UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory

Size: px
Start display at page:

Download "UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory"

Transcription

1 Constrained Innite-Time Nonlinear Quadratic Optimal Control V. Manousiouthakis D. Chmielewski Chemical Engineering Department UCLA 1998 AIChE Annual Meeting

2 Outline Unconstrained Innite-Time Nonlinear Quadratic-Optimal Control Hamilton-Jacobi-Bellman Equation State Dependent Riccati Equation and the Curl Condition Closed-Loop Stability Example Constrained Innite-Time Nonlinear Quadratic-Optimal Control Family of Finite Time Problems Equivalence to the Innite Time Problem Example

3 Nonlinear Quadratic Optimal Control Z 1 min u + T Q(x)x ; f(x) 4 x T Q(x)x + u T R(x)u dt ;1 (x)b T B(x)R optimal is given by u (x) = ; 1 2 R;1 (x)b policy The T s.t. _x = f(x) + B(x)u The solution can be found by solving the HJB equation T T The determination of J(x) is nearly impossible in all but the simplest cases.

4 @J = (x) (x)^=p xt 2 Innite-time Nonlinear Quadratic Optimal Control J(x) can be written as: J(x) = x T P (x)x where P (x) is symmetric. 1 In this + 1 xt 2 C x A Dene Then the HJB becomes: x T (x)a(x) + A T (x)(x) + Q(x) ; (x)b(x)r ;1 (x)b T (x)(x) x = where A(x) s.t. f(x) = A(x)x.

5 (H1) R(x) >, 8 x 2 < n, and Q(x) >, 8 x 2 D < n and Assumptions (H2) A(x) and B(x) are analytic matrix valued functions 8 x 2 D (H3) The pair (A(x) B(x)) is controllable (in the linear system sense) 8 x 2 D exist and are continuous and bounded 8 x 2 D (where b i (x) is the ith column of B(x))

6 State Dependent Riccati Equation If (x) satises the SDRE: (x)a(x) + A T (x) ; (x)b(x)r ;1 (x)b T (x)(x) + Q(x) = then the HJB will appear to be satised. In this case, the optimal policy is u (x) = ;R ;1 (x)b T (x)(x)x and the optimal value function is J(x) = x T P (x)x

7 Gradient of a Scalar Function For the HJB to actually be satised 2x T (x) must equal The conditions for a vector function, v(x), to be a gradient are : i 8 i j Assumption: (H5) A(x) is s.t. the solution to the SDRE, (x), satises: curl(x T (x)) = 8 x 2 D

8 Existence of a (x) there exists a solution to the HJB equation, If then there exists A(x) s.t. the solution = 2xT (x): The following guarantees the existence of a SDRE such that the curl condition is satised (Lu and Huang, 199). to the SDRE equation, (x),

9 = x T Z 1 (x)d! x J(x) Stability and Optimality and Chmielewski, 1998) Theorem:(Manousiouthakis (H1)-(H5) hold. Then the scalar function Let the necessary conditions for optimality (HJB) for all x 2 D. satises the feedback policy Furthermore, u(x) = ;R ;1 (x)b T (x)(x)x is asymptotically stabilizing. Let (H1)-(H5) hold, and assume D = < n. Corollary: the feedback policy is globally asymptotically stabilizing. Then

10 An Inverse Method Consider (x) and A(x) to be design functions. First we must guarantee (x) > curl(x T (x)) = A(x)x = f(x) Then simply calculate Q(x) from the SDRE. Q(x) = (x)b(x)r ;1 (x)b T (x)(x) ; A T (x)(x) ; (x)a(x)

11 > 8 x 2 Z An Inverse Method (continued) Let Z be dened as (a positively invariant set) Z = ( " n jj(x) J(x) = x T Z ) 1 (x)d# x x < 2 Dene s.t. x T Q(x)x + u T R(x)u = x T Q(x) + (x)b(x)r ;1 (x)b T (x)(x) x Then a sucient condition closed-loop stability is that x() 2 Z.

12 _x 1 ;2k a x 2 1 ; 4k a C Ass + F V x1 + 2k b x 2 x 1 = C A ; C Ass x 2 = C B ; C Bss u = C Ain ; C Ainss k a Example a k *) Consider a CSTR Reactor with reaction 2A k b B F V 4 5 = u + 5 _x 2 a 2 + 2k ac Ass x 1 ; F V b x2 + k 1 x k F k 2 CAss = 1 2 (C Ainss ; C Ass ) b + V C Bss =

13 Example (continued) The following SS design parameters are used (all in SI units) k a = :5 k b = :1 F = :2 V C Ainss = 1 C Ass = 1:59 C Bss = 4:21

14 ; 4k a C Ass + F V 4 2k a C Ass 2k b and Q o = 5 4 o 11 q q o 22 5 Example (continued) Let (x) = P o where P o satises A T o P o + P o A T o + Q o ; P o BR ;1 B T P o = where R = (V=F) 2, F V + k b ; A o = Clearly this choice of (x) satises the \Curl" condition.

