 Infering neural activity from BOLD fmri Subjects were asked to respond as fast as possible to a visual or auditory stimulus Measure fmri BOLD response in motor cortex Reconstruct neural signal from BOLD signal. Neural activity dz t = AZ t dt + σ z dw t Hemodynamics Vasodilation s(z, s, f ) Blood flow f (s) Balloon model Blood volume v( f, v) Deoxygenated hemoglobin q( f, v, q) BOLD y(v, q) Bert Kappen 8

30 Infering neural activity from BOLD fmri Subjects were asked to respond as fast as possible to a visual or auditory stimulus Measure fmri BOLD response in motor cortex Reconstruct neural signal from BOLD signal. Neural activity dz t = AZ t dt + σ z dw t Hemodynamics Vasodilation s(z, s, f ) Blood flow f (s) Balloon model Blood volume v( f, v) Deoxygenated hemoglobin q( f, v, q) BOLD y(v, q) Bert Kappen 9

31 Infering neural activity from BOLD fmri Subjects were asked to respond as fast as possible to a visual or auditory stimulus Measure fmri BOLD response in motor cortex Reconstruct neural signal from BOLD signal. Neural activity dz t = AZ t dt + σ z dw t Hemodynamics Vasodilation s(z, s, f ) Blood flow f (s) Balloon model Blood volume v( f, v) Deoxygenated hemoglobin q( f, v, q) BOLD y(v, q) Bert Kappen 3

32 Infering neural activity from BOLD fmri u(x, t) = a(t)x + b(t). 5. particles, iterations. Error in stimulus time reconstruction.5.77s. Error using fit of two Gamma functions.8.5s Bert Kappen 3

33 Summary Smoothing problem (Bayesian posterior computation in time series) can be formulated as a stochastic optimal control problem (Fleming 99). Bert Kappen 3

34 Summary Smoothing problem (Bayesian posterior computation in time series) can be formulated as a stochastic optimal control problem (Fleming 99). Better controller = Better sampler. Bert Kappen 33

35 Summary Smoothing problem (Bayesian posterior computation in time series) can be formulated as a stochastic optimal control problem (Fleming 99). Better controller = Better sampler. Parametrized controller found by optimizing Cross Entropy can be (in principle) arbitrary accurate. Bert Kappen 34

36 Summary Smoothing problem (Bayesian posterior computation in time series) can be formulated as a stochastic optimal control problem (Fleming 99). Better controller = Better sampler. Parametrized controller found by optimizing Cross Entropy can be (in principle) arbitrary accurate. Improved performance compared to state of the art SMC. Bert Kappen 35

37 Summary Smoothing problem (Bayesian posterior computation in time series) can be formulated as a stochastic optimal control problem (Fleming 99). Better controller = Better sampler. Parametrized controller found by optimizing Cross Entropy can be (in principle) arbitrary accurate. Improved performance compared to state of the art SMC. Excellent parallelization possible. Bert Kappen 36

38 Thank you! Kappen, Hilbert Johan, and Hans Christian Ruiz. Adaptive importance sampling for control and inference. Journal of Statistical Physics 6.5 (6): Ruiz, Hans-Christian, and Hilbert J. Kappen. Particle Smoothing for Hidden Diffusion Processes: Adaptive Path Integral Smoother. IEEE Transactions on Signal Processing 65. (7): Bert Kappen 37

An efficient approach to stochastic optimal control. Bert Kappen SNN Radboud University Nijmegen the Netherlands

An efficient approach to stochastic optimal control. Bert Kappen SNN Radboud University Nijmegen the Netherlands An efficient approach to stochastic optimal control Bert Kappen SNN Radboud University Nijmegen the Netherlands Bert Kappen Examples of control tasks Motor control Bert Kappen Pascal workshop, 27-29 May

More information

Smoothing Estimates of Diffusion Processes

Smoothing Estimates of Diffusion Processes Smoothing Estimates of Diffusion Processes H.C. Ruiz Euler Donders Institute Radboud University Nijmegen, NL hruiz@science.ru.nl H.J. Kappen Donders Institute Radboud University Nijmegen, NL bkappen@science.ru.nl

More information

Stochastic optimal control theory

Stochastic optimal control theory Stochastic optimal control theory Bert Kappen SNN Radboud University Nijmegen the Netherlands July 5, 2008 Bert Kappen Introduction Optimal control theory: Optimize sum of a path cost and end cost. Result

