Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010

Size: px
Start display at page:

Download "Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010"

Transcription

1 1 Stochastic Calculus Notes Abril 13 th, 1 As we have seen in previous lessons, the stochastic integral with respect to the Brownian motion shows a behavior different from the classical Riemann-Stieltjes integral, and this difference pops up thanks to the non-null limit of the following Riemann sum [B(t k ) B(t k 1 ) L t, (1) In the following section we prove that the L convergence in (1) holds and that its limit is given by the quadratic variation of the Brownian motion over the interval [, t 1.1 Total Variation and Quadratic Variation Definition 1. Given a function f(t), t, the total variation of f over the interval [, t, V t (f), is defined as V t (f) = sup f(t k ) f(t k 1 ). () Π P If V t (f) < for any t we say that f is of Bounded Variation and we denote it by writing f BV. Definition. Given a function f(t), t, the quadratic variation of f over the interval [, t, Q t (f), is defined as Q t (f) = sup f(t k ) f(t k 1 ). (3) Π P Assuming that f is a continuous function, by noticing that for any Π P f(t k ) f(t k 1 ) f(t k) f(t k 1 ) max 1 k f(t k ) f(t k 1 ) we have that if f BV then Q t (f) and that any function with non-zero quadratic variation has infinite total variation. Remark 1. In case of a stochastic process {X(t), t }, the definitions for total variation and quadratic variation stay the same with the only remark that the limits are intended in probability sense. Proposition 1. The quadratic variation function of the standard Brownian motion, B(t), is given by Q t (B) = t. Proof. Given that E[[B(t k ) B(t k 1 ) = Var[B(t k ) B(t k 1 ) = (t k t k 1 ) we immediately get E [B(t k ) B(t k 1 ) = t. It is enough to prove that Var [B(t k ) B(t k 1 ) as to get that the convergence in (1) holds true. Universidad Carlos III de Madrid 1

2 We have Var [B(t k ) B(t k 1 ) = Var [ [B(t k ) B(t k 1 ) = [t k t k 1 Therefore Var [B(t k ) B(t k 1 ) Q t (t) =, where in the last equality we used the fact that the linear function t has finite total variation V t (t) = t and therefore for the remark above zero quadratic variation. Noticing that the L -convergence implies the convergence in probability, we get the result. 1. The Itô integral - Properties Definition 3. Given the standard Brownian motion {B(t), t } and an adapted stochastic process {X(t), t } satisfying the condition the Itô integral, I t (X) is defined as I t (X) = where the limit is meant in L sense. X(s) db(s) = E[X (s)ds < lim Proposition. The Itô integral shares the following properties [ a) E X(s) db(s) = [ b) Var c) X(s) db(s) = E[X (s) ds X(t k 1 )[B(t k ) B(t k 1 ) a 1 X 1 (s) + a X (s) db(s) = a 1 X 1 (s) db(s) + a X (s) db(s) d) M(t) = M() + and In addition it is easy to prove that X(s) db(s) is a continuous Martingale (Itô isometry) (Linearity) (Martingale property) a db(s) = a B(t) (4) B(s) db(s) = B (t) t. (5) Definition 4. An Itô process, {X(t), t T }, is any stochastic process that may be written in the following form X(t) = X() + g(s) ds + where g(ω, s) and h(ω, s) are two adapted stochastic processes such that P{ P{ T T g(s) ds < } = 1 h(s) ds < } = 1. h(s) db(s) (6) Universidad Carlos III de Madrid

3 Equation (6) can be written in differential form in the following way dx(t) = g(t) dt + h(t) db(t) (7) The integration of a deterministic function with respect to the Brownian motion yields to a Gaussian process whose parameter functions are easy to compute, as it is shown in the following proposition. Proposition 3. Given a deterministic function f(t) the Itô process I t (f) = f(u) db(u) is a Gaussian process with zero mean function and covariance function [ s Cov(I t (f), I s (f)) = E f(τ) f(σ) db(σ)db(τ) = s f (u)du. Proof. Use the Itô isometry and the independence of the increments of the Brownian motion. An important formula to compute the values of the stochastic integrals is the Itô formula given in the following proposition. Proposition 4 (Itô Lemma). Given an Itô process {X(t), t } and a function f(t, x) C (R +, R) then the following relation holds true f(t, X(t)) = f(, X()) + f t (s, X(s)) ds + f x (s, X(s)) dx(s) + 1 f xx (s, X(s)) (dx(s)), (8) where f t (t, x) = t f(t, x), f x (t, x) = x f(t, x) and f xx (t, x) = xf(t, x). In the formula above dx(s) is given by equation (7) while (dx(s)) = h (s) ds with h(t) being the function appearing in the definition of X(t) in (6). (dx(s)) can be formally obtained by computing dx(s) dx(s) from equation(7) and using the following resuming table dt db(t) dt db(t) dt In differential form equation (8) is written in the following way df(t, X(t)) = f t (t, X(t)) dt + f x (t, X(t)) dx(t) + 1 f xx(t, X(t)) (dx(t)). (9) Remark. For the case X(t) is the standard Brownian motion, the Itô formula (8) simplifies in and in differential form f(t, B(t)) = f(, ) + [f t (s, B(s)) + 1 f xx(s, B(s)) ds + f x (s, B(s)) db(s) (1) df(t, B(t)) = [f t (t, B(t)) + 1 f xx(t, B(t)) dt + f x (t, B(t)) db(t). (11) Example 1. Using Itô formula it is easy to compute the value of B(s) db(s). Choosing f(t, x) = x, such that f t (t, x) =, f x (t, x) = x and f xx (t, x) =, by (1) we get and therefore that agrees with (5). B (t) = ds + B(s) db(s) = B (t) B(s) db(s) t Universidad Carlos III de Madrid 3