15 o k ax 1 (2p 11 ; p 12 ) + p 2 11 q k a x 1 (p 22 ; 2p 12 ) q o 22 q o Example (continued) Q(x) is calculated, via the SDRE, to be: 2 3 q o k ax 1 (2p 11 ; p 12 ) k a x 1 (p 22 ; 2p 12 ) Q(x) = 4 5 Then Q(x) + P o BR ;1 B T P o is positive denite i q o k ax 1 (2p 11 ; p 12 ) + p 2 11 > 22 ; (k a x 1 (p 22 ; 2p 12 )p 11 p 12 ) 2 >

16 Z = 2 < 2 j T P o Example (continued) For q o 11 = 1, and qo 22 = :1 x 1 2 ( ;1 39 ) ) Q(x) + P o BR ;1 B T P o > The largest positively invariant set such that Q(x) + P o BR ;1 B T P o > 8 x 2 Z, corresponds to = 1:8

17 Example 1: Closed-Loop Stability Region Q(x) + P o B R -1 B T P o > 1 Concentration of B 5 Q(x) + P o B R -1 B T P o > Concentration of A

18 Example 1: Closed-Loop Simulations 5 4 Concentration 3 2 C B C A 1 Nominal Inputs Optimal Control Time

19 Z 1 Constrained ITNQOC Problem x T Qx + T (u)r(u) dt = inf u () s.t. _x = A(x)x + B(x)(u) x() = where () : < M! U, is dened as = arg min (u) 2U jju ; jj Further Assumptions: (H) U is convex and contains the origin in its interior (H) 2 X o ^= f 2 < n j 9 u s.t. () < 1g

20 ( Z T " x T Z 1 (x)d# x = J(x) Constrained FTNQOC Problem Consider the following family of nite-time optimal control problems. x T Qx + T (u)r(u) dt + J(x(T ))) T () = inf u s.t. _x = A(x)x + B(x)(u) x() = where

21 of Constrained and Unconstrained Equivalence Problems X = f 2 < n j K() 2 Ug O 1 ^= 2 < n j x(t) 2 X 8 t > Dene where K(x) is the unconstrained optimal feedback gain. Lemma: Let K(x) be bounded for all x in a neighborhood of the origin. Then 2 intfug =) 2 intfo 1 g

22 (i) 1 ^=lim T!1 T exists for all 2 X o (ii) T = 1, T = T + 8, u T = u T + 8, x T (T ) 2 O 1 (iii) If 9 T > such that x T (T ) 2 O X o 9 T s.t. x T (T ) 2 O 1 Finite-Time Solution to Innite-Time Problem Lemma: Let (H1-H) hold and assume the solution to T is unique. Then then T = Theorem: Let (H1-H) hold and assume the solution to T is unique. Then

23 8 < 2 n j 9 u s.t. lim jjx(t)jj < = t!1 : X max = X o 9 = Equivalence of Initial Condition Sets Dene the set of constrained stabilizable initial conditions as X max = Theorem: Let (H1-H) hold and assume the solution to T is unique. Then

24 Z B C Ass + F a V x1 (t) 2 + ru(t) 2 dt Example 2 Consider the CSTR of Example 1 with k b = 1 _x 1 = ;2k a x 2 1 ; C x 1 + F A u V with objective function (r = (F=V ) 2 ) and constraints u(t) + C Ainss 2 [ 1] 8 t ) X max = (;3:89 1)

25 Example 2 (continued) The resulting SDRE is: 2(;2k a x 1 ; 2k a C Ass ) (x 1 ) + 1 ; 2 (x 1 ) = Which has solution! (x 1 ) = 2 k a x 1 + k a C Ass + r (k a x 1 + k a C Ass ) 2 + 1

26 u(x) = ; V F k ax 1 + k a C Ass + r (k a x 1 + k a C Ass ) 2 + 1! x 1 Example 2 (continued) The Unconstrained Optimal Control Policy is and O 1 = (;:4 1) Finally, the Closed-Loop System is _x = ;x 1 r (ka x 1 + k a C Ass ) 2 + 1

27 Example 2: Optimal State Trajectories 1..8 Concentration of A..4 No Constraints Constrained Input Nominal Input Time

28 Example 2: Optimal Input Policies No Constraints Constrained Input C A in Time

29 Acknowledgments The Following Financial Support is Gratefully Acknowledged: NSF GER NSF CTS DOEd P2A432-95

UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory

UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory Constrained Innite-time Optimal Control Donald J. Chmielewski Chemical Engineering Department University of California Los Angeles February 23, 2000 Stochastic Formulation - Min Max Formulation - UCLA

More information

Hamilton-Jacobi-Bellman Equation Feb 25, 2008

Hamilton-Jacobi-Bellman Equation Feb 25, 2008 Hamilton-Jacobi-Bellman Equation Feb 25, 2008 What is it? The Hamilton-Jacobi-Bellman (HJB) equation is the continuous-time analog to the discrete deterministic dynamic programming algorithm Discrete VS

More information

EN Applied Optimal Control Lecture 8: Dynamic Programming October 10, 2018

EN Applied Optimal Control Lecture 8: Dynamic Programming October 10, 2018 EN530.603 Applied Optimal Control Lecture 8: Dynamic Programming October 0, 08 Lecturer: Marin Kobilarov Dynamic Programming (DP) is conerned with the computation of an optimal policy, i.e. an optimal

More information

Optimal Control. Lecture 18. Hamilton-Jacobi-Bellman Equation, Cont. John T. Wen. March 29, Ref: Bryson & Ho Chapter 4.

