3. WIENER PROCESS. STOCHASTIC ITÔ INTEGRAL

Size: px
Start display at page:

Download "3. WIENER PROCESS. STOCHASTIC ITÔ INTEGRAL"

Transcription

1 3. WIENER PROCESS. STOCHASTIC ITÔ INTEGRAL 3.1. Wiener process. Main properties. A Wiener process notation W W t t is named in the honor of Prof. Norbert Wiener; other name is the Brownian motion notation B B t t. Wiener process is Gaussian process. As any Gaussian process, Wiener process is completely described by its expectation and correlation functions. We give below a description of main properties of W W t t : 1. W ;. paths traectories of Wiener process are continuous functions of t [, ; 3. expectation EW t ; 4. correlation function EW t W s t s, a b mina, b; 5. for any t 1,..., t n the random vector W t1,..., W tn is Gaussian; 6. For any s, t EWt t E W s ], E W s ] t s ; 7. Increments of Wiener process on non overlapping intervals are independent, i.e. for s 1, t 1 s, t the random variables W t W s, W t1 W s1 are independent; 8. paths of Wiener process are not differentiable functions; 9. martingale property notation W s {W u, u s} EW t W s W s E{W t W s W s } t s. Proofs. 1-5 is nothing but the definition of Wiener process. 6. is implied by 3. and provides the orthogonality of increments for non overlapping intervals, that is for s 1 < s < s 3 < s 4 E W s4 W s3 Ws W s1 s s 1 s s 1. The required independence property for these random variables follows from well known fact: orthogonal Gaussian random variables are independent. To verify the validity of 8., with h > let define h W s+h W s h h h does not exists. 1 and show that

2 Assume that this it exists. Then the it for the Fourier transform here i 1 h Eeiλ h exists and is a continuous function of λ. Hence, since the random variable h is zero mean Gaussian with the variance E W s+h W s 1, we find h h { } Ee iλ h e λ h 1 λ, : Uλ. h λ Since Uλ is discontinuous function the assumed differentiability is not valid. 9. Both follow from the property for the increments of Wiener process to be independent for non overlapping intervals: and EW t W s EW t W s + W s W s W s + EW t W s W s W s E W t W s W s EWt W s t s. There exists the alternative definition of Wiener process based on the martingale property. We formulate this result without of proof. Levy s Theorem: The random process W t t is Wiener process if W, the traectories of W t are continuous and the martingale property hold. 3.. One more property of Wiener process. If ξ is zero mean Gaussian random variable with the variance σ Eξ, then E ξ πσ. Therefore, we have π E W t+1 W t t+1 t and thus the series E W t n +1 W t n diverges with tn +1 t n, where < t n 1 < t n <... t n n t. However the increments of Wiener process obey very important property exposed in Lemma 3.1. Let t < t 1 <... < t n be the subdivision of the interval [, t] with max [t ], n. Then here l.i.m. denotes the it in L sense +1 t l.i.m. n +1 W t ] t.

3 Proof: Note that E +1 W t Consequently, it is sufficient to show only that n The latter holds since and so n E n W t ] t W t ] t ] [t +1 t ] that is E n 1 [W t +1 E E [W t +1 E +1 W t ] [t +1 t ] [t +1 t ]E +1 { 3E +1 3[t +1 t [t +1 t ] max[t +1 t ] t max[t +1 t ], n. 3 W t ] t. W t ] t. W t ] [t +1 t ] W t ] 4 + [t +1 t ] W t ] } W t ] [t +1 t ] ] [t +1 t ] [t +1 t ] 3.3. The Itô Integral. For a pair W t, ft of a Wiener process W t a random process ft, we define the Itô integral If ftdw t.

4 4 Since paths of W t are not differentiable and sums E W t+1 W t diverge, the Itô integral is not classical integral. We give below conditions under with the Itô integral might be defined. A.1. E f t < ; A.. for every fixed time t and any h > the random variables fs, s t and increments W t+h W t are independent. We start with the considerations of the particular case. Assume ft k α k It k t < t k+1, 3.1 where t < t 1 < t,..., < t n,... is deterministic sequences of time values and α k, k, 1,... are random variable such that for fixed k and h > Due the assumption A.1 k Set {α,..., α k } and W tk +h W tk are independent. Eα k [t k+1 t k ] <. If : k α k k+1 W tk ]. 3. The sum in the right side of 3. converges in the mean square sense. In fact, α k k+1 W tk ], k 1 forms the sequence of orthogonal zero mean random variables in the third line of 3.3 k > l: Eα k k+1 W tk ] Eα k E E α k k+1 W tk ] Eα ke Eα k k+1 W tk ]α l l+1 W tell] E k+1 W tk ] k+1 W tk ] Eαkt k+1 t k { α k α l l+1 W tl ]E Particularly, 3.3 provides EI f E α k k+1 W tk ] k k Eα kk+1 W tk ] k+1 W tk ] }. 3.3 k Eα k[t k+1 t k ] Ef t.

