1 THE GAME. Two players, i=1, 2 U i : concave, strictly increasing f: concave, continuous, f(0) 0 β (0, 1): discount factor, common

Size: px
Start display at page:

Download "1 THE GAME. Two players, i=1, 2 U i : concave, strictly increasing f: concave, continuous, f(0) 0 β (0, 1): discount factor, common"

Transcription

1 1 THE GAME Two players, i=1, 2 U i : concave, strictly increasing f: concave, continuous, f(0) 0 β (0, 1): discount factor, common With Law of motion of the state: Payoff: Histories: Strategies: k t+1 = f(k t ) c 1 t c 2 t β t U i (Ct 1 ), i = 1, 2 t=0 H t = {(c 1 1, c 2 1,..., c 1 t, c 2 t )} σ i t : H t [0, ) A game is naturally defined. Equilibria are Subgame Perfect Equilibria. 1

2 2 ALLOCATION RULE For two consumption rates, c 1, c 2 : c 1, A 1 (c 1, c 2, k) f(k) c 2 A 2 is defined similarly. if c 1 + c 2 f(k), or c 1 f(k) 2 ifc 1 + c 2 f(k) and c 1 f(k) 2 c 2 f(k) if c 1, c 2 f(k) 2 2 2

3 3 FAST CONSUMPTION STRATEGY c i (k) = f(k), i = 1, 2 NOTE: ( c 1, c 2 ) t 0 is a SPE. Let V (k) be the total utility to the ith player of the fast consumption SPE. 3

4 4 THE SECOND BEST PROBLEM Given k, initial stock, the Second Best Value is given by V sb (k) sup t β t [α 1 U 1 (c 1 t ) + α 2 U 2 (c 2 t )] subject to f(k t ) c 1 t c 2 t = k t+1, and k 0 = k, where the supremum is taken over the sequences (c 1 t, c 2 t ) t 0 of outcomes of SPE. THE FIRST BEST (FB) value is defined as the supremum over feasible consumption paths (c 1 t, c 2 t ) t 0, and is denoted V. 4

5 5 TRIGGER STRATEGY PAIR Trigger Strategy Pair is described by: 1. An agreed consumption path, (c 1 t, c 2 t ) t 0 ; 2. The threat to switch to a fast consumption, if a defection of either player from the agreed consumption path is detected. 5

6 6 INDIVIDUAL RATIONALITY CONSTRAINT If (c 1 t, c 2 t ) t 0 is a SPE OUTCOME, then: The DEFECTION VALUE V D β t U i (c i t) V (k) t i (k, c) = max{sup c 1 0U i (c 1 )+βu i ( f(f(k) c c1 ) )+ β2 2 1 β U i( f(0) 2 ), V i (k)} The solution to this problem is denotes as c D i (k, c) Lemma Any SPE outcome (c 1 t, c 2 t ) t 0 is the outcome of a trigger strategy equilibrium. Therefore, the Second Best Problem can be equivalently reformulated as: V sb (k) sup {(c 1 t,c 2 t ) t 0} β t [α 1 U 1 (c 1 t ) + α 2 U 2 (c 2 t )] t subject to f(k t ) c 1 t c 2 t = k t+1, k 0 = k ( ) β n U i (c i t+n) Vi D (k t, c i t ) t = 1, 2,...i = 1, 2. n=0 The constraint (*) is referred to as Incentive Compatibility Constraint. 6

7 7 THE SYMMETRIC CASE U i = U, α i = 1 2, i = 1,2; The Bellman operator for The Second Best Problem: where T V (k) T is not a contraction. max {U(c) + βv (f(k) 2c)} c A(k,ν) A(k, V ) {c : c 0, V (k) V D (k, c)} 7

8 THEOREM Assume lim k f (k)β < 1, then: 1. A solution to the Second Best Problem exists; 2. V sb is upper-semicontinuous. Remark. This is not a standard Dynamic Programming Problem. It is true that: V sb (k) = max {U(c) + βv sb(f(k) 2c)} c A(k,ν) and analogous equations for the non-symmetric case; But even if U, f are concave, V sb is not necessarily concave. The symmetric second-best equilibrium is the greatest growing one. PROPOSITION: For a given k, let (c t 1, c t 2) t 0 be a second best equilibrium outcome, starting from k, which is symmetric and such that V i (k) = V D (k, c i ) (that is second best is not first best), i = 1, 2. If k 1 = f(k) c 1 c 2 and k is the next period capital for any subgame perfect equilibrium, then k k 1. 8