Optimal Control. Lecture 18. Hamilton-Jacobi-Bellman Equation, Cont. John T. Wen. March 29, Ref: Bryson & Ho Chapter 4. Optimal Control Lecture 18 Hamilton-Jacobi-Bellman Equation, Cont. John T. Wen Ref: Bryson & Ho Chapter 4. March 29, 2004 Outline Hamilton-Jacobi-Bellman (HJB) Equation Iterative solution of HJB Equation

More information

Optimal Control. Quadratic Functions. Single variable quadratic function: Multi-variable quadratic function:

Optimal Control. Quadratic Functions. Single variable quadratic function: Multi-variable quadratic function: Optimal Control Control design based on pole-placement has non unique solutions Best locations for eigenvalues are sometimes difficult to determine Linear Quadratic LQ) Optimal control minimizes a quadratic

More information

Nonlinear Optimal Tracking Using Finite-Horizon State Dependent Riccati Equation (SDRE)

Nonlinear Optimal Tracking Using Finite-Horizon State Dependent Riccati Equation (SDRE) Nonlinear Optimal Tracking Using Finite-Horizon State Dependent Riccati Equation (SDRE) AHMED KHAMIS Idaho State University Department of Electrical Engineering Pocatello, Idaho USA khamahme@isu.edu D.

More information

State-Feedback Optimal Controllers for Deterministic Nonlinear Systems

State-Feedback Optimal Controllers for Deterministic Nonlinear Systems State-Feedback Optimal Controllers for Deterministic Nonlinear Systems Chang-Hee Won*, Abstract A full-state feedback optimal control problem is solved for a general deterministic nonlinear system. The

More information

Feedback Optimal Control of Low-thrust Orbit Transfer in Central Gravity Field

Feedback Optimal Control of Low-thrust Orbit Transfer in Central Gravity Field Vol. 4, No. 4, 23 Feedback Optimal Control of Low-thrust Orbit Transfer in Central Gravity Field Ashraf H. Owis Department of Astronomy, Space and Meteorology, Faculty of Science, Cairo University Department

More information

Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides. Department of Chemical Engineering University of California, Los Angeles

Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides. Department of Chemical Engineering University of California, Los Angeles HYBRID PREDICTIVE OUTPUT FEEDBACK STABILIZATION OF CONSTRAINED LINEAR SYSTEMS Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides Department of Chemical Engineering University of California,

More information

ESC794: Special Topics: Model Predictive Control

ESC794: Special Topics: Model Predictive Control ESC794: Special Topics: Model Predictive Control Nonlinear MPC Analysis : Part 1 Reference: Nonlinear Model Predictive Control (Ch.3), Grüne and Pannek Hanz Richter, Professor Mechanical Engineering Department

More information

Quadratic Stability of Dynamical Systems. Raktim Bhattacharya Aerospace Engineering, Texas A&M University

Quadratic Stability of Dynamical Systems. Raktim Bhattacharya Aerospace Engineering, Texas A&M University .. Quadratic Stability of Dynamical Systems Raktim Bhattacharya Aerospace Engineering, Texas A&M University Quadratic Lyapunov Functions Quadratic Stability Dynamical system is quadratically stable if

More information

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28 OPTIMAL CONTROL Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 28 (Example from Optimal Control Theory, Kirk) Objective: To get from

More information

EE C128 / ME C134 Feedback Control Systems

EE C128 / ME C134 Feedback Control Systems EE C128 / ME C134 Feedback Control Systems Lecture Additional Material Introduction to Model Predictive Control Maximilian Balandat Department of Electrical Engineering & Computer Science University of

More information

Converse Lyapunov Functions for Inclusions 2 Basic denitions Given a set A, A stands for the closure of A, A stands for the interior set of A, coa sta

Converse Lyapunov Functions for Inclusions 2 Basic denitions Given a set A, A stands for the closure of A, A stands for the interior set of A, coa sta A smooth Lyapunov function from a class-kl estimate involving two positive semidenite functions Andrew R. Teel y ECE Dept. University of California Santa Barbara, CA 93106 teel@ece.ucsb.edu Laurent Praly

More information

Optimal Control Using an Algebraic Method for Control-Affine Nonlinear Systems. Abstract

Optimal Control Using an Algebraic Method for Control-Affine Nonlinear Systems. Abstract Optimal Control Using an Algebraic Method for Control-Affine Nonlinear Systems Chang-Hee Won and Saroj Biswas Department of Electrical and Computer Engineering Temple University 1947 N. 12th Street Philadelphia,

More information

Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2015

Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2015 Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 15 Asymptotic approach from time-varying to constant gains Elimination of cross weighting

More information

POSITIVE CONTROLS. P.O. Box 513. Fax: , Regulator problem."

POSITIVE CONTROLS. P.O. Box 513. Fax: ,   Regulator problem. LINEAR QUADRATIC REGULATOR PROBLEM WITH POSITIVE CONTROLS W.P.M.H. Heemels, S.J.L. van Eijndhoven y, A.A. Stoorvogel y Technical University of Eindhoven y Dept. of Electrical Engineering Dept. of Mathematics

More information

7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system

7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system 7 Stability 7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system ẋ(t) = A x(t), x(0) = x 0, A R n n, x 0 R n. (14) The origin x = 0 is a globally asymptotically

More information

Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters

Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 204 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

A Globally Stabilizing Receding Horizon Controller for Neutrally Stable Linear Systems with Input Constraints 1

A Globally Stabilizing Receding Horizon Controller for Neutrally Stable Linear Systems with Input Constraints 1 A Globally Stabilizing Receding Horizon Controller for Neutrally Stable Linear Systems with Input Constraints 1 Ali Jadbabaie, Claudio De Persis, and Tae-Woong Yoon 2 Department of Electrical Engineering

