[A + 1 ] + (1 ) v: : (b) Show: the derivative of T at v = v 0 < 0 is: = (v 0 ) (1 ) ; [A + 1 ]

Size: px
Start display at page:

Download "[A + 1 ] + (1 ) v: : (b) Show: the derivative of T at v = v 0 < 0 is: = (v 0 ) (1 ) ; [A + 1 ]"

Transcription

1 Homework #2 Economics 4- Due Wednesday, October 5 Christiano. This question is designed to illustrate Blackwell's Theorem, Theorem 3.3 on page 54 of S-L. That theorem represents a set of conditions that are sucient for a mapping, T; to be a contraction, so that T j w 0 = w as j! for all w 0 belonging to a specied set. The question draws attention to the fact that the conditions of Blackwell's theorem are not necessary. Consider the following functional equation: T (v) = max 0A+ Suppose > and (A + ) <. (a) Show: T (v) = for v > 0, T (0) = ( ) [A + ] + ( ) v: [A+ ]( ) : (b) Show: the derivative of T at v = v 0 < 0 is: where dt (v 0 ) dv = (v 0 ) ( ) ; ( ) [A + ] (v 0 ) = argmax 0A+ + ( ) v 0 : (c) Explain why T does not satisfy the conditions of Theorem 3.3 in S- L, page 54. (Hint: does T : B(X)! B(X), where the `functions' we consider here are actually points in R? Is discounting satised?) (d) What happens to (v) as v!? (e) What does the graph of T (v) versus v for v 0 look like? Does it cross a 45 0 line drawn in the negative orthant? Draw this graph by hand, emphasizing its qualitative features (i.e., you need not compute the graph numerically, using numerical values for the parameters of the function.)

2 (f) Explain, using the graph you just developed, why T j v 0 = v as j! ; for every v 0 < 0; where v is unique. 2. This question asks you to redo Theorem 4.5 in a model that takes into account uncertainty. Suppose that at each date t a random variable, s t ; is realized. It can take on any one of N possible values: s(); s(2); :::; s(n): Call s t the state of nature at date t: Let s t denote the history of states of nature up to time t: s t = (s 0 ; s ; :::; s t ): At date 0, s 0 is known. Thus, as of date 0, there is one possible history, s 0 ; at date there are N possible histories, s ; at date 2, N 2 possible histories, s 2 ;... at date t; N t possible histories s t ; etc. Let the probability of history s t be denoted by (s t ): Then, by the denition of a probability, (s t ) 0; for all s t ; and X s t (s t ) = ; for every t = 0; ; 2; :::; where P s t denotes `the sum over all N t possible values of s t '. Let the N N matrix be dened by: ij = Pr obability[s t+ = s(j)js t = s(i)]: (a) Suppose v(s t ) = v i if s t = s(i); for i = ; :::; N. That is, the value taken on by v(s t ) is a function only of the current state of nature. Let the N N matrix 2 be dened by 2 = : Similarly, dene 3 = 2 ;..., k = k : i. Prove that each row of k is a probability distribution (i.e., all elements of k are non-negative and k satises k = ; where is the N vector = (; ; :::; ) 0 ): Strictly speaking, the notation should be t (s t ): I omit the t subscript on the probability to keep from proliferating notation. 2

3 ii. Suppose s 0 = s(k): Show that: X X t=0 s t (s t ) t v(s t ) = [I ] v; () where v is an N column vector, v = (v ; :::; v N ) 0 ; and is a N row vector with all zeros, except a one in the k th entry. Recall the denition of a double sum: X X q ij [q 00 + q 0 + q 02 + :::] + [q 0 + q + q 2 + :::] + :::; i=0 j=0 where q ij is an arbitrary set of numbers. (Hint: start by writing the expression on the left of the equality in () explicitly for t=0,,2,..., and stare.) iii. Show that: X q(s t+ ) = X X q(s t+ ); (2) s t+ s t s t+ js t where s t+ j s t signies `all possible histories s t+ ; given history s t has occurred' and q(s t ) is an arbitary function of s t. It's enough to establish this for t = and N = 2: (b) Consider the utility function: and resource constraint: X t X (s t )u(c(s t )); (3) t=0 s t c(s t ) + k(s t ) f(k(s t ); s t ): (4) Note that s t shifts the production function. Assume u and f satisfy the same conditions stated above (with the obvious modications to reect the absence of hours worked from the problem!). Suppose c (s t ); k (s t ) > 0 satisfy (4) for all s t ; t = 0; ; 2; :::; with k (s ) = k 0 ; the given initial stock of capital. Suppose also that the `Euler equations' are satised: u c (c (s t )) = X s t+ js t (st+ ) (s t ) u c(c (s t+ ))f k (k (s t ); s t+ ); 3