More information

Controlled sequential Monte Carlo

Controlled sequential Monte Carlo Controlled sequential Monte Carlo Jeremy Heng, Department of Statistics, Harvard University Joint work with Adrian Bishop (UTS, CSIRO), George Deligiannidis & Arnaud Doucet (Oxford) Bayesian Computation

More information

Information geometry for bivariate distribution control

Information geometry for bivariate distribution control Information geometry for bivariate distribution control C.T.J.Dodson + Hong Wang Mathematics + Control Systems Centre, University of Manchester Institute of Science and Technology Optimal control of stochastic

More information

Approximate Bayesian inference

Approximate Bayesian inference Approximate Bayesian inference Variational and Monte Carlo methods Christian A. Naesseth 1 Exchange rate data 0 20 40 60 80 100 120 Month Image data 2 1 Bayesian inference 2 Variational inference 3 Stochastic

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

Path Integral Stochastic Optimal Control for Reinforcement Learning

Path Integral Stochastic Optimal Control for Reinforcement Learning Preprint August 3, 204 The st Multidisciplinary Conference on Reinforcement Learning and Decision Making RLDM203 Path Integral Stochastic Optimal Control for Reinforcement Learning Farbod Farshidian Institute

More information

Markov Chain Monte Carlo Methods for Stochastic

Markov Chain Monte Carlo Methods for Stochastic Markov Chain Monte Carlo Methods for Stochastic Optimization i John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge U Florida, Nov 2013

More information

Probabilistic Graphical Models for Image Analysis - Lecture 4

Probabilistic Graphical Models for Image Analysis - Lecture 4 Probabilistic Graphical Models for Image Analysis - Lecture 4 Stefan Bauer 12 October 2018 Max Planck ETH Center for Learning Systems Overview 1. Repetition 2. α-divergence 3. Variational Inference 4.

More information

Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification

Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification N. Zabaras 1 S. Atkinson 1 Center for Informatics and Computational Science Department of Aerospace and Mechanical Engineering University

More information

Lecture 6: Bayesian Inference in SDE Models

Lecture 6: Bayesian Inference in SDE Models Lecture 6: Bayesian Inference in SDE Models Bayesian Filtering and Smoothing Point of View Simo Särkkä Aalto University Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 1 / 45 Contents 1 SDEs

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References 24th March 2011 Update Hierarchical Model Rao and Ballard (1999) presented a hierarchical model of visual cortex to show how classical and extra-classical Receptive Field (RF) effects could be explained

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

Lecture 1a: Basic Concepts and Recaps

Lecture 1a: Basic Concepts and Recaps Lecture 1a: Basic Concepts and Recaps Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London c.archambeau@cs.ucl.ac.uk Advanced

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

Policy Search for Path Integral Control

Policy Search for Path Integral Control Policy Search for Path Integral Control Vicenç Gómez 1,2, Hilbert J Kappen 2, Jan Peters 3,4, and Gerhard Neumann 3 1 Universitat Pompeu Fabra, Barcelona Department of Information and Communication Technologies,

More information

Markov Chain Monte Carlo Methods for Stochastic Optimization

Markov Chain Monte Carlo Methods for Stochastic Optimization Markov Chain Monte Carlo Methods for Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge U of Toronto, MIE,

More information

Sequential Monte Carlo Samplers for Applications in High Dimensions

Sequential Monte Carlo Samplers for Applications in High Dimensions Sequential Monte Carlo Samplers for Applications in High Dimensions Alexandros Beskos National University of Singapore KAUST, 26th February 2014 Joint work with: Dan Crisan, Ajay Jasra, Nik Kantas, Alex

More information

Particle Filtering Approaches for Dynamic Stochastic Optimization

Particle Filtering Approaches for Dynamic Stochastic Optimization Particle Filtering Approaches for Dynamic Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge I-Sim Workshop,

More information

Integrated Non-Factorized Variational Inference

Integrated Non-Factorized Variational Inference Integrated Non-Factorized Variational Inference Shaobo Han, Xuejun Liao and Lawrence Carin Duke University February 27, 2014 S. Han et al. Integrated Non-Factorized Variational Inference February 27, 2014

