The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

Size: px
Start display at page:

Download "The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt."

Transcription

1 The concentration of a drug in blood Exponential decay C12 concentration C12 concentration dc(t) dt = µc(t) C(t) = C()e µt time in minutes time in minutes 1 2 Exponential decay with noise Different realizations C12 concentration dc(t) = µc(t)dt + σc(t)dw (t) C(t) = C() exp ( (µ σ2 )t + σw (t) ) C12 concentration dc(t) = µc(t)dt + σc(t)dw (t) C(t) = C() exp ( (µ σ2 )t + σw (t) ) time in minutes time in minutes 3 4

2 Dynamic noise Motivating example: Population Dynamics Deterministic vs stochastic models A simple population growth model: Dynamic vs measurement noise Is the system deterministic or stochastic in nature? Irrelevant! N t : a t : dn t dt size of population at time t = a t N t ; N() = N (e.g. size of a tumor or concentration of a drug in blood) relative rate of growth (or decay) at time t 5 6 If a t = a is constant: N t = N e at Stochastic extension 2 N(t) 15 1 a> Maybe a t is not completely known, but subject to some random environmental effects: 5 a t a t + noise time a< E.g. noise = σw t, W t = white noise, σ constant, a t = a constant 7 8

3 If a t = a + σw t : dn t = an t dt + σn t dw t or N t = N exp{(a σ 2 /2)t + σw t } sigma =.1 If a t = a + σw t : dn t = an t dt + σn t dw t or N t = N exp{(a σ 2 /2)t + σw t } sigma =.3 N(t) N(t) time time 9 1 dn t dt = a t N t = (a + σw t )N t = an t + σn t W t Randomization of parameters Random variation in a parameter a: a a + σ noise We can write for a zero mean noise process. N t = N + an s ds + σn s dw s } {{ }?? A stochastic process: dx t dt = b(t, X t ) + σ(t, X t ) noise 11 12

4 Natural requirements: dx t dt = b(t, X t ) + σ(t, X t ) W t (1) Let = t < t 1 < < t n = t. Discretization of equation 1: W t1 and W t2 are independent for t 1 t 2 W t is a stationary process E[W t ] = for all t X k+1 X k = b(t k, X k ) t k + σ(t k, X k )W k t k This leads us to a white noise process where X j = X(t j ), W k = W (t k ), t k = t k+1 t k Replace W k t k by V k = V k+1 V k where {V t } t is a suitable stochastic process Our discretized version becomes: V t should have stationary, independent increments with mean. If we require V t to be continuous it turns out that only one solution exists: Brownian Motion B t k 1 k 1 X k = X + b(t j, X j ) t j + σ(t j, X j ) B j j= Is there a limit when t j? If so: j= Thus V t = B t. X t = X + b(s, X s )ds + σ(s, X s )db s } {{ }?? 15 16

5 Basic properties I Basic properties II B t is a Gaussian process: B t has independent increments: For all t 1 t k the random variable Z = (B t1,..., B tk ) has a multinormal distribution, and B t1, B t2 B t1,..., B tk B tk 1 E[B t ] = B ; Var[B t ] = t. are independent for all t 1 t k We also call it a standard Wiener process: W = {W t } t, Basic properties III a Gaussian process with independent increments for which W = w.p. 1, E[W t ] =, Var[W t W s ] = t s There exists a continuous version, so we simply assume that B t is such a continuous version. for all s t. It can be shown that any continuous time stochastic process with independent increments and finite second moments E[X 2 t ] for all t, is a Gaussian process if X t is Gaussian. 19 2

6 Construction of the Itô integral We will define Let us try the usual tricks from ordinary calculus: or more generally for S T. S f(s) dw s f(s) dw s define the integral for a simple class of functions extend by some approximation procedure to a larger class of functions Assume f is a step-function of the form: f(t) = a j I {j/2 n,(j+1)/2 n }(t) j Then it will be natural to define S f(t) dw t = j a j [W tj+1 W tj ] Example: We want to calculate Problems!!! W t dw t Choose two different, but reasonable approximations: where k/2 n if S k/2 n T t k = S if k/2 n < S T if k/2 n > T f 1 (t) = j W tj I {j/2 n,(j+1)/2 n }(t) (Left end point) f 2 (t) = j W tj+1 I {j/2 n,(j+1)/2 n }(t) (Right end point) 23 24

7 But [ ] T E f 2 (t)dw t = j E[W tj+1 (W tj+1 W tj )] Then [ ] T E f 1 (t)dw t = j E[W tj (W tj+1 W tj )] = = E[W tj+1 (W tj+1 W tj )] j E[W tj (W tj+1 W tj )] j = j E[(W tj+1 W tj ) 2 ] since W t has independent increments. = j (t j+1 t j ) = T It is natural to approximate a given function f(t) by a step-function of the form: The variations of the paths of W (t) are too big to define the integral in the ordinary sense. The problem is that a Wiener process W (t) is nowhere differentiable. Worse still: the sample paths have unbounded variation on any bounded time interval. f(t) f(t j ) I {tj,t j+1}(t) j where the points t j belong to the interval [t j, t j+1 ]. Define S f(t)dw (t) = lim n j f(t j ) [W tj+1 W tj ] 27 28