4 for all s t ; t 0; and the `transversality condition': X lim T (s T )u c (c (s T ))f k (k (s T ); s T )k (s T )! 0: T! s T Prove that fc (s t ); k (s t ); t 0; all s t g yields the highest value of (3) within the set of all sequences that satisfy (4) and the nonnegativity constraints on consumption and the stock of capital. (Hint: imitate the proof strategy of Theorem 4.5 as closely as you can, and make use of (2) when you group terms in the capital stock). The Euler and transversality conditions are sometimes stated using the expectation operator: u c;t = E t u c;t+ f k;t+ and lim E 0 T u c;t f k;t k T = 0; T! where E t denotes the mathematical expectation operator, conditional on information dated t and earlier (to understand the conditional expectation operator in the euler equation, recall that (s t+ ) signies the conditional probability of s t+ ; given s t.) (s t ) 3. Consider the standard neoclassical model (i.e., the one in the previous question, with c = 0). Replace the non-negativity condition, k t+ 0; with the following alternative, i t 0: (a) Show that monotonicity of (k), Assumption 4.6 in S-L, fails so that one of the conditions of Theorem 4.7 which guarantee a strictly increasing value function, v; is not satised. (b) Show that the feasible set for this economy satises the following `quasi-monotonicity property': if ~ k k; then (k) + ( )( ~ k k) ( ~ k): Here, the sum of a set, say X; and a number, say a; is a new set, X + a; where X + a fx + a : x 2 Xg: (c) Show: v is an increasing function in k: (Hint: (i) following the basic strategy of the proof of Theorem 4.7, it's enough to establish that the assumptions of Theorem 4.7 with the monotonicity 4

5 assumption on replaced by quasi-monotonicity guarantee T w is increasing if w is; (ii) make use of the fact that if k 0 2 (k); then ~k 0 = k 0 + ( )( k ~ k) 2 ( k), ~ k ~ 0 > k 0 ; and f( k) ~ + ( ) k ~ k ~ 0 > f(k) + ( )k k 0.) Can you provide intuition for the fact that v is increasing even though fails to satisfy monotonicity? 4. (Boldrin-Montrucchio 986). Consider the policy rule, g : [0; ]! [0; ] : g(x) = 4x( x). Draw this function, along with the 45 degree line, by hand in the unit box. Find an economy, (F; ; ; X); for which the above function is the policy rule, where the economy satises all of our assumptions (i.e., assumptions A4.3-A4.9 in Stokey and Lucas). Here, x is the aggregate stock of capital at the beginning of the period and x 0 is its value at the end of the period. Some hints: Recall, where ; 2 (0; ) and F satisfy g(x) = max F (x; y) + v(y); y2 (x) v(x) = F (x; g(x)) + v(g(x)): Recall that the denition of a function or a correspondence must include a specication of the domain and range. Recall too that a function, say f(x; y); is strictly concave i: f xx (x; y) < 0; f yy (x; y) < 0; f xx (x; y)f yy (x; y) f xy (x; y) 2 > 0; for all (x; y) in the domain of f: Also, it is easy to verify that g(x) = arg max y2 (x) when (x; y) is dened as follows: (x; y); (x; y) = 2 y2 + yg(x) 2 Lx2 + ax; and L; a are known constants. Finally, note that v(x) = (x; g(x)); and use this to back out F: You can think of your task as having to identify values of a and L that ensure assumptions A4.3-A4.9 are satised. How many such values are there? 5

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko Indirect Utility Recall: static consumer theory; J goods, p j is the price of good j (j = 1; : : : ; J), c j is consumption

More information

Multi Variable Calculus

Multi Variable Calculus Multi Variable Calculus Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 3, 03 Functions from R n to R m So far we have looked at functions that map one number to another

More information

Dynamic Programming Theorems

Dynamic Programming Theorems Dynamic Programming Theorems Prof. Lutz Hendricks Econ720 September 11, 2017 1 / 39 Dynamic Programming Theorems Useful theorems to characterize the solution to a DP problem. There is no reason to remember

More information

ECON 582: The Neoclassical Growth Model (Chapter 8, Acemoglu)

ECON 582: The Neoclassical Growth Model (Chapter 8, Acemoglu) ECON 582: The Neoclassical Growth Model (Chapter 8, Acemoglu) Instructor: Dmytro Hryshko 1 / 21 Consider the neoclassical economy without population growth and technological progress. The optimal growth

More information

DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION

DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION UNIVERSITY OF MARYLAND: ECON 600. Alternative Methods of Discrete Time Intertemporal Optimization We will start by solving a discrete time intertemporal

More information

An Application to Growth Theory

An Application to Growth Theory An Application to Growth Theory First let s review the concepts of solution function and value function for a maximization problem. Suppose we have the problem max F (x, α) subject to G(x, β) 0, (P) x

More information

Stochastic Dynamic Programming. Jesus Fernandez-Villaverde University of Pennsylvania

Stochastic Dynamic Programming. Jesus Fernandez-Villaverde University of Pennsylvania Stochastic Dynamic Programming Jesus Fernande-Villaverde University of Pennsylvania 1 Introducing Uncertainty in Dynamic Programming Stochastic dynamic programming presents a very exible framework to handle

More information

Lecture 5: The Bellman Equation

Lecture 5: The Bellman Equation Lecture 5: The Bellman Equation Florian Scheuer 1 Plan Prove properties of the Bellman equation (In particular, existence and uniqueness of solution) Use this to prove properties of the solution Think

More information

The Growth Model in Continuous Time (Ramsey Model)