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Auxiliary Particle Methods

Auxiliary Particle Methods Auxiliary Particle Methods Perspectives & Applications Adam M. Johansen 1 adam.johansen@bristol.ac.uk Oxford University Man Institute 29th May 2008 1 Collaborators include: Arnaud Doucet, Nick Whiteley

More information

State-Space Methods for Inferring Spike Trains from Calcium Imaging

State-Space Methods for Inferring Spike Trains from Calcium Imaging State-Space Methods for Inferring Spike Trains from Calcium Imaging Joshua Vogelstein Johns Hopkins April 23, 2009 Joshua Vogelstein (Johns Hopkins) State-Space Calcium Imaging April 23, 2009 1 / 78 Outline

More information

Effective Connectivity & Dynamic Causal Modelling

Effective Connectivity & Dynamic Causal Modelling Effective Connectivity & Dynamic Causal Modelling Hanneke den Ouden Donders Centre for Cognitive Neuroimaging Radboud University Nijmegen Advanced SPM course Zurich, Februari 13-14, 2014 Functional Specialisation

More information

Statistical Inference and Methods

Statistical Inference and Methods Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/ das01/ 31st January 2006 Part VI Session 6: Filtering and Time to Event Data Session 6: Filtering and

More information

Probabilistic and Bayesian Machine Learning

Probabilistic and Bayesian Machine Learning Probabilistic and Bayesian Machine Learning Day 4: Expectation and Belief Propagation Yee Whye Teh ywteh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Bayesian Inference Course, WTCN, UCL, March 2013

Bayesian Inference Course, WTCN, UCL, March 2013 Bayesian Course, WTCN, UCL, March 2013 Shannon (1948) asked how much information is received when we observe a specific value of the variable x? If an unlikely event occurs then one would expect the information

More information

L 0 methods. H.J. Kappen Donders Institute for Neuroscience Radboud University, Nijmegen, the Netherlands. December 5, 2011.

L 0 methods. H.J. Kappen Donders Institute for Neuroscience Radboud University, Nijmegen, the Netherlands. December 5, 2011. L methods H.J. Kappen Donders Institute for Neuroscience Radboud University, Nijmegen, the Netherlands December 5, 2 Bert Kappen Outline George McCullochs model The Variational Garrote Bert Kappen L methods

More information

Lecture 4: Dynamic models

Lecture 4: Dynamic models linear s Lecture 4: s Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes hlopes@chicagobooth.edu

More information

Week 3: The EM algorithm

Week 3: The EM algorithm Week 3: The EM algorithm Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2005 Mixtures of Gaussians Data: Y = {y 1... y N } Latent

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

arxiv: v3 [math.oc] 18 Jan 2012

arxiv: v3 [math.oc] 18 Jan 2012 Optimal control as a graphical model inference problem Hilbert J. Kappen Vicenç Gómez Manfred Opper arxiv:0901.0633v3 [math.oc] 18 Jan 01 Abstract We reformulate a class of non-linear stochastic optimal

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Axel Gandy Department of Mathematics Imperial College London http://www2.imperial.ac.uk/~agandy London

More information

An Brief Overview of Particle Filtering

An Brief Overview of Particle Filtering 1 An Brief Overview of Particle Filtering Adam M. Johansen a.m.johansen@warwick.ac.uk www2.warwick.ac.uk/fac/sci/statistics/staff/academic/johansen/talks/ May 11th, 2010 Warwick University Centre for Systems

More information

Contrastive Divergence

Contrastive Divergence Contrastive Divergence Training Products of Experts by Minimizing CD Hinton, 2002 Helmut Puhr Institute for Theoretical Computer Science TU Graz June 9, 2010 Contents 1 Theory 2 Argument 3 Contrastive

More information

L09. PARTICLE FILTERING. NA568 Mobile Robotics: Methods & Algorithms

L09. PARTICLE FILTERING. NA568 Mobile Robotics: Methods & Algorithms L09. PARTICLE FILTERING NA568 Mobile Robotics: Methods & Algorithms Particle Filters Different approach to state estimation Instead of parametric description of state (and uncertainty), use a set of state

More information

Fast MCMC sampling for Markov jump processes and extensions

Fast MCMC sampling for Markov jump processes and extensions Fast MCMC sampling for Markov jump processes and extensions Vinayak Rao and Yee Whye Teh Rao: Department of Statistical Science, Duke University Teh: Department of Statistics, Oxford University Work done