4 1.3 Chain Rule The following propositions underline the differences between the stochastic integral and the classical Riemann-Stiltjes integral. Proposition 5 (Riemann-Stiltjes Chain Rule). Given a continuous differentiable function f C 1 (R) and a BF function {x(t), t }, the following relation holds true f(x(t)) = f(x()) + f (x(s)) dx(s). Proposition 6 (Itô s Chain Rule). Given a continuous twice differentiable function f C (R) and {X(t), t } a function with finite quadratic variation, the following relation holds true f(x(t)) = f(x()) + f (X(s)) dx(s) + 1 Application of the Stochastic Calculus.1 The Geometric Brownian Motion In this section we look for the solution of the following SDE dx(t) X(t) f (X(s)) (dx(s)) = µ dt + σ db(t) (1) that can also be rewritten as dx(t) = µ X(t) dt + σ X(t) db(t). (13) We use as test function X(t) = f(t, B(t)) and applying the Itô formula (9) we get df(t, B(t)) = [f t (t, B(t)) + 1 f xx(t, B(t)) dt + f x (t, B(t)) db(t). (14) Matching the coefficients of dt and db(t) we obtain and taking the derivative of (16) and substituting it in (15) we get f t (t, x) = [µ σ f(t, x) µf(x, t) = f t (t, x) + 1 f xx(t, x) (15) σf(x, t) = f x (t, x) (16) (17) that solved gives Substituting last expression in (16) we get that has solution ( f(t, x) = f(, x) e µ σ f x (, x) = σf(, x) f(, x) = f(, )e σ x. ) t. Finally the solution of (13) is given by ( X(t) = f(t, B(t)) = X() e µ σ ) t+σ B(t). Universidad Carlos III de Madrid 4

5 Alternative derivation. Another way to get a solution of (16) is by computing the correct differential of the function ln(x(t) that differs from dx(t)/x(t) of the classical calculus. Using Itô formula (9) we have that d ln(x(t)) = dx(t) X(t) (dx(t)) X (t), and substituting the expressions of dx(t) and (dx(t)) obtained from (13) dx(t) = µ X(t) dt + σ X(t) db(t) (dx(t)) = µ X (t) (dt) + σ X (t) (db(t)) + µσx (t) db(t) dt = σ X (t) dt we obtain that integrated yields again to d ln(x(t)) = ( X(t) = X() e ) (µ σ dt + σ db(t) µ σ ) t+σ B(t).. The Uhlenbeck-Ornstein process In this section we look for the solution, X(t), of the following SDE dx(t) = α X(t) dt + σ db(t), with α and σ two positive constants. [ Use the test function X(t) = f(t) = a(t) c + t b(s) db(s) whose differential is equal to Matching the coefficients of dt and db(t), we get that solved give and setting f() = X() we finally obtain dx(t) = a (t) X(t) dt + a(t) b(t) db(t). a(t) a (t) a(t) = α and a(t) b(t) = σ a(t) = a() e α t and b(t) = σ a(t) = σ a() eα t X(t) = X() e α t + σ e α(t s) db(s). Using Proposition 3, we obtain that if X() is independent of B(t) and normally distributed (including the deterministic degenerate normal distribution), then X(t) is a Gaussian process with mean and covariance functions E[X(t) = E[X() e α t as t s Cov[X(t), X(s) = Var[X() e α (t+s) + σ e α(t+s u) du Var[X(t) = Var[X() e α t + σ e α(t u) du σ α as t Therefore we see that the O-U process admits a stationary distribution and we can construct a stationary version of the process by setting X() N(, σ α ). Universidad Carlos III de Madrid 5

6 .3 The Brownian Bridge In this section we look for the solution, X(t), of the following SDE with X() =. Use the test function X(t) = f(t) = a(t) Matching the coefficients of dt and db(t), we get dx(t) = X(t) dt + db(t), [ c + b(s) db(s) whose differential is equal to dx(t) = a (t) X(t) dt + a(t) b(t) db(t). a(t) a (t) a(t) = 1 and a(t) b(t) = 1 that solved give and setting X() = we finally obtain a(t) = and b(t) = 1 X(t) = db(s). (18) 1 s Using Proposition 3, we obtain that X(t) is a Gaussian process with mean and covariance functions E[X(t) = and Cov[X(t), X(s) = ( s)(t s) that coincide with the ones of the Brownian Bridge. Since two Gaussian processes with identical mean and covariance functions are equal in distribution we see that equation (18) gives an alternative representation of the Brownian Bridge process. Universidad Carlos III de Madrid 6

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012 1 Stochastic Calculus Notes March 9 th, 1 In 19, Bachelier proposed for the Paris stock exchange a model for the fluctuations affecting the price X(t) of an asset that was given by the Brownian motion.