5 So, the integral If is a linear function in f, i.e. Ic 1 f 1 + c f c 1 If 1 + c If 3.4 for any constants c 1, c and random processes f 1 t, ft of 3.1 type. To define now the Itô integral for a random process ft satisfying only A.1 and A. we will some additional fact given below without proof. Lemma 3.. Let the random process ft, t be satisfied A.1., A.. Then there exists a sequence f n t, t, n 1 of piece-wise constant random processes 5 f n t k α n kit n k t < t n k+1, where t n k, k, 1,... is a condensing sequence of deterministic time values and for every k the random variables {α 1,... α k } are independent of W t n k +h W t n k, h >, moreover for every n, f n satisfies A.1., A.. and n E ft f n t Proof of existence If. For fixed n, If n is well defined. By linear property of If n we have If n If m If n f m. Hence E If n If m EI f n f m E f n t f m t, n, m. E ft f n t + E ft f m t Consequently, If n, n 1 is the fundamental sequence and so that by the Cauchy criteria this sequence converges the mean square sense to some it, which we denote by If. In other words we get n E If If n. The random variable If is unique in the following sense. If f n t, n 1 is another approximating sequence with a it Ĩf, then E If Ĩf. In fact

6 6 E If Ĩf E If Ifn + If n I f n + I f n Ĩf { 3 E If If n + EI f n f n + E I f } n Ĩg 3 E Ĩfn If If n + E Ĩf + E f n t f n t and the first and second terms in the right side of this inequality tend to zero by the definition while the third E f n t f n t E t f n t + E ft f n t,. The random variable If is named the Itô integral Properties of If. P.1. For f i t, i 1,, satisfying A.1. and A.., and any constants c i, i 1, Ic 1 f 1 + c f c 1 If 1 + c If. P.. EI f Ef t. Proofs: For piece-wise constant processes P.1, P.. are obviously valid. They remain valid under passing to it in the mean square sense see Home work 5.. Remark 1. Instead of A.1 assume: A.1. E T f t <, T >. Then the Itô integral I T f T ftdw t is defined as well by setting I T f If T, with f T t ftit > t. A.1. P T f t < 1. then I T f is well defined as well. Sketch Proof: Set τ n min{t T : t f sds n}, n 1 and put f n t ftiτ n t. Then I T f n is well defined see Problem 4 from Home work. Set I T f I T f 1 + [I T f n+1 I T f n ]. n1

7 1. Home work: Wiener Process and Itô integral 1. Prove the following statement: let ξ, η be Gaussian vector with zero mean and orthogonal components, i.e. Eξ, Eη and Eξη. Show that ξ and η are independent random variables.. Let ξ 1,..., ξ n,... be a sequence of Gaussian random variables. Assume that for any z R and i 1 k Eeizξ k exists. Show that Eξ k k exist. k Eξ k 3. Prove P.1. and P.. 4. With ft, satisfying A.1 and A., to prove that f n t ftiτ n t, where τ n inf{t : t f sds n], satisfies A.1 and A. as well. 7

Itô s formula. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Itô s formula. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Itô s formula Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Itô s formula Probability Theory

More information

{η : η=linear combination of 1, Z 1,, Z n

{η : η=linear combination of 1, Z 1,, Z n If 3. Orthogonal projection. Conditional expectation in the wide sense Let (X n n be a sequence of random variables with EX n = σ n and EX n 0. EX k X j = { σk, k = j 0, otherwise, (X n n is the sequence

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

n E(X t T n = lim X s Tn = X s

n E(X t T n = lim X s Tn = X s Stochastic Calculus Example sheet - Lent 15 Michael Tehranchi Problem 1. Let X be a local martingale. Prove that X is a uniformly integrable martingale if and only X is of class D. Solution 1. If If direction:

More information

Brownian Motion and Poisson Process

Brownian Motion and Poisson Process and Poisson Process She: What is white noise? He: It is the best model of a totally unpredictable process. She: Are you implying, I am white noise? He: No, it does not exist. Dialogue of an unknown couple.

