ECON 582: An Introduction to the Theory of Optimal Control (Chapter 7, Acemoglu) Instructor: Dmytro Hryshko

Size: px
Start display at page:

Download "ECON 582: An Introduction to the Theory of Optimal Control (Chapter 7, Acemoglu) Instructor: Dmytro Hryshko"

Transcription

1 ECON 582: An Introduction to the Theory of Optimal Control (Chapter 7, Acemoglu) Instructor: Dmytro Hryshko

2 Continuous-time optimization involves maximization wrt to an innite dimensional object, an entire function: y : [t ; t 1 ]! R. max W (x(t); y(t)) x(t);y(t) Z t 1 f(t; x(t); y(t))dt s.t. _x(t) = G(t; x(t); y(t)) x(t) 2 X(t); y(t) 2 Y (t) for all t; x() = x : y(t) is the control function; x(t) state function. Assume one-dimensional state and control variables.

3 Variational arguments Z t max x(t);y(t);x1 W (x(t); y(t)) 1 f(t; x(t); y(t))dt (7.2) s.t. _x(t) = g(t; x(t); y(t)) (7.3) x(t) 2 X; y(t) 2 Y; x() = x ; x(t 1 ) = x 1 : (7.4) A pair of functions x(t); y(t) is called an admissible pair. Suppose t 1 < 1, f and g are continuously dierentiable functions of t, x and y. Variational approach: assume there exists a continuous solution (function) ^y that lies in the interior of Y (corresponding state ^x lies everywhere in X).

4 W (^x(t); ^y(t)) W (x(t); y(t)) for any admissible pair (x(t); y(t)). ^y(t); ^x(t) never hits the boundary and does not involve discontinuities. Take an arbitrary function (t) and let " 2 R. A variation of the function ^y(t): y(t; ") = ^y(t) + "(t) 2 IntY for all t 2 [; t 1 ] and " 2 [ " ; " ] so that y(t; ") constitutes a feasible variation. " should be suciently small. x(t; ") is the path of the state variable corresponding to the path of the control y(t; ").

5 for all t 2 [; t 1 ], with x(; ") = x. Dene Z t 1 W (") W (t; x(t; "); y(t; ")) = _x(t; ") = g(t; x(t; "); y(t; ")) (7.5) f(t; x(t; "); y(t; "))dt: (7.6) Since ^y(t) is optimal W () W (") for all " 2 [ " ; " ]. Rewrite (7.5) as g(t; x(t; "); y(t; ")) _x(t; ") = : Thus, for any function : [; t 1 ]! R, Z t 1 (t) [g(t; x(t; "); y(t; ")) _x(t; ")] dt = (7.7) {z }

6 Suppose ( ) is continuously dierentiable. This function is the costate variable. Add (7.7) to (7.6): Z t 1 W (") = ff(t; x(t; "); y(t; ")) + (t) [g(t; x(t; "); y(t; ")) _x(t; ")]gdt (7.8) Integration by parts: For dierentiable functions f(x); g(x); F (x); G(x) so that F (x) = f(x) and G (x) = g(x) Z b a F (x)g(x)dx = F (b)g(b) F (a)g(a) Z b a G(x)f(x)dx: Z b a {z } =j b F (x)g(x) a Note that d (F (x)g(x)) R = f(x)g(x) + F (x)g(x). Integrating, dx d +R b (F (x)g(x))dx = a dx G(x)f(x)dx b F (x)g(x)dx. a

7 Z t 1 Thus, (t) _x(t; ")dt = (t 1 )x(t 1 ; ") () x(; ") {z } =x Z t 1 _(t)x(t; ")(t)dt Z t 1 W (") = ff(t; x(t; "); y(t; ")) + (t)g(t; x(t; "); y(t; ")) + x(t; _ ")gdt + ()x (t 1 )x(t 1 ; "): (7.9) Denote partial derivatives of x and y wrt " as x " and y ". Dierentiate W (") wrt " and evaluate the derivative at " =. It should be the case that W () = for all (t):

8 Z t W 1 (") = (f x + g x + )x _ " dt Z t 1 + (f y + g y )y " dt (t 1 )x " (t 1 ; "): Z t W 1 () = f x (t; ^x(t); ^y(t)) + (t)g x (t; ^x(t); ^y(t)) + (t) _ = Z t 1 + (f y (t; ^x(t); ^y(t)) + (t)g y (t; ^x(t); ^y(t))) (t)dt {z } {z } = {z } = (t 1 )x " (t 1 ; ) = : x " (t; )dt

9 Necessary conditions _(t) = [f x (t; ^x(t); ^y(t)) + (t)g x (t; ^x(t); ^y(t))] (7.11) f y (t; ^x(t); ^y(t)) + (t)g y (t; ^x(t); ^y(t)) = (7.12) _x(t) = g(t; x(t); y(t)) (7.3) (t 1 ) = If, instead, the terminal value of x 1 is xed, the necessary conditions are (7.3), (7.11), and (7.12) (Theorem 7.2).

10 Example 7.1 Consider a consumer living between dates and 1; starts with assets a() >, earns interest r, and receives a constant ow of labor earnings w. Assume a(t). max fc(t);a(t)g 1 t= Z 1 exp( t)u(c(t))dt s.t. _a(t) = ra(t) + w c(t) a(t) ; a() given: Consumption is the control variable, asset holdings are the state variable. The (reasonable) terminal value of assets a 1 = a(1) =.

11 (7.11): _(t) = r(t) (7.12): exp( t)u (^c(t)) r(t) = : From (7.11), (t) = exp( rt)(). Plugging this result into (7.12), u (^c(t)) = r() exp (( r)t), and ^c(t) = (u ) 1 [r() exp (( r)t)] :

12 ^c(t) = (u ) 1 [r() exp (( r)t)] : Since u( ) is concave, (u ) 1 is a decreasing function of the argument. Thus, When = r consumption prole is at; when > r consumption is decreasing (front-loaded prole); when < r consumption is increasing (back-loaded prole).