8 We just saw - unlike ordinary integrals - that it makes a difference what t j we choose!!! Two useful and common choices: The Itô integral: t j = t j, the left end point. The Stratonovich integral: t j = (t j + t j+1 )/2, the mid point. Heuristics Mathematics Itô vs Stratonovich integrals 29 3 Stochastic Differential Equations The process X solves dx t = b(x t, t)dt + σ(x t, t)dw t, X = U if dx t = b(x t, t)dt + σ(x t, t)dw t, W t = W (1) t.. W (m) t X t = b : R d R + R d σ : R d R + R d m X = U X (1) ṭ. X (d) t X (i) t = U (i) + for all i = 1,, d and t >. Necessary condition: for all t > ; σ 2 = tr σσ T. b i (X s, s)ds + m j=1 { b(x s, s) + σ(x s, s) 2 }ds < T denotes transposition of vectors and matrices. σ i,j (X s, s)dw (j) s 31 32

9 The Ito integral (Ω, F, {F t }, P ) Z stochastic process adapted to the filtration {F t }: Z t is F t -measurable for all t > W Wiener process with respect to {F t } W t is F t -measurable for all t > For t > s, W t W s is independent of {F s } and N(, t s)-distributed (W = ) Random adapted step function = t < t 1 < < t n = T partition of [, T ] Z t = A i for t i t < t i+1, i =,..., n 1 where A i is an F ti -measurable random variable, i =,..., n 1 E(A 2 i ) <, i =,..., n 1 Z t dw t = n Z ti 1 (W ti W ti 1 ) i=1 How can an integral Z t dw t be defined? Z continuous adapted process It is not difficult to prove that ( ) T E Z t dw t = ( E ) 2 Z t dw t = n E(Zt 2 i 1 )(t i t i 1 ) i=1 Z s dw s is an {F t }-martingale E(Z 2 t )dt < = t (n) < t (n) 1 < < t (n) n = T a sequence of partitions of [, T ] satisfying that ( ) max t (n) j t (n) j 1 as n 1 j n Define an adapted step function by Z (n) t = Z t (n) i for t (n) i t < t (n) i+1, i =,..., n 1 Z (n) t dw t = n i=1 Z t (n) i 1 ( ) W (n) t W (n) i t i

10 The mean square limit of Z(n) t dw t as n exists and is almost surely unique. This limit defines the Ito integral Z (n) t dw t L 2 Z t dw t ( E ) 2 Z t dw t ( ) T E Z t dw t = =lim n n i=1 = ( ) ( E Z 2 t (n) t (n) i i 1 E(Z 2 t )dt Z s dw s is an {F t }-martingale t Z s dw s is continuous ) t (n) i Some names In order to define the Ito integral it is sufficient that Z t dw t ( ) T P Zt 2 dt < = 1 In general the Ito integral is a local martingale only We call a stochastic process X t for: An Itô integral if X t = X + An Itô process or a stochastic integral if X t = X + bds + σdw s }{{}}{{} drift diffusion σdw s or dx t = σdw t or dx t = bdt + σdw t 39 4

11 X d-dimensional. Itô s formula: dx t = b(x t, t)dt + σ(x t, t)dw t, g : R d R + R X = U g(x, t) continuously differentiable w.r.t. t and twice continuously differentiable w.r.t. x Y t = g(x t, t) dy t = d i=1 g (X t, t)dx (i) t + g x i t (X t, t)dt m l=1 i,j=1 d 2 g σ i,l (X t, t)σ j,l (X t, t) (X t, t)dt x i x j Let d = 1 in The Itô formula dx t = b(t, X t )dt + σ(t, X t )dw t Let g(x, t) be twice continuously differentiable on R R +. Then Y t = g(x t, t) is again an Itô process, and { g dy t = t (X t, t) + 1 } 2 σ2 2 g x 2 (X t, t) dt + g x (X t, t)dx t Calculate Example: Choose X t = W t and g(x, t) = 1 2 x2. Then W s dw s Y t = g(w t, t) = 1 2 W 2 t Apply Itô s formula: { g dy t = t (X t, t) σ2 2 g { = + 1 } dt + W t dw t 2 } x 2 (X t, t) dt + g x (X t, t)dx t Hence or Finally ( ) 1 dy t = d 2 W t W 2 t = 1 2 t + = 1 2 dt + W tdw t W s dw s. W s dw s = 1 2 W 2 t 1 2 t