The Growth Model in Continuous Time (Ramsey Model) The Growth Model in Continuous Time (Ramsey Model) Prof. Lutz Hendricks Econ720 September 27, 2017 1 / 32 The Growth Model in Continuous Time We add optimizing households to the Solow model. We first study

More information

Economics 8105 Macroeconomic Theory Recitation 3

Economics 8105 Macroeconomic Theory Recitation 3 Economics 8105 Macroeconomic Theory Recitation 3 Conor Ryan September 20th, 2016 Outline: Minnesota Economics Lecture Problem Set 1 Midterm Exam Fit Growth Model into SLP Corollary of Contraction Mapping

More information

Introduction to Recursive Methods

Introduction to Recursive Methods Chapter 1 Introduction to Recursive Methods These notes are targeted to advanced Master and Ph.D. students in economics. They can be of some use to researchers in macroeconomic theory. The material contained

More information

ADVANCED MACROECONOMIC TECHNIQUES NOTE 3a

ADVANCED MACROECONOMIC TECHNIQUES NOTE 3a 316-406 ADVANCED MACROECONOMIC TECHNIQUES NOTE 3a Chris Edmond hcpedmond@unimelb.edu.aui Dynamic programming and the growth model Dynamic programming and closely related recursive methods provide an important

More information

Lecture 1: Overview, Hamiltonians and Phase Diagrams. ECO 521: Advanced Macroeconomics I. Benjamin Moll. Princeton University, Fall

Lecture 1: Overview, Hamiltonians and Phase Diagrams. ECO 521: Advanced Macroeconomics I. Benjamin Moll. Princeton University, Fall Lecture 1: Overview, Hamiltonians and Phase Diagrams ECO 521: Advanced Macroeconomics I Benjamin Moll Princeton University, Fall 2016 1 Course Overview Two Parts: (1) Substance: income and wealth distribution

More information

Dynamical Systems. August 13, 2013

Dynamical Systems. August 13, 2013 Dynamical Systems Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 13, 2013 Dynamical Systems are systems, described by one or more equations, that evolve over time.

More information

LECTURE 15 + C+F. = A 11 x 1x1 +2A 12 x 1x2 + A 22 x 2x2 + B 1 x 1 + B 2 x 2. xi y 2 = ~y 2 (x 1 ;x 2 ) x 2 = ~x 2 (y 1 ;y 2 1

LECTURE 15 + C+F. = A 11 x 1x1 +2A 12 x 1x2 + A 22 x 2x2 + B 1 x 1 + B 2 x 2. xi y 2 = ~y 2 (x 1 ;x 2 ) x 2 = ~x 2 (y 1 ;y 2  1 LECTURE 5 Characteristics and the Classication of Second Order Linear PDEs Let us now consider the case of a general second order linear PDE in two variables; (5.) where (5.) 0 P i;j A ij xix j + P i,

More information

ECON 2010c Solution to Problem Set 1

ECON 2010c Solution to Problem Set 1 ECON 200c Solution to Problem Set By the Teaching Fellows for ECON 200c Fall 204 Growth Model (a) Defining the constant κ as: κ = ln( αβ) + αβ αβ ln(αβ), the problem asks us to show that the following

More information

STAT 111 Recitation 7

STAT 111 Recitation 7 STAT 111 Recitation 7 Xin Lu Tan xtan@wharton.upenn.edu October 25, 2013 1 / 13 Miscellaneous Please turn in homework 6. Please pick up homework 7 and the graded homework 5. Please check your grade and

More information

Partial Differentiation

Partial Differentiation CHAPTER 7 Partial Differentiation From the previous two chapters we know how to differentiate functions of one variable But many functions in economics depend on several variables: output depends on both

More information

Competitive Equilibrium and the Welfare Theorems

Competitive Equilibrium and the Welfare Theorems Competitive Equilibrium and the Welfare Theorems Craig Burnside Duke University September 2010 Craig Burnside (Duke University) Competitive Equilibrium September 2010 1 / 32 Competitive Equilibrium and

More information

Basic Deterministic Dynamic Programming

Basic Deterministic Dynamic Programming Basic Deterministic Dynamic Programming Timothy Kam School of Economics & CAMA Australian National University ECON8022, This version March 17, 2008 Motivation What do we do? Outline Deterministic IHDP

More information

Dynamic Optimization Using Lagrange Multipliers

Dynamic Optimization Using Lagrange Multipliers Dynamic Optimization Using Lagrange Multipliers Barbara Annicchiarico barbara.annicchiarico@uniroma2.it Università degli Studi di Roma "Tor Vergata" Presentation #2 Deterministic Infinite-Horizon Ramsey

More information

Integer-Valued Polynomials

Integer-Valued Polynomials Integer-Valued Polynomials LA Math Circle High School II Dillon Zhi October 11, 2015 1 Introduction Some polynomials take integer values p(x) for all integers x. The obvious examples are the ones where

More information

Lecture 4: The Bellman Operator Dynamic Programming

Lecture 4: The Bellman Operator Dynamic Programming Lecture 4: The Bellman Operator Dynamic Programming Jeppe Druedahl Department of Economics 15th of February 2016 Slide 1/19 Infinite horizon, t We know V 0 (M t ) = whatever { } V 1 (M t ) = max u(m t,

More information

Solution by the Maximum Principle

Solution by the Maximum Principle 292 11. Economic Applications per capita variables so that it is formally similar to the previous model. The introduction of the per capita variables makes it possible to treat the infinite horizon version

More information

Contents. 2 Partial Derivatives. 2.1 Limits and Continuity. Calculus III (part 2): Partial Derivatives (by Evan Dummit, 2017, v. 2.