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Verona Course April Lecture 1. Review of probability

Verona Course April Lecture 1. Review of probability Verona Course April 215. Lecture 1. Review of probability Viorel Barbu Al.I. Cuza University of Iaşi and the Romanian Academy A probability space is a triple (Ω, F, P) where Ω is an abstract set, F is

More information

1 Introduction. 2 White noise. The content of these notes is also covered by chapter 4 section A of [1].

1 Introduction. 2 White noise. The content of these notes is also covered by chapter 4 section A of [1]. 1 Introduction The content of these notes is also covered by chapter 4 section A of [1]. 2 White noise In applications infinitesimal Wiener increments are represented as dw t = η t The stochastic process

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

1 Introduction. 2 Diffusion equation and central limit theorem. The content of these notes is also covered by chapter 3 section B of [1].

1 Introduction. 2 Diffusion equation and central limit theorem. The content of these notes is also covered by chapter 3 section B of [1]. 1 Introduction The content of these notes is also covered by chapter 3 section B of [1]. Diffusion equation and central limit theorem Consider a sequence {ξ i } i=1 i.i.d. ξ i = d ξ with ξ : Ω { Dx, 0,

More information

Stochastic Calculus (Lecture #3)

Stochastic Calculus (Lecture #3) Stochastic Calculus (Lecture #3) Siegfried Hörmann Université libre de Bruxelles (ULB) Spring 2014 Outline of the course 1. Stochastic processes in continuous time. 2. Brownian motion. 3. Itô integral:

More information

k=1 = e λ λ k λk 1 k! (k + 1)! = λ. k=0

k=1 = e λ λ k λk 1 k! (k + 1)! = λ. k=0 11. Poisson process. Poissonian White Boise. Telegraphic signal 11.1. Poisson process. First, recall a definition of Poisson random variable π. A random random variable π, valued in the set {, 1,, }, is

More information

Lecture 21 Representations of Martingales

Lecture 21 Representations of Martingales Lecture 21: Representations of Martingales 1 of 11 Course: Theory of Probability II Term: Spring 215 Instructor: Gordan Zitkovic Lecture 21 Representations of Martingales Right-continuous inverses Let

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

Stochastic differential equation models in biology Susanne Ditlevsen

Stochastic differential equation models in biology Susanne Ditlevsen Stochastic differential equation models in biology Susanne Ditlevsen Introduction This chapter is concerned with continuous time processes, which are often modeled as a system of ordinary differential

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Stochastic Differential Equations

Stochastic Differential Equations Chapter 5 Stochastic Differential Equations We would like to introduce stochastic ODE s without going first through the machinery of stochastic integrals. 5.1 Itô Integrals and Itô Differential Equations

More information

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have 362 Problem Hints and Solutions sup g n (ω, t) g(ω, t) sup g(ω, s) g(ω, t) µ n (ω). t T s,t: s t 1/n By the uniform continuity of t g(ω, t) on [, T], one has for each ω that µ n (ω) as n. Two applications

More information

Gaussian Processes. 1. Basic Notions

Gaussian Processes. 1. Basic Notions Gaussian Processes 1. Basic Notions Let T be a set, and X : {X } T a stochastic process, defined on a suitable probability space (Ω P), that is indexed by T. Definition 1.1. We say that X is a Gaussian

More information

Lecture 12. F o s, (1.1) F t := s>t

Lecture 12. F o s, (1.1) F t := s>t Lecture 12 1 Brownian motion: the Markov property Let C := C(0, ), R) be the space of continuous functions mapping from 0, ) to R, in which a Brownian motion (B t ) t 0 almost surely takes its value. Let

More information

The Wiener Itô Chaos Expansion

The Wiener Itô Chaos Expansion 1 The Wiener Itô Chaos Expansion The celebrated Wiener Itô chaos expansion is fundamental in stochastic analysis. In particular, it plays a crucial role in the Malliavin calculus as it is presented in

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

Clases 11-12: Integración estocástica.