13 The Hamiltonian and the Maximum Principle By analogy with the Lagrangian, we can construct the Hamiltonian: H(t; x(t); y(t); (t)) f(t; x(t); y(t)) + (t)g(t; x(t); y(t)): (7.16) Since f and g are continuously dierentiable so is H. Denote the partial derivatives of H wrt x(t), y(t), and (t) by H x, H y, H.

14 Theorem 7.4 Consider the problem of maximizing (7.2) subject to (7.3) and (7.4), with f and g continuously dierentiable. Suppose this problem has an interior continuous solution (^x(t); ^y(t)). Then there exists a continuously dierentiable function (t) such that the optimal control ^y(t) and the corresponding path of the state ^x(t) satisfy the necessary conditions: H y (t; ^x(t); ^y(t); (t)) = for all t 2 [; t 1 ] (7.17) _(t) = H x (t; ^x(t); (t)) for all t 2 [; t 1 ] (7.18) _x(t) = H (t; ^x(t); (t)) for all t 2 [; t 1 ]; (7.19) with x() = x and (t 1 ) =. Moreover, the Hamiltonian satises the Maximum Principle H(t; ^x(t); ^y(t); (t)) H(t; ^x(t); y; (t)) for all y 2 Y; for all t 2 [; t 1 ].

15 Innite-Horizon Optimal Control max W (x(t); y(t)) x(t);y(t) Z 1 f(t; x(t); y(t))dt (7.32) s.t. _x(t) = g(t; x(t); y(t)) (7.33) x(t) 2 X; y(t) 2 Y; x() = x ; lim t!1 b(t)x(t) x 1 (7.34)

16 Dene the value function, analogous to the value function in discrete-time dynamic programming: V (t ; x(t )) = max x(t);y(t) Z 1 f(t; x(t); y(t))dt (7.35) t s.t. (7.33) and (7.34). V (t ; x(t )) gives the optimal value of the dynamic maximization problem starting at time t with state variable x(t ). Thus, V (t ; x(t )) = Z 1 f(t; ^x(t); ^y(t))dt: t

17 Principle of Optimality Suppose that the pair (^x(t); ^y(t)) is a solution to (7.32) s.t. (7.33) and (7.34). Then Z t 1 V (t ; x(t )) = f(t; ^x(t); ^y(t)) + V (t 1 ; ^x(t 1 )) (7.38) t

18 Hamilton-Jacobi-Bellman Equation Let V (t; x) be as dened in (7.35). Then, under some conditions, when V (t; x) is dierentiable in (t; x), the optimal pair (^x(t); ^y(t)) satises the HJB (t; (t; ^x(t)) f(t; ^x(t); ^y(t)) + + g(t; ^x(t); (7.42) for all t 2 R. R t Proof: Note that V (t ; x ) = f(s; ^x(s); ^y(s))ds + V (t; ^x(t)) t for all t. Dierentiate wrt (t; (t; ^x(t)) f(t; ^x(t); ^y(t)) _x(t) = {z} =g(t;^x(t);^y(t))

19 Transversality condition for innite-horizon problems Theorem 7.12 Suppose that the problem of maximizing (7.32) s.t. (7.33) and (7.34), with f and g continuously dierentiable, has a piecewise continuous optimal control ^y(t) with the path of state variable ^x(t). Let V (t; x(t)) be the value function (t;^x(t)) in (7.35). Suppose that lim t!1 =. Let H(t; x; y; be given by (7.16). Then the pair (^x(t); ^y(t)) satises the necessary conditions (7.39){(7.41) and the transversality condition lim H(t; ^x(t); ^y(t); (t)) = : (7.56) t!1

20 Discounted Innite-Horizon Optimal Control In growth models, utility is discounted exponentially. max W (x(t); y(t)) x(t);y(t) s.t. Z 1 exp( t)f(x(t); y(t))dt; > (7.6) _x(t) = g(t; x(t); y(t)) (7.61) x(t) 2 IntX(t); y(t) 2 IntY (t); x() = x ; lim t!1 b(t)x(t) x 1 b : R +! R + ; lim b(t) < 1: t!1 (7.62)

21 The current-value Hamiltonian The Hamiltonian in this case: H(t; x(t); y(t); (t)) = exp( t)f(x(t); y(t)) + (t)g(t; x(t); y(t)) where {z } current-value Hamiltonian = exp( t) [f(x(t); y(t)) + (t)g(t; x(t); y(t))] ; (t) exp(t)(t): (7.63) We can work with the current-value Hamiltonian: ^H(t; x(t); y(t); (t)) f(x(t); y(t)) + (t)g(t; x(t); y(t)): (7.64)

22 Maximum Principle for Discounted Innite-Horizon Problems Theorem 7.13 Suppose the problem of maximizing (7.6) subject to (7.61) and (7.62). Let ^H(t; x; y; ) be the current-value Hamiltonian given by (7.64). Then except at points of discontinuity of ^y(t), the optimal control pair (^y(t); ^x(t)) satises the following necessary conditions: ^H y (t; ^x(t); ^y(t); (t)) = for all t 2 R + (7.65) (t) _(t) = ^Hx (t; ^x(t); ^y(t); (t)) for all t 2 R + (7.66) _x(t) = ^H (t; ^x(t); ^y(t); (t)) for all t 2 R + ; x() = x ; lim b(t)x(t) t!1 x 1 (7.67) hexp( t) ^H(t; ^x(t); ^y(t); (t)) i lim t!1 where (7.68) is the transversality condition. = : (7.68)

23 Under certain conditions, stronger transversality condition takes the form: lim [exp( t)(t)^x(t)] = : (7.69) t!1

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko Indirect Utility Recall: static consumer theory; J goods, p j is the price of good j (j = 1; : : : ; J), c j is consumption