9 8 A FIRST EXAMPLE U i (c) = c1 ɛ 1 ɛ, ɛ (0, 1), α 1 = α 2 = 1/2 y = f(k) = ak, a 1 FIRST BEST SOLUTION ĉ 1 (y) = ĉ 2 (y) = λy λ = 1 2 [1 β 1 ɛ a 1 ɛ ɛ ] where s(λ) λ 1 ɛ (1 ɛ)[1 β(a(1 2λ)) 1 ɛ ] V (k) = s( λ)k 1 ɛ, In general, the value of a consumption policy c(y) = λy for λ (0, 1 2 ) is V (k) = s(λ)k 1 ɛ Defection from a policy c(y) = λy is c D (k, λy) = λ D y, λ D = M(1 λ) where V D (k, λ y ) = s D (λ)k 1 ɛ ; M 1 = 1 + ( aβ 2 ) 1 ɛ s D (λ) = (1 λ)1 ɛ M ɛ 1 ɛ 2 a > 1 9

10 Proposition. The Second Best Consumption policy is given by: 1. c sb (y) = λy if s( λ) s D ( λ) 2. c sb (y) = λ sb y if s( λ) < s D ( λ) where N λ sb min{λ : λ [ λ, 1 + M ] and s(x) = s D(λ)} If a = 3.3, β = 0.325, ɛ = 0.5, then V D (k, ĉ(k)) > V (k) for k > 0 λ = 0.326, λ sb = FIRST BEST: Growth at 15 %, SECOND BEST: Contraction at % Another example If a = 1.058, β = 0.95, ɛ = 0.1, aβ>1 then FIRST BEST: Growth at 5.2 % SECOND BEST: Contraction at -99 % 10

11 In general: 11

12 PROPOSITION Assume 1. for some k, V (k) < V D (k, λk) 2. there exists a c such that: U( c + β ν(f(k) 2 c)) = ν D (k, c), and then, f(k) 2 c k; f(k) 2c sb (k) k 12

13 9 EXAMPLE OF WEALTH DEPENDENT GROWTH Let: a = 1.875; b = 0.2; y = ak + be; β = 0.55; e = 0.1; ɛ = 0.45 FIRST BEST SOLUTION: Growth at 7 % for k > 10 3 But, V (k) V D (k, λy) for k 1 V (k) < V D (k, λy) for k 0.9 for k [0.1, 0.4] the proposition applies, so SECOND BEST SOLUTION: No growth for k [0.1, 0, 4] Another example a = ; b = 0.2β = 0.95; e = 0.2aβ > 1 No growth for k [0.3, 0.9] First best for k

14 10 A CLASSICAL TRAP with Aβ > 1 > b > Bβ A = 5 2 ; β = 1 2 ; B > 2 { Ak if k < 1 f(k) = A + B(k 1) if k 1 { c if c 1 U(c) = 1 + b(c 1) if c 1 14

15 10.1 AN OLSON ECONOMY U(c) = c f(k) = k α FIRST BEST SOLUTION Steady state: k = (αβ) 1 1 α Consumption: { 0 if k (k ĉ(k) = ) 1 α k α k if k (k ) 1 α 2 DEFECTION from FIRST BEST: Consumption: { 0 iff (k c D α c) α 1 2 (k, c) = αβ k α c γ otherwise where γ = ( αβ 2 ) 1 1 α 15

16 11 INCENTIVE COMPATIBLE STEADY STATE k such that: 1 f(k) k 1 β 2 V D (k, f(k) k ) ( ) 2 The set of k s which satisfies (*) is an interval, [k, k]. Two cases: FIRST BEST = SECOND BEST 16

17 Failure of Blackwell with incentive constraints that depend on the control: 1. Standard Case (Discounting condition) T (v) = Max ct 0 U (c t ) + βv (f (k t 2c t )) T (v + α) = Max ct 0 U (c t ) + β (v (f (k t 2c t )) + α) = Max ct 0 U (c t ) + βv (f (k t 2c t )) + βα So Blackwell holds because equality suffi ces: T (v + α) T (v) + βα 17