Clases 11-12: Integración estocástica. Clases 11-12: Integración estocástica. Fórmula de Itô * 3 de octubre de 217 Índice 1. Introduction to Stochastic integrals 1 2. Stochastic integration 2 3. Simulation of stochastic integrals: Euler scheme

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

An Overview of the Martingale Representation Theorem

An Overview of the Martingale Representation Theorem An Overview of the Martingale Representation Theorem Nuno Azevedo CEMAPRE - ISEG - UTL nazevedo@iseg.utl.pt September 3, 21 Nuno Azevedo (CEMAPRE - ISEG - UTL) LXDS Seminar September 3, 21 1 / 25 Background

More information

Optimal stopping for non-linear expectations Part I

Optimal stopping for non-linear expectations Part I Stochastic Processes and their Applications 121 (2011) 185 211 www.elsevier.com/locate/spa Optimal stopping for non-linear expectations Part I Erhan Bayraktar, Song Yao Department of Mathematics, University

More information

A Short Introduction to Diffusion Processes and Ito Calculus

A Short Introduction to Diffusion Processes and Ito Calculus A Short Introduction to Diffusion Processes and Ito Calculus Cédric Archambeau University College, London Center for Computational Statistics and Machine Learning c.archambeau@cs.ucl.ac.uk January 24,

More information

ON THE STRUCTURE OF GAUSSIAN RANDOM VARIABLES

ON THE STRUCTURE OF GAUSSIAN RANDOM VARIABLES ON THE STRUCTURE OF GAUSSIAN RANDOM VARIABLES CIPRIAN A. TUDOR We study when a given Gaussian random variable on a given probability space Ω, F,P) is equal almost surely to β 1 where β is a Brownian motion

More information

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij Weak convergence and Brownian Motion (telegram style notes) P.J.C. Spreij this version: December 8, 2006 1 The space C[0, ) In this section we summarize some facts concerning the space C[0, ) of real

More information

Exam Stochastic Processes 2WB08 - March 10, 2009,

Exam Stochastic Processes 2WB08 - March 10, 2009, Exam Stochastic Processes WB8 - March, 9, 4.-7. The number of points that can be obtained per exercise is mentioned between square brackets. The maximum number of points is 4. Good luck!!. (a) [ pts.]

More information

A Stochastic Paradox for Reflected Brownian Motion?

A Stochastic Paradox for Reflected Brownian Motion? Proceedings of the 9th International Symposium on Mathematical Theory of Networks and Systems MTNS 2 9 July, 2 udapest, Hungary A Stochastic Parado for Reflected rownian Motion? Erik I. Verriest Abstract

More information

Applications of Ito s Formula

Applications of Ito s Formula CHAPTER 4 Applications of Ito s Formula In this chapter, we discuss several basic theorems in stochastic analysis. Their proofs are good examples of applications of Itô s formula. 1. Lévy s martingale

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2 B8.3 Mathematical Models for Financial Derivatives Hilary Term 18 Solution Sheet In the following W t ) t denotes a standard Brownian motion and t > denotes time. A partition π of the interval, t is a

More information

Lecture 17 Brownian motion as a Markov process

Lecture 17 Brownian motion as a Markov process Lecture 17: Brownian motion as a Markov process 1 of 14 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 17 Brownian motion as a Markov process Brownian motion is

More information

Independence of some multiple Poisson stochastic integrals with variable-sign kernels

Independence of some multiple Poisson stochastic integrals with variable-sign kernels Independence of some multiple Poisson stochastic integrals with variable-sign kernels Nicolas Privault Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang Technological

More information

Topics in fractional Brownian motion

Topics in fractional Brownian motion Topics in fractional Brownian motion Esko Valkeila Spring School, Jena 25.3. 2011 We plan to discuss the following items during these lectures: Fractional Brownian motion and its properties. Topics in

More information

Exercises in stochastic analysis

Exercises in stochastic analysis Exercises in stochastic analysis Franco Flandoli, Mario Maurelli, Dario Trevisan The exercises with a P are those which have been done totally or partially) in the previous lectures; the exercises with

More information

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010 1 Stochastic Calculus Notes Abril 13 th, 1 As we have seen in previous lessons, the stochastic integral with respect to the Brownian motion shows a behavior different from the classical Riemann-Stieltjes

More information

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p Doob s inequality Let X(t) be a right continuous submartingale with respect to F(t), t 1 P(sup s t X(s) λ) 1 λ {sup s t X(s) λ} X + (t)dp 2 For 1 < p

More information

FOURIER TRANSFORMS OF STATIONARY PROCESSES 1. k=1

FOURIER TRANSFORMS OF STATIONARY PROCESSES 1. k=1 FOURIER TRANSFORMS OF STATIONARY PROCESSES WEI BIAO WU September 8, 003 Abstract. We consider the asymptotic behavior of Fourier transforms of stationary and ergodic sequences. Under sufficiently mild

More information

On pathwise stochastic integration

On pathwise stochastic integration On pathwise stochastic integration Rafa l Marcin Lochowski Afican Institute for Mathematical Sciences, Warsaw School of Economics UWC seminar Rafa l Marcin Lochowski (AIMS, WSE) On pathwise stochastic

More information

Appendices to the paper "Detecting Big Structural Breaks in Large Factor Models" (2013) by Chen, Dolado and Gonzalo.