More information

ECON 582: The Neoclassical Growth Model (Chapter 8, Acemoglu)

ECON 582: The Neoclassical Growth Model (Chapter 8, Acemoglu) ECON 582: The Neoclassical Growth Model (Chapter 8, Acemoglu) Instructor: Dmytro Hryshko 1 / 21 Consider the neoclassical economy without population growth and technological progress. The optimal growth

More information

Optimal Control. Macroeconomics II SMU. Ömer Özak (SMU) Economic Growth Macroeconomics II 1 / 112

Optimal Control. Macroeconomics II SMU. Ömer Özak (SMU) Economic Growth Macroeconomics II 1 / 112 Optimal Control Ömer Özak SMU Macroeconomics II Ömer Özak (SMU) Economic Growth Macroeconomics II 1 / 112 Review of the Theory of Optimal Control Section 1 Review of the Theory of Optimal Control Ömer

More information

Optimization Over Time

Optimization Over Time Optimization Over Time Joshua Wilde, revised by Isabel Tecu and Takeshi Suzuki August 26, 21 Up to this point, we have only considered constrained optimization problems at a single point in time. However,

More information

Deterministic Dynamic Programming

Deterministic Dynamic Programming Deterministic Dynamic Programming 1 Value Function Consider the following optimal control problem in Mayer s form: V (t 0, x 0 ) = inf u U J(t 1, x(t 1 )) (1) subject to ẋ(t) = f(t, x(t), u(t)), x(t 0

More information

Math Camp Notes: Everything Else

Math Camp Notes: Everything Else Math Camp Notes: Everything Else Systems of Dierential Equations Consider the general two-equation system of dierential equations: Steady States ẋ = f(x, y ẏ = g(x, y Just as before, we can nd the steady

More information

DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION

DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION UNIVERSITY OF MARYLAND: ECON 600. Alternative Methods of Discrete Time Intertemporal Optimization We will start by solving a discrete time intertemporal

More information

Notes on Control Theory

Notes on Control Theory Notes on Control Theory max t 1 f t, x t, u t dt # ẋ g t, x t, u t # t 0, t 1, x t 0 x 0 fixed, t 1 can be. x t 1 maybefreeorfixed The choice variable is a function u t which is piecewise continuous, that

More information

Mathematical Economics. Lecture Notes (in extracts)

Mathematical Economics. Lecture Notes (in extracts) Prof. Dr. Frank Werner Faculty of Mathematics Institute of Mathematical Optimization (IMO) http://math.uni-magdeburg.de/ werner/math-ec-new.html Mathematical Economics Lecture Notes (in extracts) Winter

More information

CHAPTER 3 THE MAXIMUM PRINCIPLE: MIXED INEQUALITY CONSTRAINTS. p. 1/73

CHAPTER 3 THE MAXIMUM PRINCIPLE: MIXED INEQUALITY CONSTRAINTS. p. 1/73 CHAPTER 3 THE MAXIMUM PRINCIPLE: MIXED INEQUALITY CONSTRAINTS p. 1/73 THE MAXIMUM PRINCIPLE: MIXED INEQUALITY CONSTRAINTS Mixed Inequality Constraints: Inequality constraints involving control and possibly

More information

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011 Department of Probability and Mathematical Statistics Faculty of Mathematics and Physics, Charles University in Prague petrasek@karlin.mff.cuni.cz Seminar in Stochastic Modelling in Economics and Finance

More information

Solution of Stochastic Optimal Control Problems and Financial Applications

Solution of Stochastic Optimal Control Problems and Financial Applications Journal of Mathematical Extension Vol. 11, No. 4, (2017), 27-44 ISSN: 1735-8299 URL: http://www.ijmex.com Solution of Stochastic Optimal Control Problems and Financial Applications 2 Mat B. Kafash 1 Faculty

More information

Introduction Optimality and Asset Pricing

Introduction Optimality and Asset Pricing Introduction Optimality and Asset Pricing Andrea Buraschi Imperial College Business School October 2010 The Euler Equation Take an economy where price is given with respect to the numéraire, which is our

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions Math 50 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 205 Homework #5 Solutions. Let α and c be real numbers, c > 0, and f is defined

More information

DYNAMIC LECTURE 1 UNIVERSITY OF MARYLAND: ECON 600

DYNAMIC LECTURE 1 UNIVERSITY OF MARYLAND: ECON 600 DYNAMIC LECTURE 1 UNIVERSITY OF MARYLAND: ECON 6 1. differential Equations 1 1.1. Basic Concepts for Univariate Equations. We use differential equations to model situations which treat time as a continuous

More information

A Proof of the EOQ Formula Using Quasi-Variational. Inequalities. March 19, Abstract

A Proof of the EOQ Formula Using Quasi-Variational. Inequalities. March 19, Abstract A Proof of the EOQ Formula Using Quasi-Variational Inequalities Dir Beyer y and Suresh P. Sethi z March, 8 Abstract In this paper, we use quasi-variational inequalities to provide a rigorous proof of the

More information

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Controlled Diffusions and Hamilton-Jacobi Bellman Equations Controlled Diffusions and Hamilton-Jacobi Bellman Equations Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

Project Optimal Control: Optimal Control with State Variable Inequality Constraints (SVIC)

Project Optimal Control: Optimal Control with State Variable Inequality Constraints (SVIC) Project Optimal Control: Optimal Control with State Variable Inequality Constraints (SVIC) Mahdi Ghazaei, Meike Stemmann Automatic Control LTH Lund University Problem Formulation Find the maximum of the

More information

problem. max Both k (0) and h (0) are given at time 0. (a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

problem. max Both k (0) and h (0) are given at time 0. (a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming 1. Endogenous Growth with Human Capital Consider the following endogenous growth model with both physical capital (k (t)) and human capital (h (t)) in continuous time. The representative household solves

More information

To take the derivative of x raised to a power, you multiply in front by the exponent and subtract 1 from the exponent.

