Stochastic Calculus for Finance II - some Solutions to Chapter VII

Size: px
Start display at page:

Download "Stochastic Calculus for Finance II - some Solutions to Chapter VII"

Transcription

1 Stochastic Calculus for Finance II - some Solutions to Chapter VII Matthias hul Last Update: June 9, 25 Exercise 7 Black-Scholes-Merton Equation for the up-and-out Call) i) We have ii) We first compute t δ pmτ, s) τ t τ { { σ τ [ ln s + r ± 2 ) ]} σ2 τ } ln s 2στ τ + r ± 2 σ2 2σ τ [ ) 2στ ln + τ s 2τ δ ± τ, ) qed) s r ± 2 σ2 ) τ ] s δ pmτ, s) { s σ τ sσ τ [ ln s + r ± 2 ) ]} σ2 τ Consequently for s x/c, we get he author can be contacted via <<firstname>><<lastname>>@gmailcom and

2 x δ ± τ, x ) c s δ ±τ, s) s x xσ τ and for s x/c we have x δ ± τ, x ) c s δ ±τ, s) s x xσ qed) τ iii) Since N δ ± τ, s)) { } exp δ2 ±τ, s), 2π 2 we have N δ + τ, s)) N δ τ, s)) { exp δ 2 2 τ, s) δ+τ, 2 s) )} { } exp 2 δ τ, s) δ + τ, s)) δ τ, s) + δ + τ, s)) Here, δ τ, s) δ + τ, s) σ τ and δ τ, s) + δ + τ, s) 2 ln s + 2rτ σ τ hus, N δ + τ, s)) N δ τ, s)) exp { ln s + rτ)} e rτ s qed) 2

3 and e rτ N d τ, s)) sn d + τ, s)) qed) iv) his result is immediately obvious from the definition of δ ± τ, s) and has been used in iv) already We have δ + τ, s) δ τ, s) σ2 τ σ τ σ τ qed) v) Again, this result follows immediately from the definition of δ ± τ, s) We have vi) We have δ ± τ, s) δ ) ± τ, s ln s ln s σ τ 2 ln s σ qed) τ { y2 N y) } exp y 2π 2 y } exp { y2 2π 2 yn y) qed) vii) o be continued Exercise 73 Markov Property for Geometric Brownian Motion and its Maximum to Date) he crucial steps for the solution to this problem have been derived in Section 744 First, remember that } St) S) exp {σŵ t), 3

4 where Ŵ t) is a drifted Brownian motion he maximum-to-date process is given by where { Y t) S) exp σ ˆMt) }, First notice that ˆMt) max Ŵ u) u t S ) St) S ) St) { )} St) exp σ Ŵ ) Ŵ t), where St) is Ft)-measurable and the increment Ŵ ) Ŵ t) is independent of the σ-algebra Ft) since by Definition 33 Brownian motion has independent increments Note that adding a drift to the Brownian motion does not change this property Similarly, Y ) Y t) Y ) Y t) { )} Y t) exp σ ˆM ) ˆMt) { [ ] } + Y t) exp σ max t u Ŵ u) ˆMt) { [ Y t) exp σ Ŵ u) Ŵ t)) max t u { [ ) Y t) exp max Ŵ σ u) Ŵ t) ln t u Again, ln Y t)/st)) is Ft)-measurable while ) Bt, ) max Ŵ σ u) Ŵ t) t u is independent of the filtration Ft) hus, ) ] } + ˆMt) Ŵ t) )] } + Y t) St) [ E [fs ), Y )) Ft)] E h St), Y t), S ) ) Ft)] St), Bt, ), 4

5 where h St), Y t), At, ), Bt, )} f St)At, ), Y t) exp { [ Bt, ) ln By Lemma 234, there exists a function gst), Y t)) defined by )] }) + Y t) St) such that [ gx, y) E h x, y, S ) )] St), Bt, ) E [fs ), Y )) Ft)] gst), Y t)) qed) Exercise 74 Cross Variation of Geometric Brownian Motion and its Maximum to Date) We have m Y t j ) Y t j )) S t j ) S t j )) j m Y t j ) Y t j ) S t j ) S t j ) j max S t j) S t j ) j m m Y t j ) Y t j ) j max j m S t j) S t j ) Y ) Y )) In the limit as maximum step size goes to zero, we get lim max S t j) S t j ) Y ) Y )), Π j m since the stock price St) is a continuous function of time Consequently, lim Π m Y t j ) Y t j )) S t j ) S t j )) qed) j Exercise 77 Zero-Strike Asian Call) i) We can split the integral in a Ft)-measurable part and a part independent of Ft) to get 5