Appendices to the paper Detecting Big Structural Breaks in Large Factor Models (2013) by Chen, Dolado and Gonzalo. Appendices to the paper "Detecting Big Structural Breaks in Large Factor Models" 203 by Chen, Dolado and Gonzalo. A.: Proof of Propositions and 2 he proof proceeds by showing that the errors, factors and

More information

Zdzis law Brzeźniak and Tomasz Zastawniak

Zdzis law Brzeźniak and Tomasz Zastawniak Basic Stochastic Processes by Zdzis law Brzeźniak and Tomasz Zastawniak Springer-Verlag, London 1999 Corrections in the 2nd printing Version: 21 May 2005 Page and line numbers refer to the 2nd printing

More information

Brownian Motion. Chapter Definition of Brownian motion

Brownian Motion. Chapter Definition of Brownian motion Chapter 5 Brownian Motion Brownian motion originated as a model proposed by Robert Brown in 1828 for the phenomenon of continual swarming motion of pollen grains suspended in water. In 1900, Bachelier

More information

X n = c n + c n,k Y k, (4.2)

X n = c n + c n,k Y k, (4.2) 4. Linear filtering. Wiener filter Assume (X n, Y n is a pair of random sequences in which the first component X n is referred a signal and the second an observation. The paths of the signal are unobservable

More information

Lecture 22 Girsanov s Theorem

Lecture 22 Girsanov s Theorem Lecture 22: Girsanov s Theorem of 8 Course: Theory of Probability II Term: Spring 25 Instructor: Gordan Zitkovic Lecture 22 Girsanov s Theorem An example Consider a finite Gaussian random walk X n = n

More information

Branching Processes II: Convergence of critical branching to Feller s CSB

Branching Processes II: Convergence of critical branching to Feller s CSB Chapter 4 Branching Processes II: Convergence of critical branching to Feller s CSB Figure 4.1: Feller 4.1 Birth and Death Processes 4.1.1 Linear birth and death processes Branching processes can be studied

More information

Stochastic Processes

Stochastic Processes Stochastic Processes A very simple introduction Péter Medvegyev 2009, January Medvegyev (CEU) Stochastic Processes 2009, January 1 / 54 Summary from measure theory De nition (X, A) is a measurable space

More information

Pathwise volatility in a long-memory pricing model: estimation and asymptotic behavior

Pathwise volatility in a long-memory pricing model: estimation and asymptotic behavior Pathwise volatility in a long-memory pricing model: estimation and asymptotic behavior Ehsan Azmoodeh University of Vaasa Finland 7th General AMaMeF and Swissquote Conference September 7 1, 215 Outline

More information

STATISTICS 385: STOCHASTIC CALCULUS HOMEWORK ASSIGNMENT 4 DUE NOVEMBER 23, = (2n 1)(2n 3) 3 1.

STATISTICS 385: STOCHASTIC CALCULUS HOMEWORK ASSIGNMENT 4 DUE NOVEMBER 23, = (2n 1)(2n 3) 3 1. STATISTICS 385: STOCHASTIC CALCULUS HOMEWORK ASSIGNMENT 4 DUE NOVEMBER 23, 26 Problem Normal Moments (A) Use the Itô formula and Brownian scaling to check that the even moments of the normal distribution

More information

Self-intersection local time for Gaussian processes

Self-intersection local time for Gaussian processes Self-intersection local Olga Izyumtseva, olaizyumtseva@yahoo.com (in collaboration with Andrey Dorogovtsev, adoro@imath.kiev.ua) Department of theory of random processes Institute of mathematics Ukrainian

More information

EXAMPLE OF LARGE DEVIATIONS FOR STATIONARY PROCESS. O.V.Gulinskii*, and R.S.Liptser**