To take the derivative of x raised to a power, you multiply in front by the exponent and subtract 1 from the exponent. MA123, Chapter 5: Formulas for derivatives (pp. 83-102) Date: Chapter Goals: Know and be able to apply the formulas for derivatives. Understand the chain rule and be able to apply it. Know how to compute

More information

Chapter 5. Pontryagin s Minimum Principle (Constrained OCP)

Chapter 5. Pontryagin s Minimum Principle (Constrained OCP) Chapter 5 Pontryagin s Minimum Principle (Constrained OCP) 1 Pontryagin s Minimum Principle Plant: (5-1) u () t U PI: (5-2) Boundary condition: The goal is to find Optimal Control. 2 Pontryagin s Minimum

More information

Calculus Overview. f(x) f (x) is slope. I. Single Variable. A. First Order Derivative : Concept : measures slope of curve at a point.

Calculus Overview. f(x) f (x) is slope. I. Single Variable. A. First Order Derivative : Concept : measures slope of curve at a point. Calculus Overview I. Single Variable A. First Order Derivative : Concept : measures slope of curve at a point. Notation : Let y = f (x). First derivative denoted f ʹ (x), df dx, dy dx, f, etc. Example

More information

EN Applied Optimal Control Lecture 8: Dynamic Programming October 10, 2018

EN Applied Optimal Control Lecture 8: Dynamic Programming October 10, 2018 EN530.603 Applied Optimal Control Lecture 8: Dynamic Programming October 0, 08 Lecturer: Marin Kobilarov Dynamic Programming (DP) is conerned with the computation of an optimal policy, i.e. an optimal

More information

25. Chain Rule. Now, f is a function of t only. Expand by multiplication:

25. Chain Rule. Now, f is a function of t only. Expand by multiplication: 25. Chain Rule The Chain Rule is present in all differentiation. If z = f(x, y) represents a two-variable function, then it is plausible to consider the cases when x and y may be functions of other variable(s).

More information

CHAPTER 2 THE MAXIMUM PRINCIPLE: CONTINUOUS TIME. Chapter2 p. 1/67

CHAPTER 2 THE MAXIMUM PRINCIPLE: CONTINUOUS TIME. Chapter2 p. 1/67 CHAPTER 2 THE MAXIMUM PRINCIPLE: CONTINUOUS TIME Chapter2 p. 1/67 THE MAXIMUM PRINCIPLE: CONTINUOUS TIME Main Purpose: Introduce the maximum principle as a necessary condition to be satisfied by any optimal

More information

8 Singular Integral Operators and L p -Regularity Theory

8 Singular Integral Operators and L p -Regularity Theory 8 Singular Integral Operators and L p -Regularity Theory 8. Motivation See hand-written notes! 8.2 Mikhlin Multiplier Theorem Recall that the Fourier transformation F and the inverse Fourier transformation

More information

Lecture 6: Discrete-Time Dynamic Optimization

Lecture 6: Discrete-Time Dynamic Optimization Lecture 6: Discrete-Time Dynamic Optimization Yulei Luo Economics, HKU November 13, 2017 Luo, Y. (Economics, HKU) ECON0703: ME November 13, 2017 1 / 43 The Nature of Optimal Control In static optimization,

More information

Basic Techniques. Ping Wang Department of Economics Washington University in St. Louis. January 2018

Basic Techniques. Ping Wang Department of Economics Washington University in St. Louis. January 2018 Basic Techniques Ping Wang Department of Economics Washington University in St. Louis January 2018 1 A. Overview A formal theory of growth/development requires the following tools: simple algebra simple

More information

Numerical Methods for Optimal Control Problems. Part I: Hamilton-Jacobi-Bellman Equations and Pontryagin Minimum Principle

Numerical Methods for Optimal Control Problems. Part I: Hamilton-Jacobi-Bellman Equations and Pontryagin Minimum Principle Numerical Methods for Optimal Control Problems. Part I: Hamilton-Jacobi-Bellman Equations and Pontryagin Minimum Principle Ph.D. course in OPTIMAL CONTROL Emiliano Cristiani (IAC CNR) e.cristiani@iac.cnr.it

More information

Differential Games II. Marc Quincampoix Université de Bretagne Occidentale ( Brest-France) SADCO, London, September 2011

Differential Games II. Marc Quincampoix Université de Bretagne Occidentale ( Brest-France) SADCO, London, September 2011 Differential Games II Marc Quincampoix Université de Bretagne Occidentale ( Brest-France) SADCO, London, September 2011 Contents 1. I Introduction: A Pursuit Game and Isaacs Theory 2. II Strategies 3.

More information

Rice University. Answer Key to Mid-Semester Examination Fall ECON 501: Advanced Microeconomic Theory. Part A

Rice University. Answer Key to Mid-Semester Examination Fall ECON 501: Advanced Microeconomic Theory. Part A Rice University Answer Key to Mid-Semester Examination Fall 006 ECON 50: Advanced Microeconomic Theory Part A. Consider the following expenditure function. e (p ; p ; p 3 ; u) = (p + p ) u + p 3 State

More information

The first order quasi-linear PDEs

The first order quasi-linear PDEs Chapter 2 The first order quasi-linear PDEs The first order quasi-linear PDEs have the following general form: F (x, u, Du) = 0, (2.1) where x = (x 1, x 2,, x 3 ) R n, u = u(x), Du is the gradient of u.