12 Example: Let us return to the population growth model dn t = an t dt + σn t dw t Choose X t = N t and g(x, t) = log x. Apply Itô s formula: { g dy t = d(log N t ) = t (X t, t) + 1 } 2 σ2 (X t, t) 2 g x 2 (X t, t) dt + g x (X t, t)dx t { = σ2 Nt 2 ( 1 } Nt 2 ) dt + 1 dn t N t Hence Finally log N t = log N + (a 12 ) σ2 t + σw t N t = N exp {(a 12 ) } σ2 t + σw t = 1 2 σ2 dt + 1 (an t dt + σn t dw t ) N t = (a 12 ) σ2 dt + σdw t (Corresponding Stratonovich solution is N t = N exp {at + σw t }) Exercise: Show that e Ws dw s = e Wt e W 1 2 e Ws ds Hint: apply Itô s formula with X t = W t and g(x, t) = e x 47

Stochastic differential equation models in biology Susanne Ditlevsen

Stochastic differential equation models in biology Susanne Ditlevsen Stochastic differential equation models in biology Susanne Ditlevsen Introduction This chapter is concerned with continuous time processes, which are often modeled as a system of ordinary differential

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

Introduction to Diffusion Processes.

Introduction to Diffusion Processes. Introduction to Diffusion Processes. Arka P. Ghosh Department of Statistics Iowa State University Ames, IA 511-121 apghosh@iastate.edu (515) 294-7851. February 1, 21 Abstract In this section we describe

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Stochastic Integration and Stochastic Differential Equations: a gentle introduction

Stochastic Integration and Stochastic Differential Equations: a gentle introduction Stochastic Integration and Stochastic Differential Equations: a gentle introduction Oleg Makhnin New Mexico Tech Dept. of Mathematics October 26, 27 Intro: why Stochastic? Brownian Motion/ Wiener process

More information

Stochastic Calculus February 11, / 33

Stochastic Calculus February 11, / 33 Martingale Transform M n martingale with respect to F n, n =, 1, 2,... σ n F n (σ M) n = n 1 i= σ i(m i+1 M i ) is a Martingale E[(σ M) n F n 1 ] n 1 = E[ σ i (M i+1 M i ) F n 1 ] i= n 2 = σ i (M i+1 M

More information

MA8109 Stochastic Processes in Systems Theory Autumn 2013

MA8109 Stochastic Processes in Systems Theory Autumn 2013 Norwegian University of Science and Technology Department of Mathematical Sciences MA819 Stochastic Processes in Systems Theory Autumn 213 1 MA819 Exam 23, problem 3b This is a linear equation of the form

More information

Stochastic Differential Equations

Stochastic Differential Equations Chapter 5 Stochastic Differential Equations We would like to introduce stochastic ODE s without going first through the machinery of stochastic integrals. 5.1 Itô Integrals and Itô Differential Equations

More information

Lecture 4: Ito s Stochastic Calculus and SDE. Seung Yeal Ha Dept of Mathematical Sciences Seoul National University

Lecture 4: Ito s Stochastic Calculus and SDE. Seung Yeal Ha Dept of Mathematical Sciences Seoul National University Lecture 4: Ito s Stochastic Calculus and SDE Seung Yeal Ha Dept of Mathematical Sciences Seoul National University 1 Preliminaries What is Calculus? Integral, Differentiation. Differentiation 2 Integral

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Numerical methods for solving stochastic differential equations

Numerical methods for solving stochastic differential equations Mathematical Communications 4(1999), 251-256 251 Numerical methods for solving stochastic differential equations Rózsa Horváth Bokor Abstract. This paper provides an introduction to stochastic calculus

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Stochastic Integration and Continuous Time Models

Stochastic Integration and Continuous Time Models Chapter 3 Stochastic Integration and Continuous Time Models 3.1 Brownian Motion The single most important continuous time process in the construction of financial models is the Brownian motion process.

More information

1. Stochastic Process

1. Stochastic Process HETERGENEITY IN QUANTITATIVE MACROECONOMICS @ TSE OCTOBER 17, 216 STOCHASTIC CALCULUS BASICS SANG YOON (TIM) LEE Very simple notes (need to add references). It is NOT meant to be a substitute for a real

More information

Lecture 4: Introduction to stochastic processes and stochastic calculus

Lecture 4: Introduction to stochastic processes and stochastic calculus Lecture 4: Introduction to stochastic processes and stochastic calculus Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London

More information

MFE6516 Stochastic Calculus for Finance

MFE6516 Stochastic Calculus for Finance MFE6516 Stochastic Calculus for Finance William C. H. Leon Nanyang Business School December 11, 2017 1 / 51 William C. H. Leon MFE6516 Stochastic Calculus for Finance 1 Symmetric Random Walks Scaled Symmetric