Contents. 2 Partial Derivatives. 2.1 Limits and Continuity. Calculus III (part 2): Partial Derivatives (by Evan Dummit, 2017, v. 2. Calculus III (part 2): Partial Derivatives (by Evan Dummit, 2017, v 260) Contents 2 Partial Derivatives 1 21 Limits and Continuity 1 22 Partial Derivatives 5 23 Directional Derivatives and the Gradient

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

Slides II - Dynamic Programming

Slides II - Dynamic Programming Slides II - Dynamic Programming Julio Garín University of Georgia Macroeconomic Theory II (Ph.D.) Spring 2017 Macroeconomic Theory II Slides II - Dynamic Programming Spring 2017 1 / 32 Outline 1. Lagrangian

More information

Lecture 2 The Centralized Economy

Lecture 2 The Centralized Economy Lecture 2 The Centralized Economy Economics 5118 Macroeconomic Theory Kam Yu Winter 2013 Outline 1 Introduction 2 The Basic DGE Closed Economy 3 Golden Rule Solution 4 Optimal Solution The Euler Equation

More information

UNIVERSITY OF VIENNA

UNIVERSITY OF VIENNA WORKING PAPERS Cycles and chaos in the one-sector growth model with elastic labor supply Gerhard Sorger May 2015 Working Paper No: 1505 DEPARTMENT OF ECONOMICS UNIVERSITY OF VIENNA All our working papers

More information

Outline Today s Lecture

Outline Today s Lecture Outline Today s Lecture finish Euler Equations and Transversality Condition Principle of Optimality: Bellman s Equation Study of Bellman equation with bounded F contraction mapping and theorem of the maximum

More information

1 Jan 28: Overview and Review of Equilibrium

1 Jan 28: Overview and Review of Equilibrium 1 Jan 28: Overview and Review of Equilibrium 1.1 Introduction What is an equilibrium (EQM)? Loosely speaking, an equilibrium is a mapping from environments (preference, technology, information, market

More information

Economics 202A Lecture Outline #3 (version 1.0)

Economics 202A Lecture Outline #3 (version 1.0) Economics 202A Lecture Outline #3 (version.0) Maurice Obstfeld Steady State of the Ramsey-Cass-Koopmans Model In the last few lectures we have seen how to set up the Ramsey-Cass- Koopmans Model in discrete

More information

Midterm 1. Every element of the set of functions is continuous

Midterm 1. Every element of the set of functions is continuous Econ 200 Mathematics for Economists Midterm Question.- Consider the set of functions F C(0, ) dened by { } F = f C(0, ) f(x) = ax b, a A R and b B R That is, F is a subset of the set of continuous functions

More information

Mathematics 426 Robert Gross Homework 9 Answers

Mathematics 426 Robert Gross Homework 9 Answers Mathematics 4 Robert Gross Homework 9 Answers. Suppose that X is a normal random variable with mean µ and standard deviation σ. Suppose that PX > 9 PX

More information

AP Calculus Chapter 3 Testbank (Mr. Surowski)

AP Calculus Chapter 3 Testbank (Mr. Surowski) AP Calculus Chapter 3 Testbank (Mr. Surowski) Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.). If f(x) = 0x 4 3 + x, then f (8) = (A) (B) 4 3 (C) 83 3 (D) 2 3 (E) 2

More information

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1)

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1) EXERCISE SET 5. 6. The pair (, 2) is in the set but the pair ( )(, 2) = (, 2) is not because the first component is negative; hence Axiom 6 fails. Axiom 5 also fails. 8. Axioms, 2, 3, 6, 9, and are easily

More information

Families of Functions, Taylor Polynomials, l Hopital s

Families of Functions, Taylor Polynomials, l Hopital s Unit #6 : Rule Families of Functions, Taylor Polynomials, l Hopital s Goals: To use first and second derivative information to describe functions. To be able to find general properties of families of functions.

More information

1. Using the model and notations covered in class, the expected returns are:

1. Using the model and notations covered in class, the expected returns are: Econ 510a second half Yale University Fall 2006 Prof. Tony Smith HOMEWORK #5 This homework assignment is due at 5PM on Friday, December 8 in Marnix Amand s mailbox. Solution 1. a In the Mehra-Prescott

More information

Assignment #5. 1 Keynesian Cross. Econ 302: Intermediate Macroeconomics. December 2, 2009

Assignment #5. 1 Keynesian Cross. Econ 302: Intermediate Macroeconomics. December 2, 2009 Assignment #5 Econ 0: Intermediate Macroeconomics December, 009 Keynesian Cross Consider a closed economy. Consumption function: C = C + M C(Y T ) () In addition, suppose that planned investment expenditure

More information

HOMEWORK #3 This homework assignment is due at NOON on Friday, November 17 in Marnix Amand s mailbox.