More information

Nonlinear Control. Nonlinear Control Lecture # 3 Stability of Equilibrium Points

Nonlinear Control. Nonlinear Control Lecture # 3 Stability of Equilibrium Points Nonlinear Control Lecture # 3 Stability of Equilibrium Points The Invariance Principle Definitions Let x(t) be a solution of ẋ = f(x) A point p is a positive limit point of x(t) if there is a sequence

More information

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Controlled Diffusions and Hamilton-Jacobi Bellman Equations Controlled Diffusions and Hamilton-Jacobi Bellman Equations Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

Deterministic Dynamic Programming

Deterministic Dynamic Programming Deterministic Dynamic Programming 1 Value Function Consider the following optimal control problem in Mayer s form: V (t 0, x 0 ) = inf u U J(t 1, x(t 1 )) (1) subject to ẋ(t) = f(t, x(t), u(t)), x(t 0

More information

Problem Description The problem we consider is stabilization of a single-input multiple-state system with simultaneous magnitude and rate saturations,

Problem Description The problem we consider is stabilization of a single-input multiple-state system with simultaneous magnitude and rate saturations, SEMI-GLOBAL RESULTS ON STABILIZATION OF LINEAR SYSTEMS WITH INPUT RATE AND MAGNITUDE SATURATIONS Trygve Lauvdal and Thor I. Fossen y Norwegian University of Science and Technology, N-7 Trondheim, NORWAY.

More information

Techinical Proofs for Nonlinear Learning using Local Coordinate Coding

Techinical Proofs for Nonlinear Learning using Local Coordinate Coding Techinical Proofs for Nonlinear Learning using Local Coordinate Coding 1 Notations and Main Results Denition 1.1 (Lipschitz Smoothness) A function f(x) on R d is (α, β, p)-lipschitz smooth with respect

More information

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis Topic # 16.30/31 Feedback Control Systems Analysis of Nonlinear Systems Lyapunov Stability Analysis Fall 010 16.30/31 Lyapunov Stability Analysis Very general method to prove (or disprove) stability of

More information

Robotics. Control Theory. Marc Toussaint U Stuttgart

Robotics. Control Theory. Marc Toussaint U Stuttgart Robotics Control Theory Topics in control theory, optimal control, HJB equation, infinite horizon case, Linear-Quadratic optimal control, Riccati equations (differential, algebraic, discrete-time), controllability,

More information

Locally optimal controllers and application to orbital transfer (long version)

Locally optimal controllers and application to orbital transfer (long version) 9th IFAC Symposium on Nonlinear Control Systems Toulouse, France, September 4-6, 13 FrA1.4 Locally optimal controllers and application to orbital transfer (long version) S. Benachour V. Andrieu Université

More information

Time-Invariant Linear Quadratic Regulators!

Time-Invariant Linear Quadratic Regulators! Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 17 Asymptotic approach from time-varying to constant gains Elimination of cross weighting

More information

Markov processes Course note 2. Martingale problems, recurrence properties of discrete time chains.

Markov processes Course note 2. Martingale problems, recurrence properties of discrete time chains. Institute for Applied Mathematics WS17/18 Massimiliano Gubinelli Markov processes Course note 2. Martingale problems, recurrence properties of discrete time chains. [version 1, 2017.11.1] We introduce

More information

Global Linearization, and nally Model Predictive (Receding Horizon) Control (MPC), including hybrid approaches such as Model Predictive Control combin

Global Linearization, and nally Model Predictive (Receding Horizon) Control (MPC), including hybrid approaches such as Model Predictive Control combin Comparison of Nonlinear Control Design Techniques on a Model of the Caltech Ducted Fan Jie Yu, Ali Jadbabaie y, James Primbs, and Yun Huang Abstract In this paper we compare dierent nonlinear control design

More information

A GENERALIZATION OF SONTAG S FORMULA FOR HIGH-PERFORMANCE CLF-BASED CONTROL. J. Willard Curtis III. A dissertation submitted to the faculty of

A GENERALIZATION OF SONTAG S FORMULA FOR HIGH-PERFORMANCE CLF-BASED CONTROL. J. Willard Curtis III. A dissertation submitted to the faculty of A GENERALIZATION OF SONTAG S FORMULA FOR HIGH-PERFORMANCE CLF-BASED CONTROL by J. Willard Curtis III A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements

More information

ECE7850 Lecture 7. Discrete Time Optimal Control and Dynamic Programming

ECE7850 Lecture 7. Discrete Time Optimal Control and Dynamic Programming ECE7850 Lecture 7 Discrete Time Optimal Control and Dynamic Programming Discrete Time Optimal control Problems Short Introduction to Dynamic Programming Connection to Stabilization Problems 1 DT nonlinear

More information

Stochastic Nonlinear Stabilization Part II: Inverse Optimality Hua Deng and Miroslav Krstic Department of Mechanical Engineering h

Stochastic Nonlinear Stabilization Part II: Inverse Optimality Hua Deng and Miroslav Krstic Department of Mechanical Engineering h Stochastic Nonlinear Stabilization Part II: Inverse Optimality Hua Deng and Miroslav Krstic Department of Mechanical Engineering denghua@eng.umd.edu http://www.engr.umd.edu/~denghua/ University of Maryland

More information

Game Theory Extra Lecture 1 (BoB)

Game Theory Extra Lecture 1 (BoB) Game Theory 2014 Extra Lecture 1 (BoB) Differential games Tools from optimal control Dynamic programming Hamilton-Jacobi-Bellman-Isaacs equation Zerosum linear quadratic games and H control Baser/Olsder,

More information

Abstract. Previous characterizations of iss-stability are shown to generalize without change to the