More information

SDE Coefficients. March 4, 2008

SDE Coefficients. March 4, 2008 SDE Coefficients March 4, 2008 The following is a summary of GARD sections 3.3 and 6., mainly as an overview of the two main approaches to creating a SDE model. Stochastic Differential Equations (SDE)

More information

Lecture 12: Diffusion Processes and Stochastic Differential Equations

Lecture 12: Diffusion Processes and Stochastic Differential Equations Lecture 12: Diffusion Processes and Stochastic Differential Equations 1. Diffusion Processes 1.1 Definition of a diffusion process 1.2 Examples 2. Stochastic Differential Equations SDE) 2.1 Stochastic

More information

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012 1 Stochastic Calculus Notes March 9 th, 1 In 19, Bachelier proposed for the Paris stock exchange a model for the fluctuations affecting the price X(t) of an asset that was given by the Brownian motion.

More information

Verona Course April Lecture 1. Review of probability

Verona Course April Lecture 1. Review of probability Verona Course April 215. Lecture 1. Review of probability Viorel Barbu Al.I. Cuza University of Iaşi and the Romanian Academy A probability space is a triple (Ω, F, P) where Ω is an abstract set, F is

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications The multidimensional Ito Integral and the multidimensional Ito Formula Eric Mu ller June 1, 215 Seminar on Stochastic Geometry and its applications page 2 Seminar on Stochastic Geometry and its applications

More information

The Wiener Itô Chaos Expansion

The Wiener Itô Chaos Expansion 1 The Wiener Itô Chaos Expansion The celebrated Wiener Itô chaos expansion is fundamental in stochastic analysis. In particular, it plays a crucial role in the Malliavin calculus as it is presented in

More information

n E(X t T n = lim X s Tn = X s

n E(X t T n = lim X s Tn = X s Stochastic Calculus Example sheet - Lent 15 Michael Tehranchi Problem 1. Let X be a local martingale. Prove that X is a uniformly integrable martingale if and only X is of class D. Solution 1. If If direction:

More information

Stochastic Differential Equations

Stochastic Differential Equations CHAPTER 1 Stochastic Differential Equations Consider a stochastic process X t satisfying dx t = bt, X t,w t dt + σt, X t,w t dw t. 1.1 Question. 1 Can we obtain the existence and uniqueness theorem for

More information

Itô s formula. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Itô s formula. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Itô s formula Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Itô s formula Probability Theory

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

Some Tools From Stochastic Analysis

Some Tools From Stochastic Analysis W H I T E Some Tools From Stochastic Analysis J. Potthoff Lehrstuhl für Mathematik V Universität Mannheim email: potthoff@math.uni-mannheim.de url: http://ls5.math.uni-mannheim.de To close the file, click

More information

Numerical Integration of SDEs: A Short Tutorial

Numerical Integration of SDEs: A Short Tutorial Numerical Integration of SDEs: A Short Tutorial Thomas Schaffter January 19, 010 1 Introduction 1.1 Itô and Stratonovich SDEs 1-dimensional stochastic differentiable equation (SDE) is given by [6, 7] dx

More information

Stochastic Calculus. Kevin Sinclair. August 2, 2016

Stochastic Calculus. Kevin Sinclair. August 2, 2016 Stochastic Calculus Kevin Sinclair August, 16 1 Background Suppose we have a Brownian motion W. This is a process, and the value of W at a particular time T (which we write W T ) is a normally distributed

More information

Introduction. Stochastic Processes. Will Penny. Stochastic Differential Equations. Stochastic Chain Rule. Expectations.

Introduction. Stochastic Processes. Will Penny. Stochastic Differential Equations. Stochastic Chain Rule. Expectations. 19th May 2011 Chain Introduction We will Show the relation between stochastic differential equations, Gaussian processes and methods This gives us a formal way of deriving equations for the activity of

More information

Malliavin Calculus: Analysis on Gaussian spaces

Malliavin Calculus: Analysis on Gaussian spaces Malliavin Calculus: Analysis on Gaussian spaces Josef Teichmann ETH Zürich Oxford 2011 Isonormal Gaussian process A Gaussian space is a (complete) probability space together with a Hilbert space of centered

More information

Stochastic Modelling in Climate Science

Stochastic Modelling in Climate Science Stochastic Modelling in Climate Science David Kelly Mathematics Department UNC Chapel Hill dtbkelly@gmail.com November 16, 2013 David Kelly (UNC) Stochastic Climate November 16, 2013 1 / 36 Why use stochastic

More information

Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim ***

Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim *** JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 19, No. 4, December 26 GIRSANOV THEOREM FOR GAUSSIAN PROCESS WITH INDEPENDENT INCREMENTS Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim *** Abstract.