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

7.2 Trapezoidal Approximation

7.2 Trapezoidal Approximation 7. Trapezoidal Approximation NOTES Write your questions here! Riemann Sum f(x) = x + 1 [1,3] f(x) = x + 1 The Definite Integral b f(x)dx a Trapezoidal Approximation for interval [1,3] with n subintervals

More information

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 11/2/12

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 11/2/12 Line Integrals (4A Line Integral Path Independence Copyright (c 2012 Young W. Lim. Permission is granted to copy, distriute and/or modify this document under the terms of the GNU Free Documentation License,

More information

Topic 3 Outline. What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity. 1 Limits and Continuity

Topic 3 Outline. What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity. 1 Limits and Continuity Topic 3 Outline 1 Limits and Continuity What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity D. Kalajdzievska (University of Manitoba) Math 1520 Fall 2015 1 / 27 Topic 3 Learning

More information

Chapter 15. Several of the applications of constrained optimization presented in Chapter 11 are. Dynamic Optimization

Chapter 15. Several of the applications of constrained optimization presented in Chapter 11 are. Dynamic Optimization Chapter 15 Dynamic Optimization Several of the applications of constrained optimization presented in Chapter 11 are two-period discrete-time optimization problems. he objective function in these intertemporal

More information

Chapter 2. The Solow Growth Model

Chapter 2. The Solow Growth Model Chapter 2. The Solow Growth Model Instructor: Dmytro Hryshko 1 / 56 Solow model Solow model is a starting point for more complex models. Abstracts from modeling heterogeneous households (in tastes, abilities,

More information

Stochastic Dynamic Programming. Jesus Fernandez-Villaverde University of Pennsylvania

Stochastic Dynamic Programming. Jesus Fernandez-Villaverde University of Pennsylvania Stochastic Dynamic Programming Jesus Fernande-Villaverde University of Pennsylvania 1 Introducing Uncertainty in Dynamic Programming Stochastic dynamic programming presents a very exible framework to handle

More information

Dynamical Systems. August 13, 2013

Dynamical Systems. August 13, 2013 Dynamical Systems Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 13, 2013 Dynamical Systems are systems, described by one or more equations, that evolve over time.

More information

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations.

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations. UNIVERSITY OF SOUTHAMPTON MATH055W SEMESTER EXAMINATION 03/4 MATHEMATICS FOR ELECTRONIC & ELECTRICAL ENGINEERING Duration: 0 min Solutions Only University approved calculators may be used. A foreign language

More information

LECTURES ON OPTIMAL CONTROL THEORY

LECTURES ON OPTIMAL CONTROL THEORY LECTURES ON OPTIMAL CONTROL THEORY Terje Sund May 24, 2016 CONTENTS 1. INTRODUCTION 2. FUNCTIONS OF SEVERAL VARIABLES 3. CALCULUS OF VARIATIONS 4. OPTIMAL CONTROL THEORY 1 INTRODUCTION In the theory of

More information

Math 141: Lecture 11

Math 141: Lecture 11 Math 141: Lecture 11 The Fundamental Theorem of Calculus and integration methods Bob Hough October 12, 2016 Bob Hough Math 141: Lecture 11 October 12, 2016 1 / 36 First Fundamental Theorem of Calculus

More information

UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory

UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory Constrained Innite-Time Nonlinear Quadratic Optimal Control V. Manousiouthakis D. Chmielewski Chemical Engineering Department UCLA 1998 AIChE Annual Meeting Outline Unconstrained Innite-Time Nonlinear

More information

Continuous Time Finance

Continuous Time Finance Continuous Time Finance Lisbon 2013 Tomas Björk Stockholm School of Economics Tomas Björk, 2013 Contents Stochastic Calculus (Ch 4-5). Black-Scholes (Ch 6-7. Completeness and hedging (Ch 8-9. The martingale

More information

One Variable Calculus. Izmir University of Economics Econ 533: Quantitative Methods and Econometrics

One Variable Calculus. Izmir University of Economics Econ 533: Quantitative Methods and Econometrics Izmir University of Economics Econ 533: Quantitative Methods and Econometrics One Variable Calculus Introduction Finding the best way to do a specic task involves what is called an optimization problem.

More information

OPTIMAL CONTROL THEORY. Preliminary and Incomplete - please do not cite

OPTIMAL CONTROL THEORY. Preliminary and Incomplete - please do not cite OPTIMAL CONTROL THEORY PEDRO HEMSLEY Preliminary and Incomplete - please do not cite These short notes are based on Rochet's notes for a course in dynamic optimization 1,2. They are no substitute for the

More information

Stochastic Calculus for Finance II - some Solutions to Chapter VII

Stochastic Calculus for Finance II - some Solutions to Chapter VII Stochastic Calculus for Finance II - some Solutions to Chapter VII Matthias hul Last Update: June 9, 25 Exercise 7 Black-Scholes-Merton Equation for the up-and-out Call) i) We have ii) We first compute

More information

March 16, Abstract. We study the problem of portfolio optimization under the \drawdown constraint" that the

March 16, Abstract. We study the problem of portfolio optimization under the \drawdown constraint that the ON PORTFOLIO OPTIMIZATION UNDER \DRAWDOWN" CONSTRAINTS JAKSA CVITANIC IOANNIS KARATZAS y March 6, 994 Abstract We study the problem of portfolio optimization under the \drawdown constraint" that the wealth

More information

y + p(t)y = g(t) for each t I, and that also satisfies the initial condition y(t 0 ) = y 0 where y 0 is an arbitrary prescribed initial value.

y + p(t)y = g(t) for each t I, and that also satisfies the initial condition y(t 0 ) = y 0 where y 0 is an arbitrary prescribed initial value. p1 Differences Between Linear and Nonlinear Equation Theorem 1: If the function p and g are continuous on an open interval I : α < t < β containing the point t = t 0, then there exists a unique function