18 where 2.Case with incentive constaints: T (v) = Max ct R(0) U (c t ) + βv (f (k t 2c t )) R (α) is defined by the set c (k) satisfying R (α) = { c t v(k) + α > v d (k, c) } v d (k, c) k > 0, v d (k, c) c < 0 Note here that vd (k,c) < 0 because deviating from agreed upon consumption c path {c t } is more beneficial when c t is lower-see Benhabib-Rustichini, JOEG,

19 T (v + α) = Max ct R(α) U (c t ) + β (v (f (k t 2c t )) + α) = Max ct R(α) U (c t ) + v (f (k t 2c t )) + βα But we cannot claim, as in the standard case T (v) = Max ct R(0) U (c t ) + βv (f (k t 2c t )) T (v + α) T (v) = Max ct R(α) U (c t ) + v (f (k t 2c t )) because { the set c t R (α) is larger than c t R (0) > 0 This is because ct v(k) + α > v d (k, c) } is larger with α > 0, since v d (k, c) decreases with c. Furthermore, if incentive constraint is binding, you are at the corner: you would like smaller c and accumulate more, but you do not in order to curtail other player from grabbing what you don t consume. Thus when α > 0 constraint is relaxed and you can lower c. Result is Blackwell fails: continuity of v cannot be assured. 19

20 Intuition for the discontinuity: if the value function jumps at k, why not restrain consumption by ε, and take a jump in value by driving k a little higher. Answer, If you were to curtail consumption even just a bit, you create incentives for the other player to grab more. 20

HOMEWORK #3 This homework assignment is due at NOON on Friday, November 17 in Marnix Amand s mailbox.

HOMEWORK #3 This homework assignment is due at NOON on Friday, November 17 in Marnix Amand s mailbox. Econ 50a second half) Yale University Fall 2006 Prof. Tony Smith HOMEWORK #3 This homework assignment is due at NOON on Friday, November 7 in Marnix Amand s mailbox.. This problem introduces wealth inequality

More information

Organizational Equilibrium with Capital

Organizational Equilibrium with Capital Organizational Equilibrium with Capital Marco Bassetto, Zhen Huo, and José-Víctor Ríos-Rull FRB of Chicago, Yale University, University of Pennsylvania, UCL, CAERP Fiscal Policy Conference Mar 20, 2018

More information

Problem Set #4 Answer Key

Problem Set #4 Answer Key Problem Set #4 Answer Key Economics 808: Macroeconomic Theory Fall 2004 The cake-eating problem a) Bellman s equation is: b) If this policy is followed: c) If this policy is followed: V (k) = max {log

More information

Exhaustible Resources and Economic Growth

Exhaustible Resources and Economic Growth Exhaustible Resources and Economic Growth Cuong Le Van +, Katheline Schubert + and Tu Anh Nguyen ++ + Université Paris 1 Panthéon-Sorbonne, CNRS, Paris School of Economics ++ Université Paris 1 Panthéon-Sorbonne,

More information

Dynamic Problem Set 1 Solutions

Dynamic Problem Set 1 Solutions Dynamic Problem Set 1 Solutions Jonathan Kreamer July 15, 2011 Question 1 Consider the following multi-period optimal storage problem: An economic agent imizes: c t} T β t u(c t ) (1) subject to the period-by-period

More information

Contents. An example 5. Mathematical Preliminaries 13. Dynamic programming under certainty 29. Numerical methods 41. Some applications 57

Contents. An example 5. Mathematical Preliminaries 13. Dynamic programming under certainty 29. Numerical methods 41. Some applications 57 T H O M A S D E M U Y N C K DY N A M I C O P T I M I Z AT I O N Contents An example 5 Mathematical Preliminaries 13 Dynamic programming under certainty 29 Numerical methods 41 Some applications 57 Stochastic

More information

A simple macro dynamic model with endogenous saving rate: the representative agent model

A simple macro dynamic model with endogenous saving rate: the representative agent model A simple macro dynamic model with endogenous saving rate: the representative agent model Virginia Sánchez-Marcos Macroeconomics, MIE-UNICAN Macroeconomics (MIE-UNICAN) A simple macro dynamic model with

More information

Self-Control, Saving, and the Low Asset Trap

Self-Control, Saving, and the Low Asset Trap Self-Control, Saving, and the Low sset Trap B. Douglas Bernheim Stanford University Debraj Ray New York University May 1999 Şevin Yeltekin Stanford University bstract We examine a class of intertemporal