More information

Real Time Stochastic Control and Decision Making: From theory to algorithms and applications

Real Time Stochastic Control and Decision Making: From theory to algorithms and applications Real Time Stochastic Control and Decision Making: From theory to algorithms and applications Evangelos A. Theodorou Autonomous Control and Decision Systems Lab Challenges in control Uncertainty Stochastic

More information

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Tom Heskes joint work with Marcel van Gerven

More information

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Controlled Diffusions and Hamilton-Jacobi Bellman Equations Controlled Diffusions and Hamilton-Jacobi Bellman Equations Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

Policy Search for Path Integral Control

Policy Search for Path Integral Control Policy Search for Path Integral Control Vicenç Gómez 1,2, Hilbert J Kappen 2,JanPeters 3,4, and Gerhard Neumann 3 1 Universitat Pompeu Fabra, Barcelona Department of Information and Communication Technologies,

More information

Towards a Bayesian model for Cyber Security

Towards a Bayesian model for Cyber Security Towards a Bayesian model for Cyber Security Mark Briers (mbriers@turing.ac.uk) Joint work with Henry Clausen and Prof. Niall Adams (Imperial College London) 27 September 2017 The Alan Turing Institute

More information

An Implementation of Dynamic Causal Modelling

An Implementation of Dynamic Causal Modelling An Implementation of Dynamic Causal Modelling Christian Himpe 24.01.2011 Overview Contents: 1 Intro 2 Model 3 Parameter Estimation 4 Examples Motivation Motivation: How are brain regions coupled? Motivation

More information

Applications of Optimal Stopping and Stochastic Control

Applications of Optimal Stopping and Stochastic Control Applications of and Stochastic Control YRM Warwick 15 April, 2011 Applications of and Some problems Some technology Some problems The secretary problem Bayesian sequential hypothesis testing the multi-armed

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Bayesian Model Comparison Zoubin Ghahramani zoubin@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College

More information

Stochastic optimal control theory

Stochastic optimal control theory Stochastic optimal control theory ICML, Helsinki 8 tutorial H.J. Kappen, Radboud University, Nijmegen, the Netherlands July 4, 8 Abstract Control theory is a mathematical description of how to act optimally

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

Improved diffusion Monte Carlo

Improved diffusion Monte Carlo Improved diffusion Monte Carlo Jonathan Weare University of Chicago with Martin Hairer (U of Warwick) October 4, 2012 Diffusion Monte Carlo The original motivation for DMC was to compute averages with

More information

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm IEOR E4570: Machine Learning for OR&FE Spring 205 c 205 by Martin Haugh The EM Algorithm The EM algorithm is used for obtaining maximum likelihood estimates of parameters when some of the data is missing.

More information

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters Exercises Tutorial at ICASSP 216 Learning Nonlinear Dynamical Models Using Particle Filters Andreas Svensson, Johan Dahlin and Thomas B. Schön March 18, 216 Good luck! 1 [Bootstrap particle filter for

More information

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 1: Introduction

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 1: Introduction Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification Yoonsang Lee (yoonsang.lee@dartmouth.edu) Lecture 1: Introduction 19 Winter M106 Class: MWF 12:50-1:55 pm @ 200

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

arxiv: v1 [q-bio.nc] 15 Mar 2018

arxiv: v1 [q-bio.nc] 15 Mar 2018 Effective Connectivity from Single Trial fmri Data by Sampling Biologically Plausible Models H.C. Ruiz Euler, H.J. Kappen September 16, 2018 arxiv:1803.05840v1 [q-bio.nc] 15 Mar 2018 Abstract The estimation

More information

Variational Principal Components

Variational Principal Components Variational Principal Components Christopher M. Bishop Microsoft Research 7 J. J. Thomson Avenue, Cambridge, CB3 0FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/ cmbishop In Proceedings

More information

Expectation propagation for signal detection in flat-fading channels

Expectation propagation for signal detection in flat-fading channels Expectation propagation for signal detection in flat-fading channels Yuan Qi MIT Media Lab Cambridge, MA, 02139 USA yuanqi@media.mit.edu Thomas Minka CMU Statistics Department Pittsburgh, PA 15213 USA