HOMEWORK #3 This homework assignment is due at NOON on Friday, November 17 in Marnix Amand s mailbox. Econ 50a second half) Yale University Fall 2006 Prof. Tony Smith HOMEWORK #3 This homework assignment is due at NOON on Friday, November 7 in Marnix Amand s mailbox.. This problem introduces wealth inequality

More information

Heterogeneous Agent Models: I

Heterogeneous Agent Models: I Heterogeneous Agent Models: I Mark Huggett 2 2 Georgetown September, 2017 Introduction Early heterogeneous-agent models integrated the income-fluctuation problem into general equilibrium models. A key

More information

Definition (The carefully thought-out calculus version based on limits).

Definition (The carefully thought-out calculus version based on limits). 4.1. Continuity and Graphs Definition 4.1.1 (Intuitive idea used in algebra based on graphing). A function, f, is continuous on the interval (a, b) if the graph of y = f(x) can be drawn over the interval

More information

2 JOHN STACHURSKI collection of all distributions on the state space into itself with the property that the image of the current distribution ' t is t

2 JOHN STACHURSKI collection of all distributions on the state space into itself with the property that the image of the current distribution ' t is t STOCHASTIC GROWTH: ASYMPTOTIC DISTRIBUTIONS JOHN STACHURSKI Abstract. This note studies conditions under which sequences of capital per head generated by stochastic optimal accumulation models havelaw

More information

Fixed Term Employment Contracts. in an Equilibrium Search Model

Fixed Term Employment Contracts. in an Equilibrium Search Model Supplemental material for: Fixed Term Employment Contracts in an Equilibrium Search Model Fernando Alvarez University of Chicago and NBER Marcelo Veracierto Federal Reserve Bank of Chicago This document

More information

September Math Course: First Order Derivative

September Math Course: First Order Derivative September Math Course: First Order Derivative Arina Nikandrova Functions Function y = f (x), where x is either be a scalar or a vector of several variables (x,..., x n ), can be thought of as a rule which

More information

ADVANCED MACROECONOMICS 2015 FINAL EXAMINATION FOR THE FIRST HALF OF SPRING SEMESTER

ADVANCED MACROECONOMICS 2015 FINAL EXAMINATION FOR THE FIRST HALF OF SPRING SEMESTER ADVANCED MACROECONOMICS 2015 FINAL EXAMINATION FOR THE FIRST HALF OF SPRING SEMESTER Hiroyuki Ozaki Keio University, Faculty of Economics June 2, 2015 Important Remarks: You must write all your answers

More information

HOMEWORK #1 This homework assignment is due at 5PM on Friday, November 3 in Marnix Amand s mailbox.

HOMEWORK #1 This homework assignment is due at 5PM on Friday, November 3 in Marnix Amand s mailbox. Econ 50a (second half) Yale University Fall 2006 Prof. Tony Smith HOMEWORK # This homework assignment is due at 5PM on Friday, November 3 in Marnix Amand s mailbox.. Consider a growth model with capital

More information

Sensitivity Analysis of Stationary Title Optimal Growth : a Differentiable A. Citation Hitotsubashi journal of economics,

Sensitivity Analysis of Stationary Title Optimal Growth : a Differentiable A. Citation Hitotsubashi journal of economics, Sensitivity Analysis of Stationary Title Optimal Growth : a Differentiable A Author(s) Sagara, Nobusumi Citation Hitotsubashi journal of economics, Issue 2007-06 Date Type Departmental Bulletin Paper Text

More information

ECON607 Fall 2010 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 2

ECON607 Fall 2010 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 2 ECON607 Fall 200 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 2 The due date for this assignment is Tuesday, October 2. ( Total points = 50). (Two-sector growth model) Consider the

More information

MATH 307: Problem Set #3 Solutions

MATH 307: Problem Set #3 Solutions : Problem Set #3 Solutions Due on: May 3, 2015 Problem 1 Autonomous Equations Recall that an equilibrium solution of an autonomous equation is called stable if solutions lying on both sides of it tend

More information

14 Increasing and decreasing functions

14 Increasing and decreasing functions 14 Increasing and decreasing functions 14.1 Sketching derivatives READING Read Section 3.2 of Rogawski Reading Recall, f (a) is the gradient of the tangent line of f(x) at x = a. We can use this fact to

More information

LECTURE 3 RANDOM VARIABLES, CUMULATIVE DISTRIBUTION FUNCTIONS (CDFs)

LECTURE 3 RANDOM VARIABLES, CUMULATIVE DISTRIBUTION FUNCTIONS (CDFs) OCTOBER 6, 2014 LECTURE 3 RANDOM VARIABLES, CUMULATIVE DISTRIBUTION FUNCTIONS (CDFs) 1 Random Variables Random experiments typically require verbal descriptions, and arguments involving events are often

More information

On the Principle of Optimality for Nonstationary Deterministic Dynamic Programming

On the Principle of Optimality for Nonstationary Deterministic Dynamic Programming On the Principle of Optimality for Nonstationary Deterministic Dynamic Programming Takashi Kamihigashi January 15, 2007 Abstract This note studies a general nonstationary infinite-horizon optimization

More information

Macro 1: Dynamic Programming 1

Macro 1: Dynamic Programming 1 Macro 1: Dynamic Programming 1 Mark Huggett 2 2 Georgetown September, 2016 DP Warm up: Cake eating problem ( ) max f 1 (y 1 ) + f 2 (y 2 ) s.t. y 1 + y 2 100, y 1 0, y 2 0 1. v 1 (x) max f 1(y 1 ) + f

More information

Lecture 2: Review of Prerequisites. Table of contents

Lecture 2: Review of Prerequisites. Table of contents Math 348 Fall 217 Lecture 2: Review of Prerequisites Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams. In this

More information

Calculus 2502A - Advanced Calculus I Fall : Local minima and maxima

Calculus 2502A - Advanced Calculus I Fall : Local minima and maxima Calculus 50A - Advanced Calculus I Fall 014 14.7: Local minima and maxima Martin Frankland November 17, 014 In these notes, we discuss the problem of finding the local minima and maxima of a function.

More information

Topic 5: The Difference Equation

Topic 5: The Difference Equation Topic 5: The Difference Equation Yulei Luo Economics, HKU October 30, 2017 Luo, Y. (Economics, HKU) ME October 30, 2017 1 / 42 Discrete-time, Differences, and Difference Equations When time is taken to

More information

Online Appendix for Investment Hangover and the Great Recession

Online Appendix for Investment Hangover and the Great Recession ONLINE APPENDIX INVESTMENT HANGOVER A1 Online Appendix for Investment Hangover and the Great Recession By MATTHEW ROGNLIE, ANDREI SHLEIFER, AND ALP SIMSEK APPENDIX A: CALIBRATION This appendix describes

More information

1 Calculus - Optimization - Applications

1 Calculus - Optimization - Applications 1 Calculus - Optimization - Applications The task of finding points at which a function takes on a local maximum or minimum is called optimization, a word derived from applications in which one often desires

More information

Summary of the simplex method

Summary of the simplex method MVE165/MMG630, The simplex method; degeneracy; unbounded solutions; infeasibility; starting solutions; duality; interpretation Ann-Brith Strömberg 2012 03 16 Summary of the simplex method Optimality condition:

More information

Lecture 3: Growth Model, Dynamic Optimization in Continuous Time (Hamiltonians)

Lecture 3: Growth Model, Dynamic Optimization in Continuous Time (Hamiltonians) Lecture 3: Growth Model, Dynamic Optimization in Continuous Time (Hamiltonians) ECO 503: Macroeconomic Theory I Benjamin Moll Princeton University Fall 2014 1/16 Plan of Lecture Growth model in continuous

More information

One Variable Calculus. Izmir University of Economics Econ 533: Quantitative Methods and Econometrics

One Variable Calculus. Izmir University of Economics Econ 533: Quantitative Methods and Econometrics Izmir University of Economics Econ 533: Quantitative Methods and Econometrics One Variable Calculus Introduction Finding the best way to do a specic task involves what is called an optimization problem.

More information

ARE202A, Fall Contents

ARE202A, Fall Contents ARE202A, Fall 2005 LECTURE #2: WED, NOV 6, 2005 PRINT DATE: NOVEMBER 2, 2005 (NPP2) Contents 5. Nonlinear Programming Problems and the Kuhn Tucker conditions (cont) 5.2. Necessary and sucient conditions

More information

Section 1.8/1.9. Linear Transformations

Section 1.8/1.9. Linear Transformations Section 1.8/1.9 Linear Transformations Motivation Let A be a matrix, and consider the matrix equation b = Ax. If we vary x, we can think of this as a function of x. Many functions in real life the linear

More information

Lecture 5: The neoclassical growth model

Lecture 5: The neoclassical growth model THE UNIVERSITY OF SOUTHAMPTON Paul Klein Office: Murray Building, 3005 Email: p.klein@soton.ac.uk URL: http://paulklein.se Economics 3010 Topics in Macroeconomics 3 Autumn 2010 Lecture 5: The neoclassical

More information

1 Implicit Differentiation

1 Implicit Differentiation 1 Implicit Differentiation In logarithmic differentiation, we begin with an equation y = f(x) and then take the logarithm of both sides to get ln y = ln f(x). In this equation, y is not explicitly expressed

More information

Math 1270 Honors ODE I Fall, 2008 Class notes # 14. x 0 = F (x; y) y 0 = G (x; y) u 0 = au + bv = cu + dv

Math 1270 Honors ODE I Fall, 2008 Class notes # 14. x 0 = F (x; y) y 0 = G (x; y) u 0 = au + bv = cu + dv Math 1270 Honors ODE I Fall, 2008 Class notes # 1 We have learned how to study nonlinear systems x 0 = F (x; y) y 0 = G (x; y) (1) by linearizing around equilibrium points. If (x 0 ; y 0 ) is an equilibrium

More information

CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008.

CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008. 1 ECONOMICS 594: LECTURE NOTES CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS W. Erwin Diewert January 31, 2008. 1. Introduction Many economic problems have the following structure: (i) a linear function

More information

SBS Chapter 2: Limits & continuity

SBS Chapter 2: Limits & continuity SBS Chapter 2: Limits & continuity (SBS 2.1) Limit of a function Consider a free falling body with no air resistance. Falls approximately s(t) = 16t 2 feet in t seconds. We already know how to nd the average

More information

MAT 137Y: Calculus! Problem Set 4 Sample Solutions

MAT 137Y: Calculus! Problem Set 4 Sample Solutions MAT 137Y: Calculus! Problem Set 4 Sample Solutions 1. Let a, b > 0. We want to study the curve with equation (x + y ) = ax + by. Notice that for each value of a and each value of b we get a different curve.

More information

1 THE GAME. Two players, i=1, 2 U i : concave, strictly increasing f: concave, continuous, f(0) 0 β (0, 1): discount factor, common

1 THE GAME. Two players, i=1, 2 U i : concave, strictly increasing f: concave, continuous, f(0) 0 β (0, 1): discount factor, common 1 THE GAME Two players, i=1, 2 U i : concave, strictly increasing f: concave, continuous, f(0) 0 β (0, 1): discount factor, common With Law of motion of the state: Payoff: Histories: Strategies: k t+1

More information

Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path

Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path Ryoji Ohdoi Dept. of Industrial Engineering and Economics, Tokyo Tech This lecture note is mainly based on Ch. 8 of Acemoglu

More information

Math Camp Notes: Everything Else

Math Camp Notes: Everything Else Math Camp Notes: Everything Else Systems of Dierential Equations Consider the general two-equation system of dierential equations: Steady States ẋ = f(x, y ẏ = g(x, y Just as before, we can nd the steady

More information

A Quick Introduction to Numerical Methods

A Quick Introduction to Numerical Methods Chapter 5 A Quick Introduction to Numerical Methods One of the main advantages of the recursive approach is that we can use the computer to solve numerically interesting models. There is a wide variety

More information

Notes on Measure Theory and Markov Processes

Notes on Measure Theory and Markov Processes Notes on Measure Theory and Markov Processes Diego Daruich March 28, 2014 1 Preliminaries 1.1 Motivation The objective of these notes will be to develop tools from measure theory and probability to allow

More information

Lecture 7: Stochastic Dynamic Programing and Markov Processes

Lecture 7: Stochastic Dynamic Programing and Markov Processes Lecture 7: Stochastic Dynamic Programing and Markov Processes Florian Scheuer References: SLP chapters 9, 10, 11; LS chapters 2 and 6 1 Examples 1.1 Neoclassical Growth Model with Stochastic Technology

More information

Problem Set 2: Proposed solutions Econ Fall Cesar E. Tamayo Department of Economics, Rutgers University

Problem Set 2: Proposed solutions Econ Fall Cesar E. Tamayo Department of Economics, Rutgers University Problem Set 2: Proposed solutions Econ 504 - Fall 202 Cesar E. Tamayo ctamayo@econ.rutgers.edu Department of Economics, Rutgers University Simple optimal growth (Problems &2) Suppose that we modify slightly

More information

Econ 8106 V.V. Chari Notes

Econ 8106 V.V. Chari Notes V.V. Jordan Pandolfo University of Minnesota Fall 2015 1 Contents 1 Defining an Economy and Welfare Theorems 4 2 The Deterministic Neoclassical Growth Model 6 2.1 The Baseline Model.............................................

More information

Mathematics 530. Practice Problems. n + 1 }

Mathematics 530. Practice Problems. n + 1 } Department of Mathematical Sciences University of Delaware Prof. T. Angell October 19, 2015 Mathematics 530 Practice Problems 1. Recall that an indifference relation on a partially ordered set is defined

More information

Span and Linear Independence

Span and Linear Independence Span and Linear Independence It is common to confuse span and linear independence, because although they are different concepts, they are related. To see their relationship, let s revisit the previous

More information

ECON 5111 Mathematical Economics

ECON 5111 Mathematical Economics Test 1 October 1, 2010 1. Construct a truth table for the following statement: [p (p q)] q. 2. A prime number is a natural number that is divisible by 1 and itself only. Let P be the set of all prime numbers

More information

Kevin X.D. Huang and Jan Werner. Department of Economics, University of Minnesota

Kevin X.D. Huang and Jan Werner. Department of Economics, University of Minnesota Implementing Arrow-Debreu Equilibria by Trading Innitely-Lived Securities. Kevin.D. Huang and Jan Werner Department of Economics, University of Minnesota February 2, 2000 1 1. Introduction Equilibrium

More information

UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory

UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory Constrained Innite-Time Nonlinear Quadratic Optimal Control V. Manousiouthakis D. Chmielewski Chemical Engineering Department UCLA 1998 AIChE Annual Meeting Outline Unconstrained Innite-Time Nonlinear

More information

Advanced Economic Growth: Lecture 8, Technology Di usion, Trade and Interdependencies: Di usion of Technology

Advanced Economic Growth: Lecture 8, Technology Di usion, Trade and Interdependencies: Di usion of Technology Advanced Economic Growth: Lecture 8, Technology Di usion, Trade and Interdependencies: Di usion of Technology Daron Acemoglu MIT October 3, 2007 Daron Acemoglu (MIT) Advanced Growth Lecture 8 October 3,

More information

Optimization, Part 2 (november to december): mandatory for QEM-IMAEF, and for MMEF or MAEF who have chosen it as an optional course.

Optimization, Part 2 (november to december): mandatory for QEM-IMAEF, and for MMEF or MAEF who have chosen it as an optional course. Paris. Optimization, Part 2 (november to december): mandatory for QEM-IMAEF, and for MMEF or MAEF who have chosen it as an optional course. Philippe Bich (Paris 1 Panthéon-Sorbonne and PSE) Paris, 2016.

More information

MAXIMA AND MINIMA CHAPTER 7.1 INTRODUCTION 7.2 CONCEPT OF LOCAL MAXIMA AND LOCAL MINIMA

MAXIMA AND MINIMA CHAPTER 7.1 INTRODUCTION 7.2 CONCEPT OF LOCAL MAXIMA AND LOCAL MINIMA CHAPTER 7 MAXIMA AND MINIMA 7.1 INTRODUCTION The notion of optimizing functions is one of the most important application of calculus used in almost every sphere of life including geometry, business, trade,

More information

The Solow Growth Model

The Solow Growth Model The Solow Growth Model Lectures 5, 6 & 7 Topics in Macroeconomics Topic 2 October 20, 21 & 27, 2008 Lectures 5, 6 & 7 1/37 Topics in Macroeconomics From Growth Accounting to the Solow Model Goal 1: Stylized

More information

LESSON 23: EXTREMA OF FUNCTIONS OF 2 VARIABLES OCTOBER 25, 2017

LESSON 23: EXTREMA OF FUNCTIONS OF 2 VARIABLES OCTOBER 25, 2017 LESSON : EXTREMA OF FUNCTIONS OF VARIABLES OCTOBER 5, 017 Just like with functions of a single variable, we want to find the minima (plural of minimum) and maxima (plural of maximum) of functions of several

More information

Lecture 4: Optimization. Maximizing a function of a single variable

Lecture 4: Optimization. Maximizing a function of a single variable Lecture 4: Optimization Maximizing or Minimizing a Function of a Single Variable Maximizing or Minimizing a Function of Many Variables Constrained Optimization Maximizing a function of a single variable

More information

Solving Dual Problems

Solving Dual Problems Lecture 20 Solving Dual Problems We consider a constrained problem where, in addition to the constraint set X, there are also inequality and linear equality constraints. Specifically the minimization problem

More information

f ', the first derivative of a differentiable function, f. Use the

f ', the first derivative of a differentiable function, f. Use the f, f ', and The graph given to the right is the graph of graph to answer the questions below. f '' Relationships and The Extreme Value Theorem 1. On the interval [0, 8], are there any values where f(x)

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 7: Duality and applications Prof. John Gunnar Carlsson September 29, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, 2010 1

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES

MATH 56A SPRING 2008 STOCHASTIC PROCESSES MATH 56A SPRING 008 STOCHASTIC PROCESSES KIYOSHI IGUSA Contents 4. Optimal Stopping Time 95 4.1. Definitions 95 4.. The basic problem 95 4.3. Solutions to basic problem 97 4.4. Cost functions 101 4.5.

More information

MARKOV CHAINS: STATIONARY DISTRIBUTIONS AND FUNCTIONS ON STATE SPACES. Contents

MARKOV CHAINS: STATIONARY DISTRIBUTIONS AND FUNCTIONS ON STATE SPACES. Contents MARKOV CHAINS: STATIONARY DISTRIBUTIONS AND FUNCTIONS ON STATE SPACES JAMES READY Abstract. In this paper, we rst introduce the concepts of Markov Chains and their stationary distributions. We then discuss

More information

Lecture 5 Dynamics of the Growth Model. Noah Williams

Lecture 5 Dynamics of the Growth Model. Noah Williams Lecture 5 Dynamics of the Growth Model Noah Williams University of Wisconsin - Madison Economics 702/312 Spring 2016 An Example Now work out a parametric example, using standard functional forms. Cobb-Douglas

More information

Constrained Optimization

Constrained Optimization Constrained Optimization Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 13, 2013 1 General Problem Consider the following general constrained optimization problem:

More information

Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Advanced Algebra Unit 2

Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Advanced Algebra Unit 2 Polynomials Patterns Task 1. To get an idea of what polynomial functions look like, we can graph the first through fifth degree polynomials with leading coefficients of 1. For each polynomial function,

More information

Marginal Functions and Approximation

Marginal Functions and Approximation UCSC AMS/ECON 11A Supplemental Notes # 5 Marginal Functions and Approximation c 2006 Yonatan Katznelson 1. The approximation formula If y = f (x) is a dierentiable function then its derivative, y 0 = f

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018 DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 208 Version A refers to the regular exam and Version B to the make-up. Version A. A particle

More information

Economics 205, Fall 2002: Final Examination, Possible Answers

Economics 205, Fall 2002: Final Examination, Possible Answers Economics 05, Fall 00: Final Examination, Possible Answers Comments on the Exam Grades: 43 possible; high: 413; median: 34; low: 36 I was generally happy with the answers to questions 3-8, satisfied with

More information