6 [ ] E Q Su)du Ft) [ t ] [ ] E Q Su)du Ft) + E Q Su)du Ft) t Su)du + t E Q [Su)] du t Using the martingale property of the discounted stock price we can replace E Q [Su)] with e rt u) St) which yields t t Su)du + St) e rt u) du t Su)du + St) e r ) r It follows that and e r E Q [ ] Su)du Ft) e r t Su)du + St) r e r ) e r e r vt, x, y) y + x r ii) he partial derivatives of vt, x, y) are given by t ry x) e r, x e r, r y e r Substituting these into the PDE in Equation 758) yields ry x) e r e r e r + x + x e r e r ry + x All terms cancel out and the assertion follows We further have e r vt,, y) y v, x, y) y 6

7 hese are just the boundary conditions in Equations 759) and 75) for K Note that both expressions are non-negative since y is an integral over the nonnegative random variable St) iii) By the proof of heorem 75) and Remark 752), the hedge ratio is given by the first derivative of the option price wrt to the spot price t) e r r his quantity is non-random, since it only depends on time but not on the current value of St) or its history iv) he differential of the discounted portfolio value is d e rt Xt) ) t)e rt σst)dw t) Using the process for t) computed above, we get d e rt Xt) ) e rt e r σst)dw t) r he differential of the option value is dvt, St), Y t)) t dt + x dst) + dy t) y e r e r ry t) St)) dt + dst) + r e r e r ry t) dt + dst) r e r rvt, St), Y t))dt + σst)dw t r e r By the product rule, we obtain the differential of the discounted option value St)dt d e rt vt, St), Y t)) ) re rt vt, St), Y t))dt + e rt dvt, St), Y t)) e rt e r r σst)dw t) 7

8 Since the differential of the discounted portfolio value and the discounted option value agree, it follows that if we start with a portfolio that has initial value X) v, S), Y )) and hold t) shares of the asset at each point in time, then the terminal payoffs agree almost surely 8

Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise

Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise Robert J. Elliott 1 Samuel N. Cohen 2 1 Department of Commerce, University of South Australia 2 Mathematical Insitute, University

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

Lecture 4: Ito s Stochastic Calculus and SDE. Seung Yeal Ha Dept of Mathematical Sciences Seoul National University

Lecture 4: Ito s Stochastic Calculus and SDE. Seung Yeal Ha Dept of Mathematical Sciences Seoul National University Lecture 4: Ito s Stochastic Calculus and SDE Seung Yeal Ha Dept of Mathematical Sciences Seoul National University 1 Preliminaries What is Calculus? Integral, Differentiation. Differentiation 2 Integral

More information

Optimal Stopping Problems and American Options

Optimal Stopping Problems and American Options Optimal Stopping Problems and American Options Nadia Uys A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master

More information

Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility

Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility José Enrique Figueroa-López 1 1 Department of Statistics Purdue University Statistics, Jump Processes,

More information

Errata for Stochastic Calculus for Finance II Continuous-Time Models September 2006

Errata for Stochastic Calculus for Finance II Continuous-Time Models September 2006 1 Errata for Stochastic Calculus for Finance II Continuous-Time Models September 6 Page 6, lines 1, 3 and 7 from bottom. eplace A n,m by S n,m. Page 1, line 1. After Borel measurable. insert the sentence

More information

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011 Department of Probability and Mathematical Statistics Faculty of Mathematics and Physics, Charles University in Prague petrasek@karlin.mff.cuni.cz Seminar in Stochastic Modelling in Economics and Finance

More information

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2 B8.3 Mathematical Models for Financial Derivatives Hilary Term 18 Solution Sheet In the following W t ) t denotes a standard Brownian motion and t > denotes time. A partition π of the interval, t is a

More information

Stochastic Calculus. Kevin Sinclair. August 2, 2016

Stochastic Calculus. Kevin Sinclair. August 2, 2016 Stochastic Calculus Kevin Sinclair August, 16 1 Background Suppose we have a Brownian motion W. This is a process, and the value of W at a particular time T (which we write W T ) is a normally distributed

More information

Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet 1

Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet 1 Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet. For ξ, ξ 2, i.i.d. with P(ξ i = ± = /2 define the discrete-time random walk W =, W n = ξ +... + ξ n. (i Formulate and prove the property