More information

In the Ramsey model we maximized the utility U = u[c(t)]e nt e t dt. Now

In the Ramsey model we maximized the utility U = u[c(t)]e nt e t dt. Now PERMANENT INCOME AND OPTIMAL CONSUMPTION On the previous notes we saw how permanent income hypothesis can solve the Consumption Puzzle. Now we use this hypothesis, together with assumption of rational

More information

The Ramsey Model. Alessandra Pelloni. October TEI Lecture. Alessandra Pelloni (TEI Lecture) Economic Growth October / 61

The Ramsey Model. Alessandra Pelloni. October TEI Lecture. Alessandra Pelloni (TEI Lecture) Economic Growth October / 61 The Ramsey Model Alessandra Pelloni TEI Lecture October 2015 Alessandra Pelloni (TEI Lecture) Economic Growth October 2015 1 / 61 Introduction Introduction Introduction Ramsey-Cass-Koopmans model: di ers

More information

Abstract. Jacobi curves are far going generalizations of the spaces of \Jacobi

Abstract. Jacobi curves are far going generalizations of the spaces of \Jacobi Principal Invariants of Jacobi Curves Andrei Agrachev 1 and Igor Zelenko 2 1 S.I.S.S.A., Via Beirut 2-4, 34013 Trieste, Italy and Steklov Mathematical Institute, ul. Gubkina 8, 117966 Moscow, Russia; email:

More information

Stability and Control Design for Time-Varying Systems with Time-Varying Delays using a Trajectory-Based Approach

Stability and Control Design for Time-Varying Systems with Time-Varying Delays using a Trajectory-Based Approach Stability and Control Design for Time-Varying Systems with Time-Varying Delays using a Trajectory-Based Approach Michael Malisoff (LSU) Joint with Frederic Mazenc and Silviu-Iulian Niculescu 0/6 Motivation

More information

ECON607 Fall 2010 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 1 Suggested Solutions

ECON607 Fall 2010 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 1 Suggested Solutions ECON607 Fall 200 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment Suggested Solutions The due date for this assignment is Thursday, Sep. 23.. Consider an stochastic optimal growth model

More information

NOTES ON CALCULUS OF VARIATIONS. September 13, 2012

NOTES ON CALCULUS OF VARIATIONS. September 13, 2012 NOTES ON CALCULUS OF VARIATIONS JON JOHNSEN September 13, 212 1. The basic problem In Calculus of Variations one is given a fixed C 2 -function F (t, x, u), where F is defined for t [, t 1 ] and x, u R,

More information

[A + 1 ] + (1 ) v: : (b) Show: the derivative of T at v = v 0 < 0 is: = (v 0 ) (1 ) ; [A + 1 ]

[A + 1 ] + (1 ) v: : (b) Show: the derivative of T at v = v 0 < 0 is: = (v 0 ) (1 ) ; [A + 1 ] Homework #2 Economics 4- Due Wednesday, October 5 Christiano. This question is designed to illustrate Blackwell's Theorem, Theorem 3.3 on page 54 of S-L. That theorem represents a set of conditions that

More information

Optimal control theory with applications to resource and environmental economics

Optimal control theory with applications to resource and environmental economics Optimal control theory with applications to resource and environmental economics Michael Hoel, August 10, 2015 (Preliminary and incomplete) 1 Introduction This note gives a brief, non-rigorous sketch of

More information

ECON 581: Growth with Overlapping Generations. Instructor: Dmytro Hryshko

ECON 581: Growth with Overlapping Generations. Instructor: Dmytro Hryshko ECON 581: Growth with Overlapping Generations Instructor: Dmytro Hryshko Readings Acemoglu, Chapter 9. Motivation Neoclassical growth model relies on the representative household. OLG models allow for

More information

Introduction to optimal control theory in continuos time (with economic applications) Salvatore Federico

Introduction to optimal control theory in continuos time (with economic applications) Salvatore Federico Introduction to optimal control theory in continuos time (with economic applications) Salvatore Federico June 26, 2017 2 Contents 1 Introduction to optimal control problems in continuous time 5 1.1 From

More information

The Growth Model in Continuous Time (Ramsey Model)

The Growth Model in Continuous Time (Ramsey Model) The Growth Model in Continuous Time (Ramsey Model) Prof. Lutz Hendricks Econ720 September 27, 2017 1 / 32 The Growth Model in Continuous Time We add optimizing households to the Solow model. We first study

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predator - Prey Model Trajectories and the nonlinear conservation law James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline

More information

Optimization Techniques and Problem Analysis for Managers

Optimization Techniques and Problem Analysis for Managers Optimization Techniques and Problem Analysis for Managers Optimization is one of the most basic subjects in management and economics. Dynamic programming and Control Problem are powerful tools in related

More information

Chapter 6: The Laplace Transform 6.3 Step Functions and

Chapter 6: The Laplace Transform 6.3 Step Functions and Chapter 6: The Laplace Transform 6.3 Step Functions and Dirac δ 2 April 2018 Step Function Definition: Suppose c is a fixed real number. The unit step function u c is defined as follows: u c (t) = { 0

More information

Math 112 (Calculus I) Final Exam

Math 112 (Calculus I) Final Exam Name: Student ID: Section: Instructor: Math 112 (Calculus I) Final Exam Dec 18, 7:00 p.m. Instructions: Work on scratch paper will not be graded. For questions 11 to 19, show all your work in the space

More information

1 Solutions to selected problems

1 Solutions to selected problems 1 Solutions to selected problems 1. Let A B R n. Show that int A int B but in general bd A bd B. Solution. Let x int A. Then there is ɛ > 0 such that B ɛ (x) A B. This shows x int B. If A = [0, 1] and

More information

Technical Appendix: The Optimum Quantity of Debt y. November 1995

Technical Appendix: The Optimum Quantity of Debt y. November 1995 Technical Appendix: The Optimum Quantity of Debt y S. Rao Aiyagari and Ellen R. McGrattan Federal Reserve Bank of Minneapolis November 1995 y The views expressed herein are those of the authors and not