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have 362 Problem Hints and Solutions sup g n (ω, t) g(ω, t) sup g(ω, s) g(ω, t) µ n (ω). t T s,t: s t 1/n By the uniform continuity of t g(ω, t) on [, T], one has for each ω that µ n (ω) as n. Two applications

More information

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications The multidimensional Ito Integral and the multidimensional Ito Formula Eric Mu ller June 1, 215 Seminar on Stochastic Geometry and its applications page 2 Seminar on Stochastic Geometry and its applications

More information

Stochastic Calculus February 11, / 33

Stochastic Calculus February 11, / 33 Martingale Transform M n martingale with respect to F n, n =, 1, 2,... σ n F n (σ M) n = n 1 i= σ i(m i+1 M i ) is a Martingale E[(σ M) n F n 1 ] n 1 = E[ σ i (M i+1 M i ) F n 1 ] i= n 2 = σ i (M i+1 M

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Generalized Gaussian Bridges of Prediction-Invertible Processes

Generalized Gaussian Bridges of Prediction-Invertible Processes Generalized Gaussian Bridges of Prediction-Invertible Processes Tommi Sottinen 1 and Adil Yazigi University of Vaasa, Finland Modern Stochastics: Theory and Applications III September 1, 212, Kyiv, Ukraine

More information

From Random Variables to Random Processes. From Random Variables to Random Processes

From Random Variables to Random Processes. From Random Variables to Random Processes Random Processes In probability theory we study spaces (Ω, F, P) where Ω is the space, F are all the sets to which we can measure its probability and P is the probability. Example: Toss a die twice. Ω

More information

Lecture 21: Stochastic Differential Equations

Lecture 21: Stochastic Differential Equations : Stochastic Differential Equations In this lecture, we study stochastic differential equations. See Chapter 9 of [3] for a thorough treatment of the materials in this section. 1. Stochastic differential

More information

A Short Introduction to Diffusion Processes and Ito Calculus

A Short Introduction to Diffusion Processes and Ito Calculus A Short Introduction to Diffusion Processes and Ito Calculus Cédric Archambeau University College, London Center for Computational Statistics and Machine Learning c.archambeau@cs.ucl.ac.uk January 24,

More information

Lecture 4: Ito s Stochastic Calculus and SDE. Seung Yeal Ha Dept of Mathematical Sciences Seoul National University

Lecture 4: Ito s Stochastic Calculus and SDE. Seung Yeal Ha Dept of Mathematical Sciences Seoul National University Lecture 4: Ito s Stochastic Calculus and SDE Seung Yeal Ha Dept of Mathematical Sciences Seoul National University 1 Preliminaries What is Calculus? Integral, Differentiation. Differentiation 2 Integral

More information

GAUSSIAN PROCESSES; KOLMOGOROV-CHENTSOV THEOREM

GAUSSIAN PROCESSES; KOLMOGOROV-CHENTSOV THEOREM GAUSSIAN PROCESSES; KOLMOGOROV-CHENTSOV THEOREM STEVEN P. LALLEY 1. GAUSSIAN PROCESSES: DEFINITIONS AND EXAMPLES Definition 1.1. A standard (one-dimensional) Wiener process (also called Brownian motion)

More information

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p Doob s inequality Let X(t) be a right continuous submartingale with respect to F(t), t 1 P(sup s t X(s) λ) 1 λ {sup s t X(s) λ} X + (t)dp 2 For 1 < p

More information

n E(X t T n = lim X s Tn = X s

n E(X t T n = lim X s Tn = X s Stochastic Calculus Example sheet - Lent 15 Michael Tehranchi Problem 1. Let X be a local martingale. Prove that X is a uniformly integrable martingale if and only X is of class D. Solution 1. If If direction:

More information

Stochastic Integration and Continuous Time Models

Stochastic Integration and Continuous Time Models Chapter 3 Stochastic Integration and Continuous Time Models 3.1 Brownian Motion The single most important continuous time process in the construction of financial models is the Brownian motion process.

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

Clases 11-12: Integración estocástica.