More information

A Barrier Version of the Russian Option

A Barrier Version of the Russian Option A Barrier Version of the Russian Option L. A. Shepp, A. N. Shiryaev, A. Sulem Rutgers University; shepp@stat.rutgers.edu Steklov Mathematical Institute; shiryaev@mi.ras.ru INRIA- Rocquencourt; agnes.sulem@inria.fr

More information

Pavel V. Gapeev, Neofytos Rodosthenous Perpetual American options in diffusion-type models with running maxima and drawdowns

Pavel V. Gapeev, Neofytos Rodosthenous Perpetual American options in diffusion-type models with running maxima and drawdowns Pavel V. Gapeev, Neofytos Rodosthenous Perpetual American options in diffusion-type models with running maxima and drawdowns Article (Accepted version) (Refereed) Original citation: Gapeev, Pavel V. and

More information

A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1

A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1 Chapter 3 A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1 Abstract We establish a change of variable

More information

Variance Reduction Techniques for Monte Carlo Simulations with Stochastic Volatility Models

Variance Reduction Techniques for Monte Carlo Simulations with Stochastic Volatility Models Variance Reduction Techniques for Monte Carlo Simulations with Stochastic Volatility Models Jean-Pierre Fouque North Carolina State University SAMSI November 3, 5 1 References: Variance Reduction for Monte

More information

A numerical method for solving uncertain differential equations

A numerical method for solving uncertain differential equations Journal of Intelligent & Fuzzy Systems 25 (213 825 832 DOI:1.3233/IFS-12688 IOS Press 825 A numerical method for solving uncertain differential equations Kai Yao a and Xiaowei Chen b, a Department of Mathematical

More information

arxiv: v1 [math.pr] 24 Sep 2018

arxiv: v1 [math.pr] 24 Sep 2018 A short note on Anticipative portfolio optimization B. D Auria a,b,1,, J.-A. Salmerón a,1 a Dpto. Estadística, Universidad Carlos III de Madrid. Avda. de la Universidad 3, 8911, Leganés (Madrid Spain b

More information

2.3. The heat equation. A function u(x, t) solves the heat equation if (with σ>0)

2.3. The heat equation. A function u(x, t) solves the heat equation if (with σ>0) 12 VOLKER BETZ 2.3. The heat equation. A function u(x, t) solves the heat equation if (with σ>) (2.1) t u 1 2 σ2 u =. In the simplest case, (2.1) is supposed to hold for all x R n, and all t>, and there

More information

MFE6516 Stochastic Calculus for Finance

MFE6516 Stochastic Calculus for Finance MFE6516 Stochastic Calculus for Finance William C. H. Leon Nanyang Business School December 11, 2017 1 / 51 William C. H. Leon MFE6516 Stochastic Calculus for Finance 1 Symmetric Random Walks Scaled Symmetric

More information

{σ x >t}p x. (σ x >t)=e at.

{σ x >t}p x. (σ x >t)=e at. 3.11. EXERCISES 121 3.11 Exercises Exercise 3.1 Consider the Ornstein Uhlenbeck process in example 3.1.7(B). Show that the defined process is a Markov process which converges in distribution to an N(0,σ

More information

Risk-Minimality and Orthogonality of Martingales

Risk-Minimality and Orthogonality of Martingales Risk-Minimality and Orthogonality of Martingales Martin Schweizer Universität Bonn Institut für Angewandte Mathematik Wegelerstraße 6 D 53 Bonn 1 (Stochastics and Stochastics Reports 3 (199, 123 131 2

More information

Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model

Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model Xiaowei Chen International Business School, Nankai University, Tianjin 371, China School of Finance, Nankai

More information

Lecture 12: Diffusion Processes and Stochastic Differential Equations

Lecture 12: Diffusion Processes and Stochastic Differential Equations Lecture 12: Diffusion Processes and Stochastic Differential Equations 1. Diffusion Processes 1.1 Definition of a diffusion process 1.2 Examples 2. Stochastic Differential Equations SDE) 2.1 Stochastic

More information

Lecture 4: Introduction to stochastic processes and stochastic calculus

Lecture 4: Introduction to stochastic processes and stochastic calculus Lecture 4: Introduction to stochastic processes and stochastic calculus Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 7 9/25/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 7 9/25/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 7 9/5/013 The Reflection Principle. The Distribution of the Maximum. Brownian motion with drift Content. 1. Quick intro to stopping times.