More information

Antiderivatives and Indefinite Integrals

Antiderivatives and Indefinite Integrals Antiderivatives and Indefinite Integrals MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Fall 2018 Objectives After completing this lesson we will be able to use the definition

More information

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 10/22/12

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 10/22/12 Line Integrals (4A Line Integral Path Independence Copyright (c 2012 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

More information

f(s) e -i n π s/l d s

f(s) e -i n π s/l d s Pointwise convergence of complex Fourier series Let f(x) be a periodic function with period l defined on the interval [,l]. The complex Fourier coefficients of f( x) are This leads to a Fourier series

More information

1 Overview. 2 Multilinear Extension. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Multilinear Extension. AM 221: Advanced Optimization Spring 2016 AM 22: Advanced Optimization Spring 26 Prof. Yaron Singer Lecture 24 April 25th Overview The goal of today s lecture is to see how the multilinear extension of a submodular function that we introduced

More information

Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) =

Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) = Math 90 Final Review Find all points where the function is discontinuous. ) Find all vertical asymptotes of the given function. x(x - ) 2) f(x) = x3 + 4x Provide an appropriate response. 3) If x 3 f(x)

More information

Essentials of optimal control theory in ECON 4140

Essentials of optimal control theory in ECON 4140 Essentials of optimal control theory in ECON 4140 Things yo need to know (and a detail yo need not care abot). A few words abot dynamic optimization in general. Dynamic optimization can be thoght of as

More information

HW3 - Due 02/06. Each answer must be mathematically justified. Don t forget your name. 1 2, A = 2 2

HW3 - Due 02/06. Each answer must be mathematically justified. Don t forget your name. 1 2, A = 2 2 HW3 - Due 02/06 Each answer must be mathematically justified Don t forget your name Problem 1 Find a 2 2 matrix B such that B 3 = A, where A = 2 2 If A was diagonal, it would be easy: we would just take

More information

POSITIVE CONTROLS. P.O. Box 513. Fax: , Regulator problem."

POSITIVE CONTROLS. P.O. Box 513. Fax: ,   Regulator problem. LINEAR QUADRATIC REGULATOR PROBLEM WITH POSITIVE CONTROLS W.P.M.H. Heemels, S.J.L. van Eijndhoven y, A.A. Stoorvogel y Technical University of Eindhoven y Dept. of Electrical Engineering Dept. of Mathematics

More information

Optimal Control Theory - Module 3 - Maximum Principle

Optimal Control Theory - Module 3 - Maximum Principle Optimal Control Theory - Module 3 - Maximum Principle Fall, 215 - University of Notre Dame 7.1 - Statement of Maximum Principle Consider the problem of minimizing J(u, t f ) = f t L(x, u)dt subject to

More information

Mathematics Engineering Calculus III Fall 13 Test #1

Mathematics Engineering Calculus III Fall 13 Test #1 Mathematics 2153-02 Engineering Calculus III Fall 13 Test #1 Instructor: Dr. Alexandra Shlapentokh (1) Which of the following statements is always true? (a) If x = f(t), y = g(t) and f (1) = 0, then dy/dx(1)

More information

Definitions of the Laplace Transform (1A) Young Won Lim 1/31/15

Definitions of the Laplace Transform (1A) Young Won Lim 1/31/15 Definitions of the Laplace Transform (A) Copyright (c) 24 Young W. Lim. Permission is granted to copy, distriute and/or modify this document under the terms of the GNU Free Documentation License, Version.2

More information

Dynamic Optimization: An Introduction

Dynamic Optimization: An Introduction Dynamic Optimization An Introduction M. C. Sunny Wong University of San Francisco University of Houston, June 20, 2014 Outline 1 Background What is Optimization? EITM: The Importance of Optimization 2

More information

MATH 200 WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE

MATH 200 WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE GOALS Be able to compute a gradient vector, and use it to compute a directional derivative of a given function in a given direction. Be able to use the fact that

More information

Problem Set # 2 Dynamic Part - Math Camp

Problem Set # 2 Dynamic Part - Math Camp Problem Set # 2 Dynamic Part - Math Camp Consumption with Labor Supply Consider the problem of a household that hao choose both consumption and labor supply. The household s problem is: V 0 max c t;l t

More information

Economics 202A Lecture Outline #3 (version 1.0)

Economics 202A Lecture Outline #3 (version 1.0) Economics 202A Lecture Outline #3 (version.0) Maurice Obstfeld Steady State of the Ramsey-Cass-Koopmans Model In the last few lectures we have seen how to set up the Ramsey-Cass- Koopmans Model in discrete

More information

Midterm 1. Every element of the set of functions is continuous

Midterm 1. Every element of the set of functions is continuous Econ 200 Mathematics for Economists Midterm Question.- Consider the set of functions F C(0, ) dened by { } F = f C(0, ) f(x) = ax b, a A R and b B R That is, F is a subset of the set of continuous functions

More information

(2) Let f(x) = a 2 x if x<2, 4 2x 2 ifx 2. (b) Find the lim f(x). (c) Find all values of a that make f continuous at 2. Justify your answer.