Clases 11-12: Integración estocástica. Clases 11-12: Integración estocástica. Fórmula de Itô * 3 de octubre de 217 Índice 1. Introduction to Stochastic integrals 1 2. Stochastic integration 2 3. Simulation of stochastic integrals: Euler scheme

More information

Lecture 12: Diffusion Processes and Stochastic Differential Equations

Lecture 12: Diffusion Processes and Stochastic Differential Equations Lecture 12: Diffusion Processes and Stochastic Differential Equations 1. Diffusion Processes 1.1 Definition of a diffusion process 1.2 Examples 2. Stochastic Differential Equations SDE) 2.1 Stochastic

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

SDE Coefficients. March 4, 2008

SDE Coefficients. March 4, 2008 SDE Coefficients March 4, 2008 The following is a summary of GARD sections 3.3 and 6., mainly as an overview of the two main approaches to creating a SDE model. Stochastic Differential Equations (SDE)

More information

Stochastic Differential Equations

Stochastic Differential Equations Chapter 5 Stochastic Differential Equations We would like to introduce stochastic ODE s without going first through the machinery of stochastic integrals. 5.1 Itô Integrals and Itô Differential Equations

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

LAN property for sde s with additive fractional noise and continuous time observation

LAN property for sde s with additive fractional noise and continuous time observation LAN property for sde s with additive fractional noise and continuous time observation Eulalia Nualart (Universitat Pompeu Fabra, Barcelona) joint work with Samy Tindel (Purdue University) Vlad s 6th birthday,

More information

Stationary independent increments. 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process.

Stationary independent increments. 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process. Stationary independent increments 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process. 2. If each set of increments, corresponding to non-overlapping collection of

More information

Stochastic Calculus (Lecture #3)

Stochastic Calculus (Lecture #3) Stochastic Calculus (Lecture #3) Siegfried Hörmann Université libre de Bruxelles (ULB) Spring 2014 Outline of the course 1. Stochastic processes in continuous time. 2. Brownian motion. 3. Itô integral:

More information

An adaptive numerical scheme for fractional differential equations with explosions

An adaptive numerical scheme for fractional differential equations with explosions An adaptive numerical scheme for fractional differential equations with explosions Johanna Garzón Departamento de Matemáticas, Universidad Nacional de Colombia Seminario de procesos estocásticos Jointly

More information

Stochastic Integration and Stochastic Differential Equations: a gentle introduction

Stochastic Integration and Stochastic Differential Equations: a gentle introduction Stochastic Integration and Stochastic Differential Equations: a gentle introduction Oleg Makhnin New Mexico Tech Dept. of Mathematics October 26, 27 Intro: why Stochastic? Brownian Motion/ Wiener process

More information

Lecture 21 Representations of Martingales

Lecture 21 Representations of Martingales Lecture 21: Representations of Martingales 1 of 11 Course: Theory of Probability II Term: Spring 215 Instructor: Gordan Zitkovic Lecture 21 Representations of Martingales Right-continuous inverses Let

More information

(B(t i+1 ) B(t i )) 2

(B(t i+1 ) B(t i )) 2 ltcc5.tex Week 5 29 October 213 Ch. V. ITÔ (STOCHASTIC) CALCULUS. WEAK CONVERGENCE. 1. Quadratic Variation. A partition π n of [, t] is a finite set of points t ni such that = t n < t n1

More information

Theoretical Tutorial Session 2

Theoretical Tutorial Session 2 1 / 36 Theoretical Tutorial Session 2 Xiaoming Song Department of Mathematics Drexel University July 27, 216 Outline 2 / 36 Itô s formula Martingale representation theorem Stochastic differential equations

More information

MA8109 Stochastic Processes in Systems Theory Autumn 2013

MA8109 Stochastic Processes in Systems Theory Autumn 2013 Norwegian University of Science and Technology Department of Mathematical Sciences MA819 Stochastic Processes in Systems Theory Autumn 213 1 MA819 Exam 23, problem 3b This is a linear equation of the form

More information

1.1 Definition of BM and its finite-dimensional distributions

1.1 Definition of BM and its finite-dimensional distributions 1 Brownian motion Brownian motion as a physical phenomenon was discovered by botanist Robert Brown as he observed a chaotic motion of particles suspended in water. The rigorous mathematical model of BM

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

STOCHASTIC CALCULUS JASON MILLER AND VITTORIA SILVESTRI

STOCHASTIC CALCULUS JASON MILLER AND VITTORIA SILVESTRI STOCHASTIC CALCULUS JASON MILLER AND VITTORIA SILVESTRI Contents Preface 1 1. Introduction 1 2. Preliminaries 4 3. Local martingales 1 4. The stochastic integral 16 5. Stochastic calculus 36 6. Applications

More information

Rough paths methods 4: Application to fbm

Rough paths methods 4: Application to fbm Rough paths methods 4: Application to fbm Samy Tindel Purdue University University of Aarhus 2016 Samy T. (Purdue) Rough Paths 4 Aarhus 2016 1 / 67 Outline 1 Main result 2 Construction of the Levy area:

More information

The Wiener Itô Chaos Expansion

The Wiener Itô Chaos Expansion 1 The Wiener Itô Chaos Expansion The celebrated Wiener Itô chaos expansion is fundamental in stochastic analysis. In particular, it plays a crucial role in the Malliavin calculus as it is presented in