More information

Introduction Optimality and Asset Pricing

Introduction Optimality and Asset Pricing Introduction Optimality and Asset Pricing Andrea Buraschi Imperial College Business School October 2010 The Euler Equation Take an economy where price is given with respect to the numéraire, which is our

More information

On the quantiles of the Brownian motion and their hitting times.

On the quantiles of the Brownian motion and their hitting times. On the quantiles of the Brownian motion and their hitting times. Angelos Dassios London School of Economics May 23 Abstract The distribution of the α-quantile of a Brownian motion on an interval [, t]

More information

Ernesto Mordecki 1. Lecture III. PASI - Guanajuato - June 2010

Ernesto Mordecki 1. Lecture III. PASI - Guanajuato - June 2010 Optimal stopping for Hunt and Lévy processes Ernesto Mordecki 1 Lecture III. PASI - Guanajuato - June 2010 1Joint work with Paavo Salminen (Åbo, Finland) 1 Plan of the talk 1. Motivation: from Finance

More information

Stochastic Integration and Stochastic Differential Equations: a gentle introduction

Stochastic Integration and Stochastic Differential Equations: a gentle introduction Stochastic Integration and Stochastic Differential Equations: a gentle introduction Oleg Makhnin New Mexico Tech Dept. of Mathematics October 26, 27 Intro: why Stochastic? Brownian Motion/ Wiener process

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Introduction to Malliavin calculus and its applications Lecture 3: Clark-Ocone formula David Nualart Department of Mathematics Kansas University University of Wyoming Summer School 214 David Nualart

More information

MATH4210 Financial Mathematics ( ) Tutorial 7

MATH4210 Financial Mathematics ( ) Tutorial 7 MATH40 Financial Mathematics (05-06) Tutorial 7 Review of some basic Probability: The triple (Ω, F, P) is called a probability space, where Ω denotes the sample space and F is the set of event (σ algebra

More information

Stochastic Volatility and Correction to the Heat Equation

Stochastic Volatility and Correction to the Heat Equation Stochastic Volatility and Correction to the Heat Equation Jean-Pierre Fouque, George Papanicolaou and Ronnie Sircar Abstract. From a probabilist s point of view the Twentieth Century has been a century

More information

MA8109 Stochastic Processes in Systems Theory Autumn 2013

MA8109 Stochastic Processes in Systems Theory Autumn 2013 Norwegian University of Science and Technology Department of Mathematical Sciences MA819 Stochastic Processes in Systems Theory Autumn 213 1 MA819 Exam 23, problem 3b This is a linear equation of the form

More information

Question 1. The correct answers are: (a) (2) (b) (1) (c) (2) (d) (3) (e) (2) (f) (1) (g) (2) (h) (1)

Question 1. The correct answers are: (a) (2) (b) (1) (c) (2) (d) (3) (e) (2) (f) (1) (g) (2) (h) (1) Question 1 The correct answers are: a 2 b 1 c 2 d 3 e 2 f 1 g 2 h 1 Question 2 a Any probability measure Q equivalent to P on F 2 can be described by Q[{x 1, x 2 }] := q x1 q x1,x 2, 1 where q x1, q x1,x

More information

Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2)

Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2) Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2) Statistical analysis is based on probability theory. The fundamental object in probability theory is a probability space,

More information

Thomas Knispel Leibniz Universität Hannover

Thomas Knispel Leibniz Universität Hannover Optimal long term investment under model ambiguity Optimal long term investment under model ambiguity homas Knispel Leibniz Universität Hannover knispel@stochastik.uni-hannover.de AnStAp0 Vienna, July

More information

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications The multidimensional Ito Integral and the multidimensional Ito Formula Eric Mu ller June 1, 215 Seminar on Stochastic Geometry and its applications page 2 Seminar on Stochastic Geometry and its applications

More information

Small-time asymptotics of stopped Lévy bridges and simulation schemes with controlled bias

Small-time asymptotics of stopped Lévy bridges and simulation schemes with controlled bias Small-time asymptotics of stopped Lévy bridges and simulation schemes with controlled bias José E. Figueroa-López 1 1 Department of Statistics Purdue University Seoul National University & Ajou University

More information

1. Stochastic Process

1. Stochastic Process HETERGENEITY IN QUANTITATIVE MACROECONOMICS @ TSE OCTOBER 17, 216 STOCHASTIC CALCULUS BASICS SANG YOON (TIM) LEE Very simple notes (need to add references). It is NOT meant to be a substitute for a real