More information

MATH4210 Financial Mathematics ( ) Tutorial 7

MATH4210 Financial Mathematics ( ) Tutorial 7 MATH40 Financial Mathematics (05-06) Tutorial 7 Review of some basic Probability: The triple (Ω, F, P) is called a probability space, where Ω denotes the sample space and F is the set of event (σ algebra

More information

Nonlinear representation, backward SDEs, and application to the Principal-Agent problem

Nonlinear representation, backward SDEs, and application to the Principal-Agent problem Nonlinear representation, backward SDEs, and application to the Principal-Agent problem Ecole Polytechnique, France April 4, 218 Outline The Principal-Agent problem Formulation 1 The Principal-Agent problem

More information

Clases 11-12: Integración estocástica.

Clases 11-12: Integración estocástica. Clases 11-12: Integración estocástica. Fórmula de Itô * 3 de octubre de 217 Índice 1. Introduction to Stochastic integrals 1 2. Stochastic integration 2 3. Simulation of stochastic integrals: Euler scheme

More information

Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet 1

Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet 1 Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet. For ξ, ξ 2, i.i.d. with P(ξ i = ± = /2 define the discrete-time random walk W =, W n = ξ +... + ξ n. (i Formulate and prove the property

More information

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2 B8.3 Mathematical Models for Financial Derivatives Hilary Term 18 Solution Sheet In the following W t ) t denotes a standard Brownian motion and t > denotes time. A partition π of the interval, t is a

More information

Stochastic Calculus for Finance II - some Solutions to Chapter VII

Stochastic Calculus for Finance II - some Solutions to Chapter VII Stochastic Calculus for Finance II - some Solutions to Chapter VII Matthias hul Last Update: June 9, 25 Exercise 7 Black-Scholes-Merton Equation for the up-and-out Call) i) We have ii) We first compute

More information

Stochastic Differential Equations. Introduction to Stochastic Models for Pollutants Dispersion, Epidemic and Finance

Stochastic Differential Equations. Introduction to Stochastic Models for Pollutants Dispersion, Epidemic and Finance Stochastic Differential Equations. Introduction to Stochastic Models for Pollutants Dispersion, Epidemic and Finance 15th March-April 19th, 211 at Lappeenranta University of Technology(LUT)-Finland By

More information

Theoretical Tutorial Session 2

Theoretical Tutorial Session 2 1 / 36 Theoretical Tutorial Session 2 Xiaoming Song Department of Mathematics Drexel University July 27, 216 Outline 2 / 36 Itô s formula Martingale representation theorem Stochastic differential equations

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

Continuous Time Finance

Continuous Time Finance Continuous Time Finance Lisbon 2013 Tomas Björk Stockholm School of Economics Tomas Björk, 2013 Contents Stochastic Calculus (Ch 4-5). Black-Scholes (Ch 6-7. Completeness and hedging (Ch 8-9. The martingale

More information

1 Brownian Local Time

1 Brownian Local Time 1 Brownian Local Time We first begin by defining the space and variables for Brownian local time. Let W t be a standard 1-D Wiener process. We know that for the set, {t : W t = } P (µ{t : W t = } = ) =

More information

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010 1 Stochastic Calculus Notes Abril 13 th, 1 As we have seen in previous lessons, the stochastic integral with respect to the Brownian motion shows a behavior different from the classical Riemann-Stieltjes

More information

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p Doob s inequality Let X(t) be a right continuous submartingale with respect to F(t), t 1 P(sup s t X(s) λ) 1 λ {sup s t X(s) λ} X + (t)dp 2 For 1 < p

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

Topics in fractional Brownian motion

Topics in fractional Brownian motion Topics in fractional Brownian motion Esko Valkeila Spring School, Jena 25.3. 2011 We plan to discuss the following items during these lectures: Fractional Brownian motion and its properties. Topics in

More information

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011 Department of Probability and Mathematical Statistics Faculty of Mathematics and Physics, Charles University in Prague petrasek@karlin.mff.cuni.cz Seminar in Stochastic Modelling in Economics and Finance

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Stochastic contraction BACS Workshop Chamonix, January 14, 2008

Stochastic contraction BACS Workshop Chamonix, January 14, 2008 Stochastic contraction BACS Workshop Chamonix, January 14, 2008 Q.-C. Pham N. Tabareau J.-J. Slotine Q.-C. Pham, N. Tabareau, J.-J. Slotine () Stochastic contraction 1 / 19 Why stochastic contraction?