EXAMPLE OF LARGE DEVIATIONS FOR STATIONARY PROCESS. O.V.Gulinskii*, and R.S.Liptser** EXAMPLE OF LARGE DEVIATIONS FOR STATIONARY PROCESS O.V.Gulinskii*, and R.S.Liptser** *Institute for Problems of Information Transmission Moscow, RUSSIA **Department of Electrical Engineering-Systems Tel

More information

(B(t i+1 ) B(t i )) 2

(B(t i+1 ) B(t i )) 2 ltcc5.tex Week 5 29 October 213 Ch. V. ITÔ (STOCHASTIC) CALCULUS. WEAK CONVERGENCE. 1. Quadratic Variation. A partition π n of [, t] is a finite set of points t ni such that = t n < t n1

More information

Contents. 1 Preliminaries 3. Martingales

Contents. 1 Preliminaries 3. Martingales Table of Preface PART I THE FUNDAMENTAL PRINCIPLES page xv 1 Preliminaries 3 2 Martingales 9 2.1 Martingales and examples 9 2.2 Stopping times 12 2.3 The maximum inequality 13 2.4 Doob s inequality 14

More information

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1 Random Walks and Brownian Motion Tel Aviv University Spring 011 Lecture date: May 0, 011 Lecture 9 Instructor: Ron Peled Scribe: Jonathan Hermon In today s lecture we present the Brownian motion (BM).

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Solutions For Stochastic Process Final Exam

Solutions For Stochastic Process Final Exam Solutions For Stochastic Process Final Exam (a) λ BMW = 20 0% = 2 X BMW Poisson(2) Let N t be the number of BMWs which have passes during [0, t] Then the probability in question is P (N ) = P (N = 0) =

More information

Brownian Motion and Conditional Probability

Brownian Motion and Conditional Probability Math 561: Theory of Probability (Spring 2018) Week 10 Brownian Motion and Conditional Probability 10.1 Standard Brownian Motion (SBM) Brownian motion is a stochastic process with both practical and theoretical

More information

Lecture 19 L 2 -Stochastic integration

Lecture 19 L 2 -Stochastic integration Lecture 19: L 2 -Stochastic integration 1 of 12 Course: Theory of Probability II Term: Spring 215 Instructor: Gordan Zitkovic Lecture 19 L 2 -Stochastic integration The stochastic integral for processes

More information

(A n + B n + 1) A n + B n

(A n + B n + 1) A n + B n 344 Problem Hints and Solutions Solution for Problem 2.10. To calculate E(M n+1 F n ), first note that M n+1 is equal to (A n +1)/(A n +B n +1) with probability M n = A n /(A n +B n ) and M n+1 equals

More information

Math Probability Theory and Stochastic Process

Math Probability Theory and Stochastic Process Math 288 - Probability Theory and Stochastic Process Taught by Horng-Tzer Yau Notes by Dongryul Kim Spring 217 This course was taught by Horng-Tzer Yau. The lectures were given at MWF 12-1 in Science Center

More information

Modeling with Itô Stochastic Differential Equations

Modeling with Itô Stochastic Differential Equations Modeling with Itô Stochastic Differential Equations 2.4-2.6 E. Allen presentation by T. Perälä 27.0.2009 Postgraduate seminar on applied mathematics 2009 Outline Hilbert Space of Stochastic Processes (

More information

Time Series 2. Robert Almgren. Sept. 21, 2009

Time Series 2. Robert Almgren. Sept. 21, 2009 Time Series 2 Robert Almgren Sept. 21, 2009 This week we will talk about linear time series models: AR, MA, ARMA, ARIMA, etc. First we will talk about theory and after we will talk about fitting the models

More information

Randomization in the First Hitting Time Problem

Randomization in the First Hitting Time Problem Randomization in the First Hitting Time Problem Ken Jacson Alexander Kreinin Wanhe Zhang February 1, 29 Abstract In this paper we consider the following inverse problem for the first hitting time distribution:

More information

Stochastic Calculus Made Easy

Stochastic Calculus Made Easy Stochastic Calculus Made Easy Most of us know how standard Calculus works. We know how to differentiate, how to integrate etc. But stochastic calculus is a totally different beast to tackle; we are trying

More information

9 Brownian Motion: Construction

9 Brownian Motion: Construction 9 Brownian Motion: Construction 9.1 Definition and Heuristics The central limit theorem states that the standard Gaussian distribution arises as the weak limit of the rescaled partial sums S n / p n of

More information

arxiv: v2 [math.pr] 22 Aug 2009

arxiv: v2 [math.pr] 22 Aug 2009 On the structure of Gaussian random variables arxiv:97.25v2 [math.pr] 22 Aug 29 Ciprian A. Tudor SAMOS/MATISSE, Centre d Economie de La Sorbonne, Université de Panthéon-Sorbonne Paris, 9, rue de Tolbiac,

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION. September 2017

Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION. September 2017 Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION By Degui Li, Peter C. B. Phillips, and Jiti Gao September 017 COWLES FOUNDATION DISCUSSION PAPER NO.