More information

Basic Deterministic Dynamic Programming

Basic Deterministic Dynamic Programming Basic Deterministic Dynamic Programming Timothy Kam School of Economics & CAMA Australian National University ECON8022, This version March 17, 2008 Motivation What do we do? Outline Deterministic IHDP

More information

Problem Set #2: Overlapping Generations Models Suggested Solutions - Q2 revised

Problem Set #2: Overlapping Generations Models Suggested Solutions - Q2 revised University of Warwick EC9A Advanced Macroeconomic Analysis Problem Set #: Overlapping Generations Models Suggested Solutions - Q revised Jorge F. Chavez December 6, 0 Question Consider the following production

More information

Economics 8105 Macroeconomic Theory Recitation 3

Economics 8105 Macroeconomic Theory Recitation 3 Economics 8105 Macroeconomic Theory Recitation 3 Conor Ryan September 20th, 2016 Outline: Minnesota Economics Lecture Problem Set 1 Midterm Exam Fit Growth Model into SLP Corollary of Contraction Mapping

More information

DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION

DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION UNIVERSITY OF MARYLAND: ECON 600. Alternative Methods of Discrete Time Intertemporal Optimization We will start by solving a discrete time intertemporal

More information

Slides II - Dynamic Programming

Slides II - Dynamic Programming Slides II - Dynamic Programming Julio Garín University of Georgia Macroeconomic Theory II (Ph.D.) Spring 2017 Macroeconomic Theory II Slides II - Dynamic Programming Spring 2017 1 / 32 Outline 1. Lagrangian

More information

Consumption-Savings Decisions with Quasi-Geometric Discounting. Per Krusell and Anthony A. Smith, Jr. 1

Consumption-Savings Decisions with Quasi-Geometric Discounting. Per Krusell and Anthony A. Smith, Jr. 1 Consumption-Savings Decisions with Quasi-Geometric Discounting Per Krusell and Anthony A. Smith, Jr. 1 First version: June 1999 Current version: June 2001 Abstract We study the consumption-savings problem

More information

Multiple Interior Steady States in the Ramsey Model with Elastic Labor Supply

Multiple Interior Steady States in the Ramsey Model with Elastic Labor Supply Multiple Interior Steady States in the Ramsey Model with Elastic Labor Supply Takashi Kamihigashi March 18, 2014 Abstract In this paper we show that multiple interior steady states are possible in the

More information

Introduction to Recursive Methods

Introduction to Recursive Methods Chapter 1 Introduction to Recursive Methods These notes are targeted to advanced Master and Ph.D. students in economics. They can be of some use to researchers in macroeconomic theory. The material contained

More information

University of Warwick, EC9A0 Maths for Economists Lecture Notes 10: Dynamic Programming

University of Warwick, EC9A0 Maths for Economists Lecture Notes 10: Dynamic Programming University of Warwick, EC9A0 Maths for Economists 1 of 63 University of Warwick, EC9A0 Maths for Economists Lecture Notes 10: Dynamic Programming Peter J. Hammond Autumn 2013, revised 2014 University of

More information

Organizational Equilibrium with Capital

Organizational Equilibrium with Capital Organizational Equilibrium with Capital Marco Bassetto, Zhen Huo, and José-Víctor Ríos-Rull FRB of Chicago, New York University, University of Pennsylvania, UCL, CAERP HKUST Summer Workshop in Macroeconomics

More information

Suggested Solutions to Problem Set 2

Suggested Solutions to Problem Set 2 Macroeconomic Theory, Fall 03 SEF, HKU Instructor: Dr. Yulei Luo October 03 Suggested Solutions to Problem Set. 0 points] Consider the following Ramsey-Cass-Koopmans model with fiscal policy. First, we

More information

Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path

Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path Ryoji Ohdoi Dept. of Industrial Engineering and Economics, Tokyo Tech This lecture note is mainly based on Ch. 8 of Acemoglu

More information

ADVANCED MACROECONOMIC TECHNIQUES NOTE 3a

ADVANCED MACROECONOMIC TECHNIQUES NOTE 3a 316-406 ADVANCED MACROECONOMIC TECHNIQUES NOTE 3a Chris Edmond hcpedmond@unimelb.edu.aui Dynamic programming and the growth model Dynamic programming and closely related recursive methods provide an important