More information

Stochastic Calculus Made Easy

Stochastic Calculus Made Easy Stochastic Calculus Made Easy Most of us know how standard Calculus works. We know how to differentiate, how to integrate etc. But stochastic calculus is a totally different beast to tackle; we are trying

More information

Tools of stochastic calculus

Tools of stochastic calculus slides for the course Interest rate theory, University of Ljubljana, 212-13/I, part III József Gáll University of Debrecen Nov. 212 Jan. 213, Ljubljana Itô integral, summary of main facts Notations, basic

More information

Fast-slow systems with chaotic noise

Fast-slow systems with chaotic noise Fast-slow systems with chaotic noise David Kelly Ian Melbourne Courant Institute New York University New York NY www.dtbkelly.com May 1, 216 Statistical properties of dynamical systems, ESI Vienna. David

More information

Week 9 Generators, duality, change of measure

Week 9 Generators, duality, change of measure Week 9 Generators, duality, change of measure Jonathan Goodman November 18, 013 1 Generators This section describes a common abstract way to describe many of the differential equations related to Markov

More information

Discretization of SDEs: Euler Methods and Beyond

Discretization of SDEs: Euler Methods and Beyond Discretization of SDEs: Euler Methods and Beyond 09-26-2006 / PRisMa 2006 Workshop Outline Introduction 1 Introduction Motivation Stochastic Differential Equations 2 The Time Discretization of SDEs Monte-Carlo

More information

A Short Introduction to Diffusion Processes and Ito Calculus

A Short Introduction to Diffusion Processes and Ito Calculus A Short Introduction to Diffusion Processes and Ito Calculus Cédric Archambeau University College, London Center for Computational Statistics and Machine Learning c.archambeau@cs.ucl.ac.uk January 24,

More information

Introduction to numerical simulations for Stochastic ODEs

Introduction to numerical simulations for Stochastic ODEs Introduction to numerical simulations for Stochastic ODEs Xingye Kan Illinois Institute of Technology Department of Applied Mathematics Chicago, IL 60616 August 9, 2010 Outline 1 Preliminaries 2 Numerical

More information

Question 1. The correct answers are: (a) (2) (b) (1) (c) (2) (d) (3) (e) (2) (f) (1) (g) (2) (h) (1)

Question 1. The correct answers are: (a) (2) (b) (1) (c) (2) (d) (3) (e) (2) (f) (1) (g) (2) (h) (1) Question 1 The correct answers are: a 2 b 1 c 2 d 3 e 2 f 1 g 2 h 1 Question 2 a Any probability measure Q equivalent to P on F 2 can be described by Q[{x 1, x 2 }] := q x1 q x1,x 2, 1 where q x1, q x1,x

More information

Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2)

Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2) Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2) Statistical analysis is based on probability theory. The fundamental object in probability theory is a probability space,

More information

Derivation of Itô SDE and Relationship to ODE and CTMC Models

Derivation of Itô SDE and Relationship to ODE and CTMC Models Derivation of Itô SDE and Relationship to ODE and CTMC Models Biomathematics II April 23, 2015 Linda J. S. Allen Texas Tech University TTU 1 Euler-Maruyama Method for Numerical Solution of an Itô SDE dx(t)

More information

Example 4.1 Let X be a random variable and f(t) a given function of time. Then. Y (t) = f(t)x. Y (t) = X sin(ωt + δ)

Example 4.1 Let X be a random variable and f(t) a given function of time. Then. Y (t) = f(t)x. Y (t) = X sin(ωt + δ) Chapter 4 Stochastic Processes 4. Definition In the previous chapter we studied random variables as functions on a sample space X(ω), ω Ω, without regard to how these might depend on parameters. We now

More information

Finite element approximation of the stochastic heat equation with additive noise

Finite element approximation of the stochastic heat equation with additive noise p. 1/32 Finite element approximation of the stochastic heat equation with additive noise Stig Larsson p. 2/32 Outline Stochastic heat equation with additive noise du u dt = dw, x D, t > u =, x D, t > u()

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

B. LAQUERRIÈRE AND N. PRIVAULT

B. LAQUERRIÈRE AND N. PRIVAULT DEVIAION INEQUALIIES FOR EXPONENIAL JUMP-DIFFUSION PROCESSES B. LAQUERRIÈRE AND N. PRIVAUL Abstract. In this note we obtain deviation inequalities for the law of exponential jump-diffusion processes at

More information

Interest Rate Models:

Interest Rate Models: 1/17 Interest Rate Models: from Parametric Statistics to Infinite Dimensional Stochastic Analysis René Carmona Bendheim Center for Finance ORFE & PACM, Princeton University email: rcarmna@princeton.edu

More information

Brownian Motion. Chapter Definition of Brownian motion

Brownian Motion. Chapter Definition of Brownian motion Chapter 5 Brownian Motion Brownian motion originated as a model proposed by Robert Brown in 1828 for the phenomenon of continual swarming motion of pollen grains suspended in water. In 1900, Bachelier

More information

Solutions to the Exercises in Stochastic Analysis

Solutions to the Exercises in Stochastic Analysis Solutions to the Exercises in Stochastic Analysis Lecturer: Xue-Mei Li 1 Problem Sheet 1 In these solution I avoid using conditional expectations. But do try to give alternative proofs once we learnt conditional

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Backward martingale representation and endogenous completeness in finance

Backward martingale representation and endogenous completeness in finance Backward martingale representation and endogenous completeness in finance Dmitry Kramkov (with Silviu Predoiu) Carnegie Mellon University 1 / 19 Bibliography Robert M. Anderson and Roberto C. Raimondo.