More information

In Memory of Wenbo V Li s Contributions

In Memory of Wenbo V Li s Contributions In Memory of Wenbo V Li s Contributions Qi-Man Shao The Chinese University of Hong Kong qmshao@cuhk.edu.hk The research is partially supported by Hong Kong RGC GRF 403513 Outline Lower tail probabilities

More information

NUMERICAL ANALYSIS OF STOCHASTIC DIFFERENTIAL EQUATIONS WITH EXPLOSIONS. 1. Introduction

NUMERICAL ANALYSIS OF STOCHASTIC DIFFERENTIAL EQUATIONS WITH EXPLOSIONS. 1. Introduction NUMERICAL ANALYSIS OF STOCHASTIC DIFFERENTIAL EQUATIONS WITH EXPLOSIONS JUAN DÁVILA, JULIAN FERNÁNDEZ BONDER, PABLO GROISMAN, JULIO D. ROSSI, AND MARIELA SUED Abstract. Stochastic ordinary differential

More information

Selected Exercises on Expectations and Some Probability Inequalities

Selected Exercises on Expectations and Some Probability Inequalities Selected Exercises on Expectations and Some Probability Inequalities # If E(X 2 ) = and E X a > 0, then P( X λa) ( λ) 2 a 2 for 0 < λ

More information

Brownian Motion and An Introduction to Stochastic Integration

Brownian Motion and An Introduction to Stochastic Integration Brownian Motion and An Introduction to Stochastic Integration Arturo Fernandez University of California, Berkeley Statistics 157: Topics In Stochastic Processes Seminar March 10, 2011 1 Introduction In

More information

STAT Sample Problem: General Asymptotic Results

STAT Sample Problem: General Asymptotic Results STAT331 1-Sample Problem: General Asymptotic Results In this unit we will consider the 1-sample problem and prove the consistency and asymptotic normality of the Nelson-Aalen estimator of the cumulative

More information

Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2)

Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2) Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2) Statistical analysis is based on probability theory. The fundamental object in probability theory is a probability space,

More information

Stochastic Differential Equations. Introduction to Stochastic Models for Pollutants Dispersion, Epidemic and Finance

Stochastic Differential Equations. Introduction to Stochastic Models for Pollutants Dispersion, Epidemic and Finance Stochastic Differential Equations. Introduction to Stochastic Models for Pollutants Dispersion, Epidemic and Finance 15th March-April 19th, 211 at Lappeenranta University of Technology(LUT)-Finland By

More information

1. Stochastic Process

1. Stochastic Process HETERGENEITY IN QUANTITATIVE MACROECONOMICS @ TSE OCTOBER 17, 216 STOCHASTIC CALCULUS BASICS SANG YOON (TIM) LEE Very simple notes (need to add references). It is NOT meant to be a substitute for a real

More information

MFE6516 Stochastic Calculus for Finance

MFE6516 Stochastic Calculus for Finance MFE6516 Stochastic Calculus for Finance William C. H. Leon Nanyang Business School December 11, 2017 1 / 51 William C. H. Leon MFE6516 Stochastic Calculus for Finance 1 Symmetric Random Walks Scaled Symmetric

More information

Problems 5: Continuous Markov process and the diffusion equation

Problems 5: Continuous Markov process and the diffusion equation Problems 5: Continuous Markov process and the diffusion equation Roman Belavkin Middlesex University Question Give a definition of Markov stochastic process. What is a continuous Markov process? Answer:

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

Malliavin calculus and central limit theorems

Malliavin calculus and central limit theorems Malliavin calculus and central limit theorems David Nualart Department of Mathematics Kansas University Seminar on Stochastic Processes 2017 University of Virginia March 8-11 2017 David Nualart (Kansas

More information

Universal examples. Chapter The Bernoulli process

Universal examples. Chapter The Bernoulli process Chapter 1 Universal examples 1.1 The Bernoulli process First description: Bernoulli random variables Y i for i = 1, 2, 3,... independent with P [Y i = 1] = p and P [Y i = ] = 1 p. Second description: Binomial