More information

ECON 2010c Solution to Problem Set 1

ECON 2010c Solution to Problem Set 1 ECON 200c Solution to Problem Set By the Teaching Fellows for ECON 200c Fall 204 Growth Model (a) Defining the constant κ as: κ = ln( αβ) + αβ αβ ln(αβ), the problem asks us to show that the following

More information

Dynamic Programming Theorems

Dynamic Programming Theorems Dynamic Programming Theorems Prof. Lutz Hendricks Econ720 September 11, 2017 1 / 39 Dynamic Programming Theorems Useful theorems to characterize the solution to a DP problem. There is no reason to remember

More information

Online Appendix for Investment Hangover and the Great Recession

Online Appendix for Investment Hangover and the Great Recession ONLINE APPENDIX INVESTMENT HANGOVER A1 Online Appendix for Investment Hangover and the Great Recession By MATTHEW ROGNLIE, ANDREI SHLEIFER, AND ALP SIMSEK APPENDIX A: CALIBRATION This appendix describes

More information

Housing in a two sector dynastic altruism model

Housing in a two sector dynastic altruism model Housing in a two sector dynastic altruism model Xavier Raurich Universitat de Barcelona Fernando Sanchez-Losada Universitat de Barcelona December 2008 Introduction Aims: 1. Study the e ects of housing

More information

The Principle of Optimality

The Principle of Optimality The Principle of Optimality Sequence Problem and Recursive Problem Sequence problem: Notation: V (x 0 ) sup {x t} β t F (x t, x t+ ) s.t. x t+ Γ (x t ) x 0 given t () Plans: x = {x t } Continuation plans

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program May 2012

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program May 2012 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program May 2012 The time limit for this exam is 4 hours. It has four sections. Each section includes two questions. You are

More information

Macro I - Practice Problems - Growth Models

Macro I - Practice Problems - Growth Models Macro I - Practice Problems - Growth Models. Consider the infinitely-lived agent version of the growth model with valued leisure. Suppose that the government uses proportional taxes (τ c, τ n, τ k ) on

More information

Dynamic optimization: a recursive approach. 1 A recursive (dynamic programming) approach to solving multi-period optimization problems:

Dynamic optimization: a recursive approach. 1 A recursive (dynamic programming) approach to solving multi-period optimization problems: E 600 F 206 H # Dynamic optimization: a recursive approach A recursive (dynamic programming) approach to solving multi-period optimization problems: An example A T + period lived agent s value of life

More information

1 Jan 28: Overview and Review of Equilibrium

1 Jan 28: Overview and Review of Equilibrium 1 Jan 28: Overview and Review of Equilibrium 1.1 Introduction What is an equilibrium (EQM)? Loosely speaking, an equilibrium is a mapping from environments (preference, technology, information, market

More information

ONLINE APPENDIX. Upping the Ante: The Equilibrium Effects of Unconditional Grants to Private Schools

ONLINE APPENDIX. Upping the Ante: The Equilibrium Effects of Unconditional Grants to Private Schools ONLINE APPENDIX Upping the Ante: The Equilibrium Effects of Unconditional Grants to Private Schools T. Andrabi, J. Das, A.I. Khwaja, S. Ozyurt, and N. Singh Contents A Theory A.1 Homogeneous Demand.................................

More information

Practice Questions for Mid-Term I. Question 1: Consider the Cobb-Douglas production function in intensive form:

Practice Questions for Mid-Term I. Question 1: Consider the Cobb-Douglas production function in intensive form: Practice Questions for Mid-Term I Question 1: Consider the Cobb-Douglas production function in intensive form: y f(k) = k α ; α (0, 1) (1) where y and k are output per worker and capital per worker respectively.

More information

Money, Barter, and Hyperinflation. Kao, Yi-Cheng Department of Business Administration, Chung Yuan Christian University

Money, Barter, and Hyperinflation. Kao, Yi-Cheng Department of Business Administration, Chung Yuan Christian University Money, Barter, and Hyperinflation Kao, Yi-Cheng Department of Business Administration, Chung Yuan Christian University 1 Outline Motivation The Model Discussion Extension Conclusion 2 Motivation 3 Economist

More information

Political Economy of Institutions and Development. Lecture 8