More information

An Overview of the Martingale Representation Theorem

An Overview of the Martingale Representation Theorem An Overview of the Martingale Representation Theorem Nuno Azevedo CEMAPRE - ISEG - UTL nazevedo@iseg.utl.pt September 3, 21 Nuno Azevedo (CEMAPRE - ISEG - UTL) LXDS Seminar September 3, 21 1 / 25 Background

More information

Introduction to numerical simulations for Stochastic ODEs

Introduction to numerical simulations for Stochastic ODEs Introduction to numerical simulations for Stochastic ODEs Xingye Kan Illinois Institute of Technology Department of Applied Mathematics Chicago, IL 60616 August 9, 2010 Outline 1 Preliminaries 2 Numerical

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

On pathwise stochastic integration

On pathwise stochastic integration On pathwise stochastic integration Rafa l Marcin Lochowski Afican Institute for Mathematical Sciences, Warsaw School of Economics UWC seminar Rafa l Marcin Lochowski (AIMS, WSE) On pathwise stochastic

More information

On a class of stochastic differential equations in a financial network model

On a class of stochastic differential equations in a financial network model 1 On a class of stochastic differential equations in a financial network model Tomoyuki Ichiba Department of Statistics & Applied Probability, Center for Financial Mathematics and Actuarial Research, University

More information

Introduction to Diffusion Processes.

Introduction to Diffusion Processes. Introduction to Diffusion Processes. Arka P. Ghosh Department of Statistics Iowa State University Ames, IA 511-121 apghosh@iastate.edu (515) 294-7851. February 1, 21 Abstract In this section we describe

More information

In terms of measures: Exercise 1. Existence of a Gaussian process: Theorem 2. Remark 3.

In terms of measures: Exercise 1. Existence of a Gaussian process: Theorem 2. Remark 3. 1. GAUSSIAN PROCESSES A Gaussian process on a set T is a collection of random variables X =(X t ) t T on a common probability space such that for any n 1 and any t 1,...,t n T, the vector (X(t 1 ),...,X(t

More information

Convoluted Brownian motions: a class of remarkable Gaussian processes

Convoluted Brownian motions: a class of remarkable Gaussian processes Convoluted Brownian motions: a class of remarkable Gaussian processes Sylvie Roelly Random models with applications in the natural sciences Bogotá, December 11-15, 217 S. Roelly (Universität Potsdam) 1

More information

Partial Differential Equations with Applications to Finance Seminar 1: Proving and applying Dynkin s formula

Partial Differential Equations with Applications to Finance Seminar 1: Proving and applying Dynkin s formula Partial Differential Equations with Applications to Finance Seminar 1: Proving and applying Dynkin s formula Group 4: Bertan Yilmaz, Richard Oti-Aboagye and Di Liu May, 15 Chapter 1 Proving Dynkin s formula

More information

Interest Rate Models:

Interest Rate Models: 1/17 Interest Rate Models: from Parametric Statistics to Infinite Dimensional Stochastic Analysis René Carmona Bendheim Center for Finance ORFE & PACM, Princeton University email: rcarmna@princeton.edu

More information

LANGEVIN THEORY OF BROWNIAN MOTION. Contents. 1 Langevin theory. 1 Langevin theory 1. 2 The Ornstein-Uhlenbeck process 8

LANGEVIN THEORY OF BROWNIAN MOTION. Contents. 1 Langevin theory. 1 Langevin theory 1. 2 The Ornstein-Uhlenbeck process 8 Contents LANGEVIN THEORY OF BROWNIAN MOTION 1 Langevin theory 1 2 The Ornstein-Uhlenbeck process 8 1 Langevin theory Einstein (as well as Smoluchowski) was well aware that the theory of Brownian motion

More information

On Stochastic Adaptive Control & its Applications. Bozenna Pasik-Duncan University of Kansas, USA

On Stochastic Adaptive Control & its Applications. Bozenna Pasik-Duncan University of Kansas, USA On Stochastic Adaptive Control & its Applications Bozenna Pasik-Duncan University of Kansas, USA ASEAS Workshop, AFOSR, 23-24 March, 2009 1. Motivation: Work in the 1970's 2. Adaptive Control of Continuous

More information

Malliavin calculus and central limit theorems

Malliavin calculus and central limit theorems Malliavin calculus and central limit theorems David Nualart Department of Mathematics Kansas University Seminar on Stochastic Processes 2017 University of Virginia March 8-11 2017 David Nualart (Kansas

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Maximum Process Problems in Optimal Control Theory

Maximum Process Problems in Optimal Control Theory J. Appl. Math. Stochastic Anal. Vol. 25, No., 25, (77-88) Research Report No. 423, 2, Dept. Theoret. Statist. Aarhus (2 pp) Maximum Process Problems in Optimal Control Theory GORAN PESKIR 3 Given a standard

More information

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Simo Särkkä Aalto University, Finland (visiting at Oxford University, UK) November 13, 2013 Simo Särkkä (Aalto) Lecture 1: Pragmatic