More information

LogFeller et Ray Knight

LogFeller et Ray Knight LogFeller et Ray Knight Etienne Pardoux joint work with V. Le and A. Wakolbinger Etienne Pardoux (Marseille) MANEGE, 18/1/1 1 / 16 Feller s branching diffusion with logistic growth We consider the diffusion

More information

Jae Gil Choi and Young Seo Park

Jae Gil Choi and Young Seo Park Kangweon-Kyungki Math. Jour. 11 (23), No. 1, pp. 17 3 TRANSLATION THEOREM ON FUNCTION SPACE Jae Gil Choi and Young Seo Park Abstract. In this paper, we use a generalized Brownian motion process to define

More information

STAT 331. Martingale Central Limit Theorem and Related Results

STAT 331. Martingale Central Limit Theorem and Related Results STAT 331 Martingale Central Limit Theorem and Related Results In this unit we discuss a version of the martingale central limit theorem, which states that under certain conditions, a sum of orthogonal

More information

Large Sample Theory. Consider a sequence of random variables Z 1, Z 2,..., Z n. Convergence in probability: Z n

Large Sample Theory. Consider a sequence of random variables Z 1, Z 2,..., Z n. Convergence in probability: Z n Large Sample Theory In statistics, we are interested in the properties of particular random variables (or estimators ), which are functions of our data. In ymptotic analysis, we focus on describing the

More information

MA 8101 Stokastiske metoder i systemteori

MA 8101 Stokastiske metoder i systemteori MA 811 Stokastiske metoder i systemteori AUTUMN TRM 3 Suggested solution with some extra comments The exam had a list of useful formulae attached. This list has been added here as well. 1 Problem In this

More information

Hardy-Stein identity and Square functions

Hardy-Stein identity and Square functions Hardy-Stein identity and Square functions Daesung Kim (joint work with Rodrigo Bañuelos) Department of Mathematics Purdue University March 28, 217 Daesung Kim (Purdue) Hardy-Stein identity UIUC 217 1 /

More information

Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales

Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales Prakash Balachandran Department of Mathematics Duke University April 2, 2008 1 Review of Discrete-Time

More information

ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS

ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS PORTUGALIAE MATHEMATICA Vol. 55 Fasc. 4 1998 ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS C. Sonoc Abstract: A sufficient condition for uniqueness of solutions of ordinary

More information

Definition: Lévy Process. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 2: Lévy Processes. Theorem

Definition: Lévy Process. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 2: Lévy Processes. Theorem Definition: Lévy Process Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 2: Lévy Processes David Applebaum Probability and Statistics Department, University of Sheffield, UK July

More information

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Noèlia Viles Cuadros BCAM- Basque Center of Applied Mathematics with Prof. Enrico

More information

1.1 Definition of BM and its finite-dimensional distributions

1.1 Definition of BM and its finite-dimensional distributions 1 Brownian motion Brownian motion as a physical phenomenon was discovered by botanist Robert Brown as he observed a chaotic motion of particles suspended in water. The rigorous mathematical model of BM

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Introduction to Malliavin calculus and its applications Lecture 3: Clark-Ocone formula David Nualart Department of Mathematics Kansas University University of Wyoming Summer School 214 David Nualart

More information

Maximum Likelihood Drift Estimation for Gaussian Process with Stationary Increments

Maximum Likelihood Drift Estimation for Gaussian Process with Stationary Increments Austrian Journal of Statistics April 27, Volume 46, 67 78. AJS http://www.ajs.or.at/ doi:.773/ajs.v46i3-4.672 Maximum Likelihood Drift Estimation for Gaussian Process with Stationary Increments Yuliya

More information

Time : 3 Hours Max. Marks: 60. Instructions : Answer any two questions from each Module. All questions carry equal marks. Module I

Time : 3 Hours Max. Marks: 60. Instructions : Answer any two questions from each Module. All questions carry equal marks. Module I Reg. No.:... Name:... First Semester M.Tech. Degree Examination, March 4 ( Scheme) Branch: ELECTRONICS AND COMMUNICATION Signal Processing( Admission) TSC : Random Processes and Applications (Solutions

More information

Optimal stopping of a risk process when claims are covered immediately

Optimal stopping of a risk process when claims are covered immediately Optimal stopping of a risk process when claims are covered immediately Bogdan Muciek Krzysztof Szajowski Abstract The optimal stopping problem for the risk process with interests rates and when claims

More information