More information

Optimal portfolio strategies under partial information with expert opinions

Optimal portfolio strategies under partial information with expert opinions 1 / 35 Optimal portfolio strategies under partial information with expert opinions Ralf Wunderlich Brandenburg University of Technology Cottbus, Germany Joint work with Rüdiger Frey Research Seminar WU

More information

Maturity randomization for stochastic control problems

Maturity randomization for stochastic control problems Maturity randomization for stochastic control problems Bruno Bouchard LPMA, Université Paris VI and CREST Paris, France Nicole El Karoui CMAP, Ecole Polytechnique Paris, France elkaroui@cmapx.polytechnique.fr

More information

Multi-Factor Lévy Models I: Symmetric alpha-stable (SαS) Lévy Processes

Multi-Factor Lévy Models I: Symmetric alpha-stable (SαS) Lévy Processes Multi-Factor Lévy Models I: Symmetric alpha-stable (SαS) Lévy Processes Anatoliy Swishchuk Department of Mathematics and Statistics University of Calgary Calgary, Alberta, Canada Lunch at the Lab Talk

More information

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012 1 Stochastic Calculus Notes March 9 th, 1 In 19, Bachelier proposed for the Paris stock exchange a model for the fluctuations affecting the price X(t) of an asset that was given by the Brownian motion.

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Malliavin Calculus in Finance

Malliavin Calculus in Finance Malliavin Calculus in Finance Peter K. Friz 1 Greeks and the logarithmic derivative trick Model an underlying assent by a Markov process with values in R m with dynamics described by the SDE dx t = b(x

More information

1.1 Definition of BM and its finite-dimensional distributions

1.1 Definition of BM and its finite-dimensional distributions 1 Brownian motion Brownian motion as a physical phenomenon was discovered by botanist Robert Brown as he observed a chaotic motion of particles suspended in water. The rigorous mathematical model of BM

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

Theoretical Tutorial Session 2

Theoretical Tutorial Session 2 1 / 36 Theoretical Tutorial Session 2 Xiaoming Song Department of Mathematics Drexel University July 27, 216 Outline 2 / 36 Itô s formula Martingale representation theorem Stochastic differential equations

More information

The main purpose of this chapter is to prove the rst and second fundamental theorem of asset pricing in a so called nite market model.

The main purpose of this chapter is to prove the rst and second fundamental theorem of asset pricing in a so called nite market model. 1 2. Option pricing in a nite market model (February 14, 2012) 1 Introduction The main purpose of this chapter is to prove the rst and second fundamental theorem of asset pricing in a so called nite market

More information

Continuous Time Finance

Continuous Time Finance Continuous Time Finance Lisbon 2013 Tomas Björk Stockholm School of Economics Tomas Björk, 2013 Contents Stochastic Calculus (Ch 4-5). Black-Scholes (Ch 6-7. Completeness and hedging (Ch 8-9. The martingale

More information

STRICT LOCAL MARTINGALE DEFLATORS AND PRICING AMERICAN CALL-TYPE OPTIONS. 0. Introduction

STRICT LOCAL MARTINGALE DEFLATORS AND PRICING AMERICAN CALL-TYPE OPTIONS. 0. Introduction STRICT LOCAL MARTINGALE DEFLATORS AND PRICING AMERICAN CALL-TYPE OPTIONS ERHAN BAYRAKTAR, CONSTANTINOS KARDARAS, AND HAO XING Abstract. We solve the problem of pricing and optimal exercise of American

More information

Uniformly Uniformly-ergodic Markov chains and BSDEs

Uniformly Uniformly-ergodic Markov chains and BSDEs Uniformly Uniformly-ergodic Markov chains and BSDEs Samuel N. Cohen Mathematical Institute, University of Oxford (Based on joint work with Ying Hu, Robert Elliott, Lukas Szpruch) Centre Henri Lebesgue,

More information

Lecture 12. F o s, (1.1) F t := s>t

Lecture 12. F o s, (1.1) F t := s>t Lecture 12 1 Brownian motion: the Markov property Let C := C(0, ), R) be the space of continuous functions mapping from 0, ) to R, in which a Brownian motion (B t ) t 0 almost surely takes its value. Let

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space.

Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space. 10 VECTOR FUNCTIONS VECTOR FUNCTIONS Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space. Here, we prepare the way by developing

More information

Measure-valued derivatives and applications

Measure-valued derivatives and applications Stochastic Models and Control Bad Herrenalb, April 2011 The basic problem Our basic problem is to solve where min E[H(X θ)] θ Θ X θ ( ) is a Markovian process, with a transition law which depends on a

More information

A problem of portfolio/consumption choice in a. liquidity risk model with random trading times

A problem of portfolio/consumption choice in a. liquidity risk model with random trading times A problem of portfolio/consumption choice in a liquidity risk model with random trading times Huyên PHAM Special Semester on Stochastics with Emphasis on Finance, Kick-off workshop, Linz, September 8-12,

More information

MSH7 - APPLIED PROBABILITY AND STOCHASTIC CALCULUS. Contents

MSH7 - APPLIED PROBABILITY AND STOCHASTIC CALCULUS. Contents MSH7 - APPLIED PROBABILITY AND STOCHASTIC CALCULUS ANDREW TULLOCH Contents 1. Lecture 1 - Tuesday 1 March 2 2. Lecture 2 - Thursday 3 March 2 2.1. Concepts of convergence 2 3. Lecture 3 - Tuesday 8 March

More information

Introduction to Diffusion Processes.

Introduction to Diffusion Processes. Introduction to Diffusion Processes. Arka P. Ghosh Department of Statistics Iowa State University Ames, IA 511-121 apghosh@iastate.edu (515) 294-7851. February 1, 21 Abstract In this section we describe

More information

On Optimal Stopping Problems with Power Function of Lévy Processes

On Optimal Stopping Problems with Power Function of Lévy Processes On Optimal Stopping Problems with Power Function of Lévy Processes Budhi Arta Surya Department of Mathematics University of Utrecht 31 August 2006 This talk is based on the joint paper with A.E. Kyprianou:

More information

A MODEL FOR THE LONG-TERM OPTIMAL CAPACITY LEVEL OF AN INVESTMENT PROJECT

A MODEL FOR THE LONG-TERM OPTIMAL CAPACITY LEVEL OF AN INVESTMENT PROJECT A MODEL FOR HE LONG-ERM OPIMAL CAPACIY LEVEL OF AN INVESMEN PROJEC ARNE LØKKA AND MIHAIL ZERVOS Abstract. We consider an investment project that produces a single commodity. he project s operation yields

More information

n E(X t T n = lim X s Tn = X s

n E(X t T n = lim X s Tn = X s Stochastic Calculus Example sheet - Lent 15 Michael Tehranchi Problem 1. Let X be a local martingale. Prove that X is a uniformly integrable martingale if and only X is of class D. Solution 1. If If direction:

More information

Numerical Methods with Lévy Processes

Numerical Methods with Lévy Processes Numerical Methods with Lévy Processes 1 Objective: i) Find models of asset returns, etc ii) Get numbers out of them. Why? VaR and risk management Valuing and hedging derivatives Why not? Usual assumption:

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

Backward Stochastic Differential Equations with Infinite Time Horizon

Backward Stochastic Differential Equations with Infinite Time Horizon Backward Stochastic Differential Equations with Infinite Time Horizon Holger Metzler PhD advisor: Prof. G. Tessitore Università di Milano-Bicocca Spring School Stochastic Control in Finance Roscoff, March

More information

Liquidation in Limit Order Books. LOBs with Controlled Intensity

Liquidation in Limit Order Books. LOBs with Controlled Intensity Limit Order Book Model Power-Law Intensity Law Exponential Decay Order Books Extensions Liquidation in Limit Order Books with Controlled Intensity Erhan and Mike Ludkovski University of Michigan and UCSB

More information

Verona Course April Lecture 1. Review of probability

Verona Course April Lecture 1. Review of probability Verona Course April 215. Lecture 1. Review of probability Viorel Barbu Al.I. Cuza University of Iaşi and the Romanian Academy A probability space is a triple (Ω, F, P) where Ω is an abstract set, F is

More information

Stochastic Calculus Made Easy

Stochastic Calculus Made Easy Stochastic Calculus Made Easy Most of us know how standard Calculus works. We know how to differentiate, how to integrate etc. But stochastic calculus is a totally different beast to tackle; we are trying

More information

Stochastic Differential Equations

Stochastic Differential Equations CHAPTER 1 Stochastic Differential Equations Consider a stochastic process X t satisfying dx t = bt, X t,w t dt + σt, X t,w t dw t. 1.1 Question. 1 Can we obtain the existence and uniqueness theorem for