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 197

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 197 MATH 56A SPRING 8 STOCHASTIC PROCESSES 197 9.3. Itô s formula. First I stated the theorem. Then I did a simple example to make sure we understand what it says. Then I proved it. The key point is Lévy s

More information

Part III Stochastic Calculus and Applications

Part III Stochastic Calculus and Applications Part III Stochastic Calculus and Applications Based on lectures by R. Bauerschmidt Notes taken by Dexter Chua Lent 218 These notes are not endorsed by the lecturers, and I have modified them often significantly

More information

Maximum Likelihood Drift Estimation for Gaussian Process with Stationary Increments

Maximum Likelihood Drift Estimation for Gaussian Process with Stationary Increments Austrian Journal of Statistics April 27, Volume 46, 67 78. AJS http://www.ajs.or.at/ doi:.773/ajs.v46i3-4.672 Maximum Likelihood Drift Estimation for Gaussian Process with Stationary Increments Yuliya

More information

Numerical treatment of stochastic delay differential equations

Numerical treatment of stochastic delay differential equations Numerical treatment of stochastic delay differential equations Evelyn Buckwar Department of Mathematics Heriot-Watt University, Edinburgh Evelyn Buckwar Roma, 16.10.2007 Overview An example: machine chatter

More information

Exercises in stochastic analysis

Exercises in stochastic analysis Exercises in stochastic analysis Franco Flandoli, Mario Maurelli, Dario Trevisan The exercises with a P are those which have been done totally or partially) in the previous lectures; the exercises with

More information

MSH7 - APPLIED PROBABILITY AND STOCHASTIC CALCULUS. Contents

MSH7 - APPLIED PROBABILITY AND STOCHASTIC CALCULUS. Contents MSH7 - APPLIED PROBABILITY AND STOCHASTIC CALCULUS ANDREW TULLOCH Contents 1. Lecture 1 - Tuesday 1 March 2 2. Lecture 2 - Thursday 3 March 2 2.1. Concepts of convergence 2 3. Lecture 3 - Tuesday 8 March

More information

for all f satisfying E[ f(x) ] <.

for all f satisfying E[ f(x) ] <. . Let (Ω, F, P ) be a probability space and D be a sub-σ-algebra of F. An (H, H)-valued random variable X is independent of D if and only if P ({X Γ} D) = P {X Γ}P (D) for all Γ H and D D. Prove that if

More information

Stochastic Calculus Made Easy

Stochastic Calculus Made Easy Stochastic Calculus Made Easy Most of us know how standard Calculus works. We know how to differentiate, how to integrate etc. But stochastic calculus is a totally different beast to tackle; we are trying

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 3. Calculaus in Deterministic and Stochastic Environments Steve Yang Stevens Institute of Technology 01/31/2012 Outline 1 Modeling Random Behavior

More information

STAT 331. Martingale Central Limit Theorem and Related Results

STAT 331. Martingale Central Limit Theorem and Related Results STAT 331 Martingale Central Limit Theorem and Related Results In this unit we discuss a version of the martingale central limit theorem, which states that under certain conditions, a sum of orthogonal

More information

Stochastic Differential Equations

Stochastic Differential Equations CHAPTER 1 Stochastic Differential Equations Consider a stochastic process X t satisfying dx t = bt, X t,w t dt + σt, X t,w t dw t. 1.1 Question. 1 Can we obtain the existence and uniqueness theorem for

More information

On the relation between the Smith-Wilson method and integrated Ornstein-Uhlenbeck processes

On the relation between the Smith-Wilson method and integrated Ornstein-Uhlenbeck processes Mathematical Statistics Stockholm University On the relation between the Smith-Wilson method and integrated Ornstein-Uhlenbeck processes Håkan Andersson Mathias Lindholm Research Report 213:1 ISSN 165-377

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Lecture notes for Numerik IVc - Numerics for Stochastic Processes, Wintersemester 2012/2013. Instructor: Prof. Carsten Hartmann

Lecture notes for Numerik IVc - Numerics for Stochastic Processes, Wintersemester 2012/2013. Instructor: Prof. Carsten Hartmann Lecture notes for Numerik IVc - Numerics for Stochastic Processes, Wintersemester 212/213. Instructor: Prof. Carsten Hartmann Scribe: H. Lie December 15, 215 (updated version) Contents 1 Day 1, 16.1.212:

More information

Stability of Stochastic Differential Equations

Stability of Stochastic Differential Equations Lyapunov stability theory for ODEs s Stability of Stochastic Differential Equations Part 1: Introduction Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH December 2010

More information

Stochastic optimal control with rough paths

Stochastic optimal control with rough paths Stochastic optimal control with rough paths Paul Gassiat TU Berlin Stochastic processes and their statistics in Finance, Okinawa, October 28, 2013 Joint work with Joscha Diehl and Peter Friz Introduction

More information

Stochastic Differential Equations

Stochastic Differential Equations Chapter 19 Stochastic Differential Equations Section 19.1 gives two easy examples of Itô integrals. The second one shows that there s something funny about change of variables, or if you like about the