Abstract. Previous characterizations of iss-stability are shown to generalize without change to the On Characterizations of Input-to-State Stability with Respect to Compact Sets Eduardo D. Sontag and Yuan Wang Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA Department of Mathematics,

More information

4F3 - Predictive Control

4F3 - Predictive Control 4F3 Predictive Control - Lecture 2 p 1/23 4F3 - Predictive Control Lecture 2 - Unconstrained Predictive Control Jan Maciejowski jmm@engcamacuk 4F3 Predictive Control - Lecture 2 p 2/23 References Predictive

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 15: Nonlinear Systems and Lyapunov Functions Overview Our next goal is to extend LMI s and optimization to nonlinear

More information

Enlarged terminal sets guaranteeing stability of receding horizon control

Enlarged terminal sets guaranteeing stability of receding horizon control Enlarged terminal sets guaranteeing stability of receding horizon control J.A. De Doná a, M.M. Seron a D.Q. Mayne b G.C. Goodwin a a School of Electrical Engineering and Computer Science, The University

More information

Homework Solution # 3

Homework Solution # 3 ECSE 644 Optimal Control Feb, 4 Due: Feb 17, 4 (Tuesday) Homework Solution # 3 1 (5%) Consider the discrete nonlinear control system in Homework # For the optimal control and trajectory that you have found

More information

[A + 1 ] + (1 ) v: : (b) Show: the derivative of T at v = v 0 < 0 is: = (v 0 ) (1 ) ; [A + 1 ]

[A + 1 ] + (1 ) v: : (b) Show: the derivative of T at v = v 0 < 0 is: = (v 0 ) (1 ) ; [A + 1 ] Homework #2 Economics 4- Due Wednesday, October 5 Christiano. This question is designed to illustrate Blackwell's Theorem, Theorem 3.3 on page 54 of S-L. That theorem represents a set of conditions that

More information

Steady State Kalman Filter

Steady State Kalman Filter Steady State Kalman Filter Infinite Horizon LQ Control: ẋ = Ax + Bu R positive definite, Q = Q T 2Q 1 2. (A, B) stabilizable, (A, Q 1 2) detectable. Solve for the positive (semi-) definite P in the ARE:

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

WHEN deciding where spacecraft should land a balance exists between engineering safety and scientific (or programmatic)

WHEN deciding where spacecraft should land a balance exists between engineering safety and scientific (or programmatic) A State-Dependent Riccati Equation Approach to Atmospheric Entry Guidance Bradley A. Steinfeldt and Panagiotis Tsiotras Georgia Institute of Technology, Atlanta, GA 3332-15 This paper investigates the

More information

Lecture 5 Linear Quadratic Stochastic Control

Lecture 5 Linear Quadratic Stochastic Control EE363 Winter 2008-09 Lecture 5 Linear Quadratic Stochastic Control linear-quadratic stochastic control problem solution via dynamic programming 5 1 Linear stochastic system linear dynamical system, over

More information

LINEAR-CONVEX CONTROL AND DUALITY

LINEAR-CONVEX CONTROL AND DUALITY 1 LINEAR-CONVEX CONTROL AND DUALITY R.T. Rockafellar Department of Mathematics, University of Washington Seattle, WA 98195-4350, USA Email: rtr@math.washington.edu R. Goebel 3518 NE 42 St., Seattle, WA

More information

and the nite horizon cost index with the nite terminal weighting matrix F > : N?1 X J(z r ; u; w) = [z(n)? z r (N)] T F [z(n)? z r (N)] + t= [kz? z r

and the nite horizon cost index with the nite terminal weighting matrix F > : N?1 X J(z r ; u; w) = [z(n)? z r (N)] T F [z(n)? z r (N)] + t= [kz? z r Intervalwise Receding Horizon H 1 -Tracking Control for Discrete Linear Periodic Systems Ki Baek Kim, Jae-Won Lee, Young Il. Lee, and Wook Hyun Kwon School of Electrical Engineering Seoul National University,

More information

EML5311 Lyapunov Stability & Robust Control Design

EML5311 Lyapunov Stability & Robust Control Design EML5311 Lyapunov Stability & Robust Control Design 1 Lyapunov Stability criterion In Robust control design of nonlinear uncertain systems, stability theory plays an important role in engineering systems.

More information

Advanced Mechatronics Engineering

Advanced Mechatronics Engineering Advanced Mechatronics Engineering German University in Cairo 21 December, 2013 Outline Necessary conditions for optimal input Example Linear regulator problem Example Necessary conditions for optimal input

More information

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko Indirect Utility Recall: static consumer theory; J goods, p j is the price of good j (j = 1; : : : ; J), c j is consumption

More information

Georgia Institute of Technology Nonlinear Controls Theory Primer ME 6402

Georgia Institute of Technology Nonlinear Controls Theory Primer ME 6402 Georgia Institute of Technology Nonlinear Controls Theory Primer ME 640 Ajeya Karajgikar April 6, 011 Definition Stability (Lyapunov): The equilibrium state x = 0 is said to be stable if, for any R > 0,

More information

Robust Control 5 Nominal Controller Design Continued

Robust Control 5 Nominal Controller Design Continued Robust Control 5 Nominal Controller Design Continued Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 4/14/2003 Outline he LQR Problem A Generalization to LQR Min-Max