(2) Let f(x) = a 2 x if x<2, 4 2x 2 ifx 2. (b) Find the lim f(x). (c) Find all values of a that make f continuous at 2. Justify your answer. (1) Let f(x) = x x 2 9. (a) Find the domain of f. (b) Write an equation for each vertical asymptote of the graph of f. (c) Write an equation for each horizontal asymptote of the graph of f. (d) Is f odd,

More information

Optimisation and optimal control 1: Tutorial solutions (calculus of variations) t 3

Optimisation and optimal control 1: Tutorial solutions (calculus of variations) t 3 Optimisation and optimal control : Tutorial solutions calculus of variations) Question i) Here we get x d ) = d ) = 0 Hence ṫ = ct 3 where c is an arbitrary constant. Integrating, xt) = at 4 + b where

More information

Point Process Control

Point Process Control Point Process Control The following note is based on Chapters I, II and VII in Brémaud s book Point Processes and Queues (1981). 1 Basic Definitions Consider some probability space (Ω, F, P). A real-valued

More information

AN OVERVIEW OF STATIC HAMILTON-JACOBI EQUATIONS. 1. Introduction

AN OVERVIEW OF STATIC HAMILTON-JACOBI EQUATIONS. 1. Introduction AN OVERVIEW OF STATIC HAMILTON-JACOBI EQUATIONS JAMES C HATELEY Abstract. There is a voluminous amount of literature on Hamilton-Jacobi equations. This paper reviews some of the existence and uniqueness

More information

Online Appendix I: Wealth Inequality in the Standard Neoclassical Growth Model

Online Appendix I: Wealth Inequality in the Standard Neoclassical Growth Model Online Appendix I: Wealth Inequality in the Standard Neoclassical Growth Model Dan Cao Georgetown University Wenlan Luo Georgetown University July 2016 The textbook Ramsey-Cass-Koopman neoclassical growth

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

Math 101 Fall 2006 Exam 1 Solutions Instructor: S. Cautis/M. Simpson/R. Stong Thursday, October 5, 2006

Math 101 Fall 2006 Exam 1 Solutions Instructor: S. Cautis/M. Simpson/R. Stong Thursday, October 5, 2006 Math 101 Fall 2006 Exam 1 Solutions Instructor: S. Cautis/M. Simpson/R. Stong Thursday, October 5, 2006 Instructions: This is a closed book, closed notes exam. Use of calculators is not permitted. You

More information

The Necessity of the Transversality Condition at Infinity: A (Very) Special Case

The Necessity of the Transversality Condition at Infinity: A (Very) Special Case The Necessity of the Transversality Condition at Infinity: A (Very) Special Case Peter Ireland ECON 772001 - Math for Economists Boston College, Department of Economics Fall 2017 Consider a discrete-time,

More information

A quasi-separation theorem for LQG optimal control with IQ constraints Andrew E.B. Lim y & John B. Moore z February 1997 Abstract We consider the dete

A quasi-separation theorem for LQG optimal control with IQ constraints Andrew E.B. Lim y & John B. Moore z February 1997 Abstract We consider the dete A quasi-separation theorem for LQG optimal control with IQ constraints Andrew E.B. Lim y & John B. Moore z February 1997 Abstract We consider the deterministic, the full observation and the partial observation

More information

Principles of Optimal Control Spring 2008

Principles of Optimal Control Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 16.323 Principles of Optimal Control Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 16.323 Lecture

More information

Problem 1 Cost of an Infinite Horizon LQR

Problem 1 Cost of an Infinite Horizon LQR THE UNIVERSITY OF TEXAS AT SAN ANTONIO EE 5243 INTRODUCTION TO CYBER-PHYSICAL SYSTEMS H O M E W O R K # 5 Ahmad F. Taha October 12, 215 Homework Instructions: 1. Type your solutions in the LATEX homework

More information

Section 3.9. The Geometry of Graphs. Difference Equations to Differential Equations

Section 3.9. The Geometry of Graphs. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.9 The Geometry of Graphs In Section. we discussed the graph of a function y = f(x) in terms of plotting points (x, f(x)) for many different values

More information

f(r) = (r 1/2 r 1/2 ) 3 u = (ln t) ln t ln u = (ln t)(ln (ln t)) t(ln t) g (t) = t

f(r) = (r 1/2 r 1/2 ) 3 u = (ln t) ln t ln u = (ln t)(ln (ln t)) t(ln t) g (t) = t Math 4, Autumn 006 Final Exam Solutions Page of 9. [ points total] Calculate the derivatives of the following functions. You need not simplfy your answers. (a) [4 points] y = 5x 7 sin(3x) + e + ln x. y

More information

Hamilton-Jacobi-Bellman Equation Feb 25, 2008

Hamilton-Jacobi-Bellman Equation Feb 25, 2008 Hamilton-Jacobi-Bellman Equation Feb 25, 2008 What is it? The Hamilton-Jacobi-Bellman (HJB) equation is the continuous-time analog to the discrete deterministic dynamic programming algorithm Discrete VS

More information

Name: Instructor: Exam 3 Solutions. Multiple Choice. 3x + 2 x ) 3x 3 + 2x 2 + 5x + 2 3x 3 3x 2x 2 + 2x + 2 2x 2 2 2x.

Name: Instructor: Exam 3 Solutions. Multiple Choice. 3x + 2 x ) 3x 3 + 2x 2 + 5x + 2 3x 3 3x 2x 2 + 2x + 2 2x 2 2 2x. . Exam 3 Solutions Multiple Choice.(6 pts.) Find the equation of the slant asymptote to the function We have so the slant asymptote is y = 3x +. f(x) = 3x3 + x + 5x + x + 3x + x + ) 3x 3 + x + 5x + 3x

More information

Problem Set 2: Proposed solutions Econ Fall Cesar E. Tamayo Department of Economics, Rutgers University

Problem Set 2: Proposed solutions Econ Fall Cesar E. Tamayo Department of Economics, Rutgers University Problem Set 2: Proposed solutions Econ 504 - Fall 202 Cesar E. Tamayo ctamayo@econ.rutgers.edu Department of Economics, Rutgers University Simple optimal growth (Problems &2) Suppose that we modify slightly

More information

2 Statement of the problem and assumptions

2 Statement of the problem and assumptions Mathematical Notes, 25, vol. 78, no. 4, pp. 466 48. Existence Theorem for Optimal Control Problems on an Infinite Time Interval A.V. Dmitruk and N.V. Kuz kina We consider an optimal control problem on

More information