More information

Solution of Stochastic Optimal Control Problems and Financial Applications

Solution of Stochastic Optimal Control Problems and Financial Applications Journal of Mathematical Extension Vol. 11, No. 4, (2017), 27-44 ISSN: 1735-8299 URL: http://www.ijmex.com Solution of Stochastic Optimal Control Problems and Financial Applications 2 Mat B. Kafash 1 Faculty

More information

Week 9 Generators, duality, change of measure

Week 9 Generators, duality, change of measure Week 9 Generators, duality, change of measure Jonathan Goodman November 18, 013 1 Generators This section describes a common abstract way to describe many of the differential equations related to Markov

More information

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p Doob s inequality Let X(t) be a right continuous submartingale with respect to F(t), t 1 P(sup s t X(s) λ) 1 λ {sup s t X(s) λ} X + (t)dp 2 For 1 < p

More information

Some Aspects of Universal Portfolio

Some Aspects of Universal Portfolio 1 Some Aspects of Universal Portfolio Tomoyuki Ichiba (UC Santa Barbara) joint work with Marcel Brod (ETH Zurich) Conference on Stochastic Asymptotics & Applications Sixth Western Conference on Mathematical

More information

Minimization of ruin probabilities by investment under transaction costs

Minimization of ruin probabilities by investment under transaction costs Minimization of ruin probabilities by investment under transaction costs Stefan Thonhauser DSA, HEC, Université de Lausanne 13 th Scientific Day, Bonn, 3.4.214 Outline Introduction Risk models and controls

More information

The instantaneous and forward default intensity of structural models

The instantaneous and forward default intensity of structural models The instantaneous and forward default intensity of structural models Cho-Jieh Chen Department of Mathematical and Statistical Sciences University of Alberta Edmonton, AB E-mail: cjchen@math.ualberta.ca

More information

Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus ETHZ, Spring 17 D-MATH Prof Dr Martin Larsson Coordinator A Sepúlveda Brownian Motion and Stochastic Calculus Exercise sheet 6 Please hand in your solutions during exercise class or in your assistant s

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

Information and Credit Risk

Information and Credit Risk Information and Credit Risk M. L. Bedini Université de Bretagne Occidentale, Brest - Friedrich Schiller Universität, Jena Jena, March 2011 M. L. Bedini (Université de Bretagne Occidentale, Brest Information

More information

A BARRIER OPTION OF AMERICAN TYPE

A BARRIER OPTION OF AMERICAN TYPE A BARRIER OPTION OF AMERICAN TYPE IOANNIS KARATZAS Departments of Mathematics and Statistics, 619 Math. Bldg. Columbia University New York, NY 127 ik@math.columbia.edu HUI WANG Department of Statistics

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

Markov Chain BSDEs and risk averse networks

Markov Chain BSDEs and risk averse networks Markov Chain BSDEs and risk averse networks Samuel N. Cohen Mathematical Institute, University of Oxford (Based on joint work with Ying Hu, Robert Elliott, Lukas Szpruch) 2nd Young Researchers in BSDEs

More information

CNH3C3 Persamaan Diferensial Parsial (The art of Modeling PDEs) DR. PUTU HARRY GUNAWAN

CNH3C3 Persamaan Diferensial Parsial (The art of Modeling PDEs) DR. PUTU HARRY GUNAWAN CNH3C3 Persamaan Diferensial Parsial (The art of Modeling PDEs) DR. PUTU HARRY GUNAWAN Partial Differential Equations Content 1. Part II: Derivation of PDE in Brownian Motion PART II DERIVATION OF PDE

More information

Exercises in stochastic analysis

Exercises in stochastic analysis Exercises in stochastic analysis Franco Flandoli, Mario Maurelli, Dario Trevisan The exercises with a P are those which have been done totally or partially) in the previous lectures; the exercises with

More information

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 5 (2010), 275 284 UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Iuliana Carmen Bărbăcioru Abstract.

More information

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion Brownian Motion An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Background We have already seen that the limiting behavior of a discrete random walk yields a derivation of

More information

Random Times and Their Properties

Random Times and Their Properties Chapter 6 Random Times and Their Properties Section 6.1 recalls the definition of a filtration (a growing collection of σ-fields) and of stopping times (basically, measurable random times). Section 6.2

More information

Xt i Xs i N(0, σ 2 (t s)) and they are independent. This implies that the density function of X t X s is a product of normal density functions:

Xt i Xs i N(0, σ 2 (t s)) and they are independent. This implies that the density function of X t X s is a product of normal density functions: 174 BROWNIAN MOTION 8.4. Brownian motion in R d and the heat equation. The heat equation is a partial differential equation. We are going to convert it into a probabilistic equation by reversing time.