More information

ON THE ASYMPTOTIC STABILITY IN TERMS OF TWO MEASURES FOR FUNCTIONAL DIFFERENTIAL EQUATIONS. G. Makay

ON THE ASYMPTOTIC STABILITY IN TERMS OF TWO MEASURES FOR FUNCTIONAL DIFFERENTIAL EQUATIONS. G. Makay ON THE ASYMPTOTIC STABILITY IN TERMS OF TWO MEASURES FOR FUNCTIONAL DIFFERENTIAL EQUATIONS G. Makay Student in Mathematics, University of Szeged, Szeged, H-6726, Hungary Key words and phrases: Lyapunov

More information

Neighboring feasible trajectories in infinite dimension

Neighboring feasible trajectories in infinite dimension Neighboring feasible trajectories in infinite dimension Marco Mazzola Université Pierre et Marie Curie (Paris 6) H. Frankowska and E. M. Marchini Control of State Constrained Dynamical Systems Padova,

More information

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011 Department of Probability and Mathematical Statistics Faculty of Mathematics and Physics, Charles University in Prague petrasek@karlin.mff.cuni.cz Seminar in Stochastic Modelling in Economics and Finance

More information

Chapter 13 Internal (Lyapunov) Stability 13.1 Introduction We have already seen some examples of both stable and unstable systems. The objective of th

Chapter 13 Internal (Lyapunov) Stability 13.1 Introduction We have already seen some examples of both stable and unstable systems. The objective of th Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology 1 1 c Chapter

More information

Optimization Methods. Lecture 18: Optimality Conditions and. Gradient Methods. for Unconstrained Optimization

Optimization Methods. Lecture 18: Optimality Conditions and. Gradient Methods. for Unconstrained Optimization 5.93 Optimization Methods Lecture 8: Optimality Conditions and Gradient Methods for Unconstrained Optimization Outline. Necessary and sucient optimality conditions Slide. Gradient m e t h o d s 3. The

More information

MARKOV CHAINS: STATIONARY DISTRIBUTIONS AND FUNCTIONS ON STATE SPACES. Contents

MARKOV CHAINS: STATIONARY DISTRIBUTIONS AND FUNCTIONS ON STATE SPACES. Contents MARKOV CHAINS: STATIONARY DISTRIBUTIONS AND FUNCTIONS ON STATE SPACES JAMES READY Abstract. In this paper, we rst introduce the concepts of Markov Chains and their stationary distributions. We then discuss

More information

Applications of Nonlinear Control Using. the State-Dependent Riccati Equation THESIS. David K. Parrish. Captain, USAF

Applications of Nonlinear Control Using. the State-Dependent Riccati Equation THESIS. David K. Parrish. Captain, USAF AFIT/GA/ENY/95D-2 Applications of Nonlinear Control Using the State-Dependent Riccati Equation THESIS David K. Parrish Captain, USAF AFIT/GA/ENY/95D-2 Approved for public release; distribution unlimited

More information

The Important State Coordinates of a Nonlinear System

The Important State Coordinates of a Nonlinear System The Important State Coordinates of a Nonlinear System Arthur J. Krener 1 University of California, Davis, CA and Naval Postgraduate School, Monterey, CA ajkrener@ucdavis.edu Summary. We offer an alternative

More information

Robust SDC Parameterization for a Class of Extended Linearization Systems

Robust SDC Parameterization for a Class of Extended Linearization Systems 2011 American Control Conference on O'Farrell Street, San Francisco, CA, USA June 29 - July 01, 2011 Robust SDC Parameterization for a Class of Extended Linearization Systems Sam Nazari and Bahram Shafai

More information

Benchmark problems in stability and design of. switched systems. Daniel Liberzon and A. Stephen Morse. Department of Electrical Engineering

Benchmark problems in stability and design of. switched systems. Daniel Liberzon and A. Stephen Morse. Department of Electrical Engineering Benchmark problems in stability and design of switched systems Daniel Liberzon and A. Stephen Morse Department of Electrical Engineering Yale University New Haven, CT 06520-8267 fliberzon, morseg@sysc.eng.yale.edu

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

Streamlining of the state-dependent Riccati equation controller algorithm for an embedded implementation

Streamlining of the state-dependent Riccati equation controller algorithm for an embedded implementation Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 11-1-2006 Streamlining of the state-dependent Riccati equation controller algorithm for an embedded implementation

More information

6. Linear Quadratic Regulator Control

6. Linear Quadratic Regulator Control EE635 - Control System Theory 6. Linear Quadratic Regulator Control Jitkomut Songsiri algebraic Riccati Equation (ARE) infinite-time LQR (continuous) Hamiltonian matrix gain margin of LQR 6-1 Algebraic

More information

MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem

MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem Pulemotov, September 12, 2012 Unit Outline Goal 1: Outline linear

More information

Stochastic and Adaptive Optimal Control

Stochastic and Adaptive Optimal Control Stochastic and Adaptive Optimal Control Robert Stengel Optimal Control and Estimation, MAE 546 Princeton University, 2018! Nonlinear systems with random inputs and perfect measurements! Stochastic neighboring-optimal

More information

Lecture 4 Continuous time linear quadratic regulator

Lecture 4 Continuous time linear quadratic regulator EE363 Winter 2008-09 Lecture 4 Continuous time linear quadratic regulator continuous-time LQR problem dynamic programming solution Hamiltonian system and two point boundary value problem infinite horizon

More information

Chap. 3. Controlled Systems, Controllability

Chap. 3. Controlled Systems, Controllability Chap. 3. Controlled Systems, Controllability 1. Controllability of Linear Systems 1.1. Kalman s Criterion Consider the linear system ẋ = Ax + Bu where x R n : state vector and u R m : input vector. A :