More information

Rough paths methods 4: Application to fbm

Rough paths methods 4: Application to fbm Rough paths methods 4: Application to fbm Samy Tindel Purdue University University of Aarhus 2016 Samy T. (Purdue) Rough Paths 4 Aarhus 2016 1 / 67 Outline 1 Main result 2 Construction of the Levy area:

More information

3. WIENER PROCESS. STOCHASTIC ITÔ INTEGRAL

3. WIENER PROCESS. STOCHASTIC ITÔ INTEGRAL 3. WIENER PROCESS. STOCHASTIC ITÔ INTEGRAL 3.1. Wiener process. Main properties. A Wiener process notation W W t t is named in the honor of Prof. Norbert Wiener; other name is the Brownian motion notation

More information

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Noèlia Viles Cuadros BCAM- Basque Center of Applied Mathematics with Prof. Enrico

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Introduction to Malliavin calculus and its applications Lecture 3: Clark-Ocone formula David Nualart Department of Mathematics Kansas University University of Wyoming Summer School 214 David Nualart

More information

Stochastic Calculus (Lecture #3)

Stochastic Calculus (Lecture #3) Stochastic Calculus (Lecture #3) Siegfried Hörmann Université libre de Bruxelles (ULB) Spring 2014 Outline of the course 1. Stochastic processes in continuous time. 2. Brownian motion. 3. Itô integral:

More information

Universal examples. Chapter The Bernoulli process

Universal examples. Chapter The Bernoulli process Chapter 1 Universal examples 1.1 The Bernoulli process First description: Bernoulli random variables Y i for i = 1, 2, 3,... independent with P [Y i = 1] = p and P [Y i = ] = 1 p. Second description: Binomial

More information

Exact Simulation of Multivariate Itô Diffusions

Exact Simulation of Multivariate Itô Diffusions Exact Simulation of Multivariate Itô Diffusions Jose Blanchet Joint work with Fan Zhang Columbia and Stanford July 7, 2017 Jose Blanchet (Columbia/Stanford) Exact Simulation of Diffusions July 7, 2017

More information

The Smoluchowski-Kramers Approximation: What model describes a Brownian particle?

The Smoluchowski-Kramers Approximation: What model describes a Brownian particle? The Smoluchowski-Kramers Approximation: What model describes a Brownian particle? Scott Hottovy shottovy@math.arizona.edu University of Arizona Applied Mathematics October 7, 2011 Brown observes a particle

More information

MA50251: Applied SDEs

MA50251: Applied SDEs MA5251: Applied SDEs Alexander Cox February 12, 218 Preliminaries These notes constitute the core theoretical content of the unit MA5251, which is a course on Applied SDEs. Roughly speaking, the aim of

More information

Brownian Motion and Poisson Process

Brownian Motion and Poisson Process and Poisson Process She: What is white noise? He: It is the best model of a totally unpredictable process. She: Are you implying, I am white noise? He: No, it does not exist. Dialogue of an unknown couple.

More information

Problem 1. Construct a filtered probability space on which a Brownian motion W and an adapted process X are defined and such that

Problem 1. Construct a filtered probability space on which a Brownian motion W and an adapted process X are defined and such that Stochatic Calculu Example heet 4 - Lent 5 Michael Tehranchi Problem. Contruct a filtered probability pace on which a Brownian motion W and an adapted proce X are defined and uch that dx t = X t t dt +

More information

APPLICATION OF THE KALMAN-BUCY FILTER IN THE STOCHASTIC DIFFERENTIAL EQUATIONS FOR THE MODELING OF RL CIRCUIT

APPLICATION OF THE KALMAN-BUCY FILTER IN THE STOCHASTIC DIFFERENTIAL EQUATIONS FOR THE MODELING OF RL CIRCUIT Int. J. Nonlinear Anal. Appl. 2 (211) No.1, 35 41 ISSN: 28-6822 (electronic) http://www.ijnaa.com APPICATION OF THE KAMAN-BUCY FITER IN THE STOCHASTIC DIFFERENTIA EQUATIONS FOR THE MODEING OF R CIRCUIT

More information

From Random Variables to Random Processes. From Random Variables to Random Processes

From Random Variables to Random Processes. From Random Variables to Random Processes Random Processes In probability theory we study spaces (Ω, F, P) where Ω is the space, F are all the sets to which we can measure its probability and P is the probability. Example: Toss a die twice. Ω

More information

Simulation and Parametric Estimation of SDEs

Simulation and Parametric Estimation of SDEs Simulation and Parametric Estimation of SDEs Jhonny Gonzalez School of Mathematics The University of Manchester Magical books project August 23, 2012 Motivation The problem Simulation of SDEs SDEs driven