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 3. Calculaus in Deterministic and Stochastic Environments Steve Yang Stevens Institute of Technology 01/31/2012 Outline 1 Modeling Random Behavior

More information

Stochastic Calculus February 11, / 33

Stochastic Calculus February 11, / 33 Martingale Transform M n martingale with respect to F n, n =, 1, 2,... σ n F n (σ M) n = n 1 i= σ i(m i+1 M i ) is a Martingale E[(σ M) n F n 1 ] n 1 = E[ σ i (M i+1 M i ) F n 1 ] i= n 2 = σ i (M i+1 M

More information

MULTIDIMENSIONAL WICK-ITÔ FORMULA FOR GAUSSIAN PROCESSES

MULTIDIMENSIONAL WICK-ITÔ FORMULA FOR GAUSSIAN PROCESSES MULTIDIMENSIONAL WICK-ITÔ FORMULA FOR GAUSSIAN PROCESSES D. NUALART Department of Mathematics, University of Kansas Lawrence, KS 6645, USA E-mail: nualart@math.ku.edu S. ORTIZ-LATORRE Departament de Probabilitat,

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Brownian Motion. Chapter Definition of Brownian motion

Brownian Motion. Chapter Definition of Brownian motion Chapter 5 Brownian Motion Brownian motion originated as a model proposed by Robert Brown in 1828 for the phenomenon of continual swarming motion of pollen grains suspended in water. In 1900, Bachelier

More information

Josh Engwer (TTU) Improper Integrals 10 March / 21

Josh Engwer (TTU) Improper Integrals 10 March / 21 Improper Integrals Calculus II Josh Engwer TTU 10 March 2014 Josh Engwer (TTU) Improper Integrals 10 March 2014 1 / 21 Limits of Functions (Toolkit) TASK: Evaluate limit (if it exists): lim f (x) x x0

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Kolmogorov Equations and Markov Processes

Kolmogorov Equations and Markov Processes Kolmogorov Equations and Markov Processes May 3, 013 1 Transition measures and functions Consider a stochastic process {X(t)} t 0 whose state space is a product of intervals contained in R n. We define

More information

Generalised Fractional-Black-Scholes Equation: pricing and hedging

Generalised Fractional-Black-Scholes Equation: pricing and hedging Generalised Fractional-Black-Scholes Equation: pricing and hedging Álvaro Cartea Birkbeck College, University of London April 2004 Outline Lévy processes Fractional calculus Fractional-Black-Scholes 1

More information

On the Multi-Dimensional Controller and Stopper Games

On the Multi-Dimensional Controller and Stopper Games On the Multi-Dimensional Controller and Stopper Games Joint work with Yu-Jui Huang University of Michigan, Ann Arbor June 7, 2012 Outline Introduction 1 Introduction 2 3 4 5 Consider a zero-sum controller-and-stopper

More information

THE ASYMPTOTIC ELASTICITY OF UTILITY FUNCTIONS AND OPTIMAL INVESTMENT IN INCOMPLETE MARKETS 1

THE ASYMPTOTIC ELASTICITY OF UTILITY FUNCTIONS AND OPTIMAL INVESTMENT IN INCOMPLETE MARKETS 1 The Annals of Applied Probability 1999, Vol. 9, No. 3, 94 95 THE ASYMPTOTIC ELASTICITY OF UTILITY FUNCTIONS AND OPTIMAL INVESTMENT IN INCOMPLETE MARKETS 1 By D. Kramkov 2 and W. Schachermayer Steklov Mathematical

More information

Tools of stochastic calculus

Tools of stochastic calculus slides for the course Interest rate theory, University of Ljubljana, 212-13/I, part III József Gáll University of Debrecen Nov. 212 Jan. 213, Ljubljana Itô integral, summary of main facts Notations, basic

More information

ECON 582: An Introduction to the Theory of Optimal Control (Chapter 7, Acemoglu) Instructor: Dmytro Hryshko

ECON 582: An Introduction to the Theory of Optimal Control (Chapter 7, Acemoglu) Instructor: Dmytro Hryshko ECON 582: An Introduction to the Theory of Optimal Control (Chapter 7, Acemoglu) Instructor: Dmytro Hryshko Continuous-time optimization involves maximization wrt to an innite dimensional object, an entire

More information

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales.

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. Lecture 2 1 Martingales We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. 1.1 Doob s inequality We have the following maximal

More information