More information

Computational Issues in Nonlinear Dynamics and Control

Computational Issues in Nonlinear Dynamics and Control Computational Issues in Nonlinear Dynamics and Control Arthur J. Krener ajkrener@ucdavis.edu Supported by AFOSR and NSF Typical Problems Numerical Computation of Invariant Manifolds Typical Problems Numerical

More information

MCE693/793: Analysis and Control of Nonlinear Systems

MCE693/793: Analysis and Control of Nonlinear Systems MCE693/793: Analysis and Control of Nonlinear Systems Lyapunov Stability - I Hanz Richter Mechanical Engineering Department Cleveland State University Definition of Stability - Lyapunov Sense Lyapunov

More information

Optimal control of nonlinear systems with input constraints using linear time varying approximations

Optimal control of nonlinear systems with input constraints using linear time varying approximations ISSN 1392-5113 Nonlinear Analysis: Modelling and Control, 216, Vol. 21, No. 3, 4 412 http://dx.doi.org/1.15388/na.216.3.7 Optimal control of nonlinear systems with input constraints using linear time varying

More information

Pointwise convergence rate for nonlinear conservation. Eitan Tadmor and Tao Tang

Pointwise convergence rate for nonlinear conservation. Eitan Tadmor and Tao Tang Pointwise convergence rate for nonlinear conservation laws Eitan Tadmor and Tao Tang Abstract. We introduce a new method to obtain pointwise error estimates for vanishing viscosity and nite dierence approximations

More information

Design of Non-Linear Controller for a flexible rotatory beam using State-Dependent Riccati Equation (SDRE) control

Design of Non-Linear Controller for a flexible rotatory beam using State-Dependent Riccati Equation (SDRE) control Design of Non-Linear Controller for a flexible rotatory beam using State-Dependent Riccati Equation (SDRE) control Pierre Bigot National Institute for Space Research- INPE Sao jose dos campos, Brazil Email:

More information

Optimal nonlinear control for time delay system. Delsys 2013

Optimal nonlinear control for time delay system. Delsys 2013 . Optimal. (International nonlinear control for timeworkshop delay system Delsys November 22th, 2013) 1 / 21 Optimal nonlinear control for time delay system Liliam Rodríguez-Guerrero, Omar Santos and Sabine

More information

ECON 582: An Introduction to the Theory of Optimal Control (Chapter 7, Acemoglu) Instructor: Dmytro Hryshko

ECON 582: An Introduction to the Theory of Optimal Control (Chapter 7, Acemoglu) Instructor: Dmytro Hryshko ECON 582: An Introduction to the Theory of Optimal Control (Chapter 7, Acemoglu) Instructor: Dmytro Hryshko Continuous-time optimization involves maximization wrt to an innite dimensional object, an entire

More information

Numerical Optimization

Numerical Optimization Constrained Optimization Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Constrained Optimization Constrained Optimization Problem: min h j (x) 0,

More information

A Proof of the EOQ Formula Using Quasi-Variational. Inequalities. March 19, Abstract

A Proof of the EOQ Formula Using Quasi-Variational. Inequalities. March 19, Abstract A Proof of the EOQ Formula Using Quasi-Variational Inequalities Dir Beyer y and Suresh P. Sethi z March, 8 Abstract In this paper, we use quasi-variational inequalities to provide a rigorous proof of the

More information

Decentralized control with input saturation

Decentralized control with input saturation Decentralized control with input saturation Ciprian Deliu Faculty of Mathematics and Computer Science Technical University Eindhoven Eindhoven, The Netherlands November 2006 Decentralized control with

More information

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Time-varying Systems ẋ = f(t,x) f(t,x) is piecewise continuous in t and locally Lipschitz in x for all t 0 and all x D, (0 D). The origin

More information

Mathematical Economics. Lecture Notes (in extracts)

Mathematical Economics. Lecture Notes (in extracts) Prof. Dr. Frank Werner Faculty of Mathematics Institute of Mathematical Optimization (IMO) http://math.uni-magdeburg.de/ werner/math-ec-new.html Mathematical Economics Lecture Notes (in extracts) Winter

More information

Denis ARZELIER arzelier

Denis ARZELIER   arzelier COURSE ON LMI OPTIMIZATION WITH APPLICATIONS IN CONTROL PART II.2 LMIs IN SYSTEMS CONTROL STATE-SPACE METHODS PERFORMANCE ANALYSIS and SYNTHESIS Denis ARZELIER www.laas.fr/ arzelier arzelier@laas.fr 15

More information

Numerical approximation for optimal control problems via MPC and HJB. Giulia Fabrini

Numerical approximation for optimal control problems via MPC and HJB. Giulia Fabrini Numerical approximation for optimal control problems via MPC and HJB Giulia Fabrini Konstanz Women In Mathematics 15 May, 2018 G. Fabrini (University of Konstanz) Numerical approximation for OCP 1 / 33

More information

Math 273a: Optimization Basic concepts

Math 273a: Optimization Basic concepts Math 273a: Optimization Basic concepts Instructor: Wotao Yin Department of Mathematics, UCLA Spring 2015 slides based on Chong-Zak, 4th Ed. Goals of this lecture The general form of optimization: minimize

More information

Numerical Optimal Control Overview. Moritz Diehl

Numerical Optimal Control Overview. Moritz Diehl Numerical Optimal Control Overview Moritz Diehl Simplified Optimal Control Problem in ODE path constraints h(x, u) 0 initial value x0 states x(t) terminal constraint r(x(t )) 0 controls u(t) 0 t T minimize