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 197

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 197 MATH 56A SPRING 8 STOCHASTIC PROCESSES 197 9.3. Itô s formula. First I stated the theorem. Then I did a simple example to make sure we understand what it says. Then I proved it. The key point is Lévy s

More information

Tyler Hofmeister. University of Calgary Mathematical and Computational Finance Laboratory

Tyler Hofmeister. University of Calgary Mathematical and Computational Finance Laboratory JUMP PROCESSES GENERALIZING STOCHASTIC INTEGRALS WITH JUMPS Tyler Hofmeister University of Calgary Mathematical and Computational Finance Laboratory Overview 1. General Method 2. Poisson Processes 3. Diffusion

More information

A NOTE ON STATE ESTIMATION FROM DOUBLY STOCHASTIC POINT PROCESS OBSERVATION. 0. Introduction

A NOTE ON STATE ESTIMATION FROM DOUBLY STOCHASTIC POINT PROCESS OBSERVATION. 0. Introduction STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume XLVI, Number 1, March 1 A NOTE ON STATE ESTIMATION FROM DOUBLY STOCHASTIC POINT PROCESS OBSERVATION. Introduction In this note we study a state estimation

More information

Malliavin Calculus in Finance

Malliavin Calculus in Finance Malliavin Calculus in Finance Peter K. Friz 1 Greeks and the logarithmic derivative trick Model an underlying assent by a Markov process with values in R m with dynamics described by the SDE dx t = b(x

More information

A Class of Fractional Stochastic Differential Equations

A Class of Fractional Stochastic Differential Equations Vietnam Journal of Mathematics 36:38) 71 79 Vietnam Journal of MATHEMATICS VAST 8 A Class of Fractional Stochastic Differential Equations Nguyen Tien Dung Department of Mathematics, Vietnam National University,

More information

MSH7 - APPLIED PROBABILITY AND STOCHASTIC CALCULUS. Contents

MSH7 - APPLIED PROBABILITY AND STOCHASTIC CALCULUS. Contents MSH7 - APPLIED PROBABILITY AND STOCHASTIC CALCULUS ANDREW TULLOCH Contents 1. Lecture 1 - Tuesday 1 March 2 2. Lecture 2 - Thursday 3 March 2 2.1. Concepts of convergence 2 3. Lecture 3 - Tuesday 8 March

More information

An Overview of the Martingale Representation Theorem

An Overview of the Martingale Representation Theorem An Overview of the Martingale Representation Theorem Nuno Azevedo CEMAPRE - ISEG - UTL nazevedo@iseg.utl.pt September 3, 21 Nuno Azevedo (CEMAPRE - ISEG - UTL) LXDS Seminar September 3, 21 1 / 25 Background

More information

The Pedestrian s Guide to Local Time

The Pedestrian s Guide to Local Time The Pedestrian s Guide to Local Time Tomas Björk, Department of Finance, Stockholm School of Economics, Box 651, SE-113 83 Stockholm, SWEDEN tomas.bjork@hhs.se November 19, 213 Preliminary version Comments

More information

Session 1: Probability and Markov chains

Session 1: Probability and Markov chains Session 1: Probability and Markov chains 1. Probability distributions and densities. 2. Relevant distributions. 3. Change of variable. 4. Stochastic processes. 5. The Markov property. 6. Markov finite

More information

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Controlled Diffusions and Hamilton-Jacobi Bellman Equations Controlled Diffusions and Hamilton-Jacobi Bellman Equations Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

On pathwise stochastic integration

On pathwise stochastic integration On pathwise stochastic integration Rafa l Marcin Lochowski Afican Institute for Mathematical Sciences, Warsaw School of Economics UWC seminar Rafa l Marcin Lochowski (AIMS, WSE) On pathwise stochastic

More information

Lecture 12. F o s, (1.1) F t := s>t

Lecture 12. F o s, (1.1) F t := s>t Lecture 12 1 Brownian motion: the Markov property Let C := C(0, ), R) be the space of continuous functions mapping from 0, ) to R, in which a Brownian motion (B t ) t 0 almost surely takes its value. Let

More information

13 The martingale problem

13 The martingale problem 19-3-2012 Notations Ω complete metric space of all continuous functions from [0, + ) to R d endowed with the distance d(ω 1, ω 2 ) = k=1 ω 1 ω 2 C([0,k];H) 2 k (1 + ω 1 ω 2 C([0,k];H) ), ω 1, ω 2 Ω. F

More information

Stochastic Lagrangian Transport and Generalized Relative Entropies

Stochastic Lagrangian Transport and Generalized Relative Entropies Stochastic Lagrangian Transport and Generalized Relative Entropies Peter Constantin Department of Mathematics, The University of Chicago 5734 S. University Avenue, Chicago, Illinois 6637 Gautam Iyer Department

More information