More information

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Jonas Hallgren 1 1 Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden BFS 2012 June

More information

Stochastic Generative Hashing

Stochastic Generative Hashing Stochastic Generative Hashing B. Dai 1, R. Guo 2, S. Kumar 2, N. He 3 and L. Song 1 1 Georgia Institute of Technology, 2 Google Research, NYC, 3 University of Illinois at Urbana-Champaign Discussion by

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Music and Machine Learning (IFT68 Winter 8) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Deterministic Dynamic Programming

Deterministic Dynamic Programming Deterministic Dynamic Programming 1 Value Function Consider the following optimal control problem in Mayer s form: V (t 0, x 0 ) = inf u U J(t 1, x(t 1 )) (1) subject to ẋ(t) = f(t, x(t), u(t)), x(t 0

More information

Sequential Monte Carlo Methods in High Dimensions

Sequential Monte Carlo Methods in High Dimensions Sequential Monte Carlo Methods in High Dimensions Alexandros Beskos Statistical Science, UCL Oxford, 24th September 2012 Joint work with: Dan Crisan, Ajay Jasra, Nik Kantas, Andrew Stuart Imperial College,

More information

Introduction to Probabilistic Graphical Models: Exercises

Introduction to Probabilistic Graphical Models: Exercises Introduction to Probabilistic Graphical Models: Exercises Cédric Archambeau Xerox Research Centre Europe cedric.archambeau@xrce.xerox.com Pascal Bootcamp Marseille, France, July 2010 Exercise 1: basics

More information

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS EMERY N. BROWN AND CHRIS LONG NEUROSCIENCE STATISTICS RESEARCH LABORATORY DEPARTMENT

More information

CS Lecture 19. Exponential Families & Expectation Propagation

CS Lecture 19. Exponential Families & Expectation Propagation CS 6347 Lecture 19 Exponential Families & Expectation Propagation Discrete State Spaces We have been focusing on the case of MRFs over discrete state spaces Probability distributions over discrete spaces

More information

Continuous Time Particle Filtering for fmri

Continuous Time Particle Filtering for fmri Continuous Time Particle Filtering for fmri Lawrence Murray School of Informatics University of Edinburgh lawrence.murray@ed.ac.uk Amos Storkey School of Informatics University of Edinburgh a.storkey@ed.ac.uk

More information

Linearly-Solvable Stochastic Optimal Control Problems

Linearly-Solvable Stochastic Optimal Control Problems Linearly-Solvable Stochastic Optimal Control Problems Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter 2014

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Numerical Solutions of ODEs by Gaussian (Kalman) Filtering

Numerical Solutions of ODEs by Gaussian (Kalman) Filtering Numerical Solutions of ODEs by Gaussian (Kalman) Filtering Hans Kersting joint work with Michael Schober, Philipp Hennig, Tim Sullivan and Han C. Lie SIAM CSE, Atlanta March 1, 2017 Emmy Noether Group

More information

The Kalman Filter ImPr Talk

The Kalman Filter ImPr Talk The Kalman Filter ImPr Talk Ged Ridgway Centre for Medical Image Computing November, 2006 Outline What is the Kalman Filter? State Space Models Kalman Filter Overview Bayesian Updating of Estimates Kalman

More information

Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters

Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 204 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

Sequential Monte Carlo methods for system identification

Sequential Monte Carlo methods for system identification Technical report arxiv:1503.06058v3 [stat.co] 10 Mar 2016 Sequential Monte Carlo methods for system identification Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wågberg, Christian A. Naesseth,

More information

Kolmogorov Equations and Markov Processes

Kolmogorov Equations and Markov Processes Kolmogorov Equations and Markov Processes May 3, 013 1 Transition measures and functions Consider a stochastic process {X(t)} t 0 whose state space is a product of intervals contained in R n. We define

More information

Stochastic Optimal Control in Continuous Space-Time Multi-Agent Systems

Stochastic Optimal Control in Continuous Space-Time Multi-Agent Systems Stochastic Optimal Control in Continuous Space-Time Multi-Agent Systems Wim Wiegerinck Bart van den Broek Bert Kappen SNN, Radboud University Nijmegen 6525 EZ Nijmegen, The Netherlands {w.wiegerinck,b.vandenbroek,b.kappen}@science.ru.nl