More information

A Tour of Reinforcement Learning The View from Continuous Control. Benjamin Recht University of California, Berkeley

A Tour of Reinforcement Learning The View from Continuous Control. Benjamin Recht University of California, Berkeley A Tour of Reinforcement Learning The View from Continuous Control Benjamin Recht University of California, Berkeley trustable, scalable, predictable Control Theory! Reinforcement Learning is the study

More information

1. Introduction The nonlinear complementarity problem (NCP) is to nd a point x 2 IR n such that hx; F (x)i = ; x 2 IR n + ; F (x) 2 IRn + ; where F is

1. Introduction The nonlinear complementarity problem (NCP) is to nd a point x 2 IR n such that hx; F (x)i = ; x 2 IR n + ; F (x) 2 IRn + ; where F is New NCP-Functions and Their Properties 3 by Christian Kanzow y, Nobuo Yamashita z and Masao Fukushima z y University of Hamburg, Institute of Applied Mathematics, Bundesstrasse 55, D-2146 Hamburg, Germany,

More information

Optimization: Interior-Point Methods and. January,1995 USA. and Cooperative Research Centre for Robust and Adaptive Systems.

Optimization: Interior-Point Methods and. January,1995 USA. and Cooperative Research Centre for Robust and Adaptive Systems. Innite Dimensional Quadratic Optimization: Interior-Point Methods and Control Applications January,995 Leonid Faybusovich John B. Moore y Department of Mathematics University of Notre Dame Mail Distribution

More information

On the Stability of the Best Reply Map for Noncooperative Differential Games

On the Stability of the Best Reply Map for Noncooperative Differential Games On the Stability of the Best Reply Map for Noncooperative Differential Games Alberto Bressan and Zipeng Wang Department of Mathematics, Penn State University, University Park, PA, 68, USA DPMMS, University

More information

Introduction to Optimization!

Introduction to Optimization! Introduction to Optimization! Robert Stengel! Robotics and Intelligent Systems, MAE 345, Princeton University, 2017 Optimization problems and criteria Cost functions Static optimality conditions Examples

More information

Lecture Note 7: Switching Stabilization via Control-Lyapunov Function

Lecture Note 7: Switching Stabilization via Control-Lyapunov Function ECE7850: Hybrid Systems:Theory and Applications Lecture Note 7: Switching Stabilization via Control-Lyapunov Function Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio

More information

Eects of small delays on stability of singularly perturbed systems

Eects of small delays on stability of singularly perturbed systems Automatica 38 (2002) 897 902 www.elsevier.com/locate/automatica Technical Communique Eects of small delays on stability of singularly perturbed systems Emilia Fridman Department of Electrical Engineering

More information

Suppose that we have a specific single stage dynamic system governed by the following equation:

Suppose that we have a specific single stage dynamic system governed by the following equation: Dynamic Optimisation Discrete Dynamic Systems A single stage example Suppose that we have a specific single stage dynamic system governed by the following equation: x 1 = ax 0 + bu 0, x 0 = x i (1) where

More information

The servo problem for piecewise linear systems

The servo problem for piecewise linear systems The servo problem for piecewise linear systems Stefan Solyom and Anders Rantzer Department of Automatic Control Lund Institute of Technology Box 8, S-22 Lund Sweden {stefan rantzer}@control.lth.se Abstract

More information

Outline. 1 Linear Quadratic Problem. 2 Constraints. 3 Dynamic Programming Solution. 4 The Infinite Horizon LQ Problem.

Outline. 1 Linear Quadratic Problem. 2 Constraints. 3 Dynamic Programming Solution. 4 The Infinite Horizon LQ Problem. Model Predictive Control Short Course Regulation James B. Rawlings Michael J. Risbeck Nishith R. Patel Department of Chemical and Biological Engineering Copyright c 217 by James B. Rawlings Outline 1 Linear

More information

Linear Systems. Manfred Morari Melanie Zeilinger. Institut für Automatik, ETH Zürich Institute for Dynamic Systems and Control, ETH Zürich

Linear Systems. Manfred Morari Melanie Zeilinger. Institut für Automatik, ETH Zürich Institute for Dynamic Systems and Control, ETH Zürich Linear Systems Manfred Morari Melanie Zeilinger Institut für Automatik, ETH Zürich Institute for Dynamic Systems and Control, ETH Zürich Spring Semester 2016 Linear Systems M. Morari, M. Zeilinger - Spring

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information

Controllability Issues innonlinear State-Dependent. Riccati Equation Control

Controllability Issues innonlinear State-Dependent. Riccati Equation Control Controllability Issues innonlinear State-Dependent Riccati Equation Control Kelly D. Hammett y, ChristopherD. Hall z, andd. BrettRidgely x Graduate Schoolof Engineering Air Force Institute oftechnology

More information

Lyapunov Stability Theory

Lyapunov Stability Theory Lyapunov Stability Theory Peter Al Hokayem and Eduardo Gallestey March 16, 2015 1 Introduction In this lecture we consider the stability of equilibrium points of autonomous nonlinear systems, both in continuous

More information

3 Stability and Lyapunov Functions

3 Stability and Lyapunov Functions CDS140a Nonlinear Systems: Local Theory 02/01/2011 3 Stability and Lyapunov Functions 3.1 Lyapunov Stability Denition: An equilibrium point x 0 of (1) is stable if for all ɛ > 0, there exists a δ > 0 such

More information