More information

Lecture 4: Introduction to stochastic processes and stochastic calculus

Lecture 4: Introduction to stochastic processes and stochastic calculus Lecture 4: Introduction to stochastic processes and stochastic calculus Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London

More information

DISCRETE-TIME STOCHASTIC MODELS, SDEs, AND NUMERICAL METHODS. Ed Allen. NIMBioS Tutorial: Stochastic Models With Biological Applications

DISCRETE-TIME STOCHASTIC MODELS, SDEs, AND NUMERICAL METHODS. Ed Allen. NIMBioS Tutorial: Stochastic Models With Biological Applications DISCRETE-TIME STOCHASTIC MODELS, SDEs, AND NUMERICAL METHODS Ed Allen NIMBioS Tutorial: Stochastic Models With Biological Applications University of Tennessee, Knoxville March, 2011 ACKNOWLEDGEMENT I thank

More information

ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER

ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER GERARDO HERNANDEZ-DEL-VALLE arxiv:1209.2411v1 [math.pr] 10 Sep 2012 Abstract. This work deals with first hitting time densities of Ito processes whose

More information

Harnack Inequalities and Applications for Stochastic Equations

Harnack Inequalities and Applications for Stochastic Equations p. 1/32 Harnack Inequalities and Applications for Stochastic Equations PhD Thesis Defense Shun-Xiang Ouyang Under the Supervision of Prof. Michael Röckner & Prof. Feng-Yu Wang March 6, 29 p. 2/32 Outline

More information

Topics in fractional Brownian motion

Topics in fractional Brownian motion Topics in fractional Brownian motion Esko Valkeila Spring School, Jena 25.3. 2011 We plan to discuss the following items during these lectures: Fractional Brownian motion and its properties. Topics in

More information

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Noèlia Viles Cuadros BCAM- Basque Center of Applied Mathematics with Prof. Enrico

More information

arxiv: v2 [math.pr] 22 Aug 2009

arxiv: v2 [math.pr] 22 Aug 2009 On the structure of Gaussian random variables arxiv:97.25v2 [math.pr] 22 Aug 29 Ciprian A. Tudor SAMOS/MATISSE, Centre d Economie de La Sorbonne, Université de Panthéon-Sorbonne Paris, 9, rue de Tolbiac,

More information

25. Chain Rule. Now, f is a function of t only. Expand by multiplication:

25. Chain Rule. Now, f is a function of t only. Expand by multiplication: 25. Chain Rule The Chain Rule is present in all differentiation. If z = f(x, y) represents a two-variable function, then it is plausible to consider the cases when x and y may be functions of other variable(s).

More information

Stochastic differential equation models in biology Susanne Ditlevsen

Stochastic differential equation models in biology Susanne Ditlevsen Stochastic differential equation models in biology Susanne Ditlevsen Introduction This chapter is concerned with continuous time processes, which are often modeled as a system of ordinary differential

More information

ELEMENTS OF STOCHASTIC CALCULUS VIA REGULARISATION. A la mémoire de Paul-André Meyer

ELEMENTS OF STOCHASTIC CALCULUS VIA REGULARISATION. A la mémoire de Paul-André Meyer ELEMENTS OF STOCHASTIC CALCULUS VIA REGULARISATION A la mémoire de Paul-André Meyer Francesco Russo (1 and Pierre Vallois (2 (1 Université Paris 13 Institut Galilée, Mathématiques 99 avenue J.B. Clément

More information

arxiv: v1 [math.pr] 1 Jul 2013

arxiv: v1 [math.pr] 1 Jul 2013 ESTIMATION OF FIRST PASSAGE TIME DENSITIES OF DIFFUSIONS PROCESSES THROUGH TIME-VARYING BOUNDARIES arxiv:307.0336v [math.pr] Jul 03 Imene Allab and Francois Watier Department of Mathematics, Université

More information

BROWNIAN MOTION AND LIOUVILLE S THEOREM

BROWNIAN MOTION AND LIOUVILLE S THEOREM BROWNIAN MOTION AND LIOUVILLE S THEOREM CHEN HUI GEORGE TEO Abstract. Probability theory has many deep and surprising connections with the theory of partial differential equations. We explore one such

More information

Multivariate Generalized Ornstein-Uhlenbeck Processes

Multivariate Generalized Ornstein-Uhlenbeck Processes Multivariate Generalized Ornstein-Uhlenbeck Processes Anita Behme TU München Alexander Lindner TU Braunschweig 7th International Conference on Lévy Processes: Theory and Applications Wroclaw, July 15 19,

More information

Session 1: Probability and Markov chains

Session 1: Probability and Markov chains Session 1: Probability and Markov chains 1. Probability distributions and densities. 2. Relevant distributions. 3. Change of variable. 4. Stochastic processes. 5. The Markov property. 6. Markov finite

More information

Stochastic Calculus. Kevin Sinclair. August 2, 2016

Stochastic Calculus. Kevin Sinclair. August 2, 2016 Stochastic Calculus Kevin Sinclair August, 16 1 Background Suppose we have a Brownian motion W. This is a process, and the value of W at a particular time T (which we write W T ) is a normally distributed