More information

Monte Carlo Approximation of Monte Carlo Filters

Monte Carlo Approximation of Monte Carlo Filters Monte Carlo Approximation of Monte Carlo Filters Adam M. Johansen et al. Collaborators Include: Arnaud Doucet, Axel Finke, Anthony Lee, Nick Whiteley 7th January 2014 Context & Outline Filtering in State-Space

More information

Dynamic Causal Modelling for fmri

Dynamic Causal Modelling for fmri Dynamic Causal Modelling for fmri André Marreiros Friday 22 nd Oct. 2 SPM fmri course Wellcome Trust Centre for Neuroimaging London Overview Brain connectivity: types & definitions Anatomical connectivity

More information

Use of probability gradients in hybrid MCMC and a new convergence test

Use of probability gradients in hybrid MCMC and a new convergence test Use of probability gradients in hybrid MCMC and a new convergence test Ken Hanson Methods for Advanced Scientific Simulations Group This presentation available under http://www.lanl.gov/home/kmh/ June

More information

The Hierarchical Particle Filter

The Hierarchical Particle Filter and Arnaud Doucet http://go.warwick.ac.uk/amjohansen/talks MCMSki V Lenzerheide 7th January 2016 Context & Outline Filtering in State-Space Models: SIR Particle Filters [GSS93] Block-Sampling Particle

More information

The Origin of Deep Learning. Lili Mou Jan, 2015

The Origin of Deep Learning. Lili Mou Jan, 2015 The Origin of Deep Learning Lili Mou Jan, 2015 Acknowledgment Most of the materials come from G. E. Hinton s online course. Outline Introduction Preliminary Boltzmann Machines and RBMs Deep Belief Nets

More information

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007 Sequential Monte Carlo and Particle Filtering Frank Wood Gatsby, November 2007 Importance Sampling Recall: Let s say that we want to compute some expectation (integral) E p [f] = p(x)f(x)dx and we remember

More information

COMP2610/COMP Information Theory

COMP2610/COMP Information Theory COMP2610/COMP6261 - Information Theory Lecture 9: Probabilistic Inequalities Mark Reid and Aditya Menon Research School of Computer Science The Australian National University August 19th, 2014 Mark Reid

More information

State Space Gaussian Processes with Non-Gaussian Likelihoods

State Space Gaussian Processes with Non-Gaussian Likelihoods State Space Gaussian Processes with Non-Gaussian Likelihoods Hannes Nickisch 1 Arno Solin 2 Alexander Grigorievskiy 2,3 1 Philips Research, 2 Aalto University, 3 Silo.AI ICML2018 July 13, 2018 Outline

More information

Variational Inference. Sargur Srihari

Variational Inference. Sargur Srihari Variational Inference Sargur srihari@cedar.buffalo.edu 1 Plan of Discussion Functionals Calculus of Variations Maximizing a Functional Finding Approximation to a Posterior Minimizing K-L divergence Factorized

More information

Lecture 13 : Variational Inference: Mean Field Approximation

Lecture 13 : Variational Inference: Mean Field Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 13 : Variational Inference: Mean Field Approximation Lecturer: Willie Neiswanger Scribes: Xupeng Tong, Minxing Liu 1 Problem Setup 1.1

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Introduction. Stochastic Processes. Will Penny. Stochastic Differential Equations. Stochastic Chain Rule. Expectations.

Introduction. Stochastic Processes. Will Penny. Stochastic Differential Equations. Stochastic Chain Rule. Expectations. 19th May 2011 Chain Introduction We will Show the relation between stochastic differential equations, Gaussian processes and methods This gives us a formal way of deriving equations for the activity of

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data

Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data Maneesh Sahani Gatsby Computational Neuroscience Unit University College, London Jennifer

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Centre for Computational Statistics and Machine Learning University College London c.archambeau@cs.ucl.ac.uk CSML

More information

CSC2535: Computation in Neural Networks Lecture 7: Variational Bayesian Learning & Model Selection

CSC2535: Computation in Neural Networks Lecture 7: Variational Bayesian Learning & Model Selection CSC2535: Computation in Neural Networks Lecture 7: Variational Bayesian Learning & Model Selection (non-examinable material) Matthew J. Beal February 27, 2004 www.variational-bayes.org Bayesian Model Selection

More information