More information

arxiv: v1 [math.pr] 24 Sep 2018

arxiv: v1 [math.pr] 24 Sep 2018 A short note on Anticipative portfolio optimization B. D Auria a,b,1,, J.-A. Salmerón a,1 a Dpto. Estadística, Universidad Carlos III de Madrid. Avda. de la Universidad 3, 8911, Leganés (Madrid Spain b

More information

ECE353: Probability and Random Processes. Lecture 18 - Stochastic Processes

ECE353: Probability and Random Processes. Lecture 18 - Stochastic Processes ECE353: Probability and Random Processes Lecture 18 - Stochastic Processes Xiao Fu School of Electrical Engineering and Computer Science Oregon State University E-mail: xiao.fu@oregonstate.edu From RV

More information

Densities for the Navier Stokes equations with noise

Densities for the Navier Stokes equations with noise Densities for the Navier Stokes equations with noise Marco Romito Università di Pisa Universitat de Barcelona March 25, 2015 Summary 1 Introduction & motivations 2 Malliavin calculus 3 Besov bounds 4 Other

More information

The stochastic heat equation with a fractional-colored noise: existence of solution

The stochastic heat equation with a fractional-colored noise: existence of solution The stochastic heat equation with a fractional-colored noise: existence of solution Raluca Balan (Ottawa) Ciprian Tudor (Paris 1) June 11-12, 27 aluca Balan (Ottawa), Ciprian Tudor (Paris 1) Stochastic

More information

Simulation methods for stochastic models in chemistry

Simulation methods for stochastic models in chemistry Simulation methods for stochastic models in chemistry David F. Anderson anderson@math.wisc.edu Department of Mathematics University of Wisconsin - Madison SIAM: Barcelona June 4th, 21 Overview 1. Notation

More information

Reflected Brownian Motion

Reflected Brownian Motion Chapter 6 Reflected Brownian Motion Often we encounter Diffusions in regions with boundary. If the process can reach the boundary from the interior in finite time with positive probability we need to decide

More information

Stochastic contraction BACS Workshop Chamonix, January 14, 2008

Stochastic contraction BACS Workshop Chamonix, January 14, 2008 Stochastic contraction BACS Workshop Chamonix, January 14, 2008 Q.-C. Pham N. Tabareau J.-J. Slotine Q.-C. Pham, N. Tabareau, J.-J. Slotine () Stochastic contraction 1 / 19 Why stochastic contraction?

More information

ECONOMETRICS II, FALL Testing for Unit Roots.

ECONOMETRICS II, FALL Testing for Unit Roots. ECONOMETRICS II, FALL 216 Testing for Unit Roots. In the statistical literature it has long been known that unit root processes behave differently from stable processes. For example in the scalar AR(1)

More information

Solutions to the Exercises in Stochastic Analysis

Solutions to the Exercises in Stochastic Analysis Solutions to the Exercises in Stochastic Analysis Lecturer: Xue-Mei Li 1 Problem Sheet 1 In these solution I avoid using conditional expectations. But do try to give alternative proofs once we learnt conditional

More information

IEOR 4701: Stochastic Models in Financial Engineering. Summer 2007, Professor Whitt. SOLUTIONS to Homework Assignment 9: Brownian motion

IEOR 4701: Stochastic Models in Financial Engineering. Summer 2007, Professor Whitt. SOLUTIONS to Homework Assignment 9: Brownian motion IEOR 471: Stochastic Models in Financial Engineering Summer 27, Professor Whitt SOLUTIONS to Homework Assignment 9: Brownian motion In Ross, read Sections 1.1-1.3 and 1.6. (The total required reading there

More information

Lecture 12. F o s, (1.1) F t := s>t

Lecture 12. F o s, (1.1) F t := s>t Lecture 12 1 Brownian motion: the Markov property Let C := C(0, ), R) be the space of continuous functions mapping from 0, ) to R, in which a Brownian motion (B t ) t 0 almost surely takes its value. Let

More information

Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet 1

Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet 1 Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet. For ξ, ξ 2, i.i.d. with P(ξ i = ± = /2 define the discrete-time random walk W =, W n = ξ +... + ξ n. (i Formulate and prove the property

More information

A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1

A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1 Chapter 3 A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1 Abstract We establish a change of variable

More information

arxiv: v1 [math.pr] 23 Jan 2018

arxiv: v1 [math.pr] 23 Jan 2018 TRANSFER PRINCIPLE FOR nt ORDER FRACTIONAL BROWNIAN MOTION WIT APPLICATIONS TO PREDICTION AND EQUIVALENCE IN LAW TOMMI SOTTINEN arxiv:181.7574v1 [math.pr 3 Jan 18 Department of Mathematics and Statistics,

More information

OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS

OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS APPLICATIONES MATHEMATICAE 29,4 (22), pp. 387 398 Mariusz Michta (Zielona Góra) OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS Abstract. A martingale problem approach is used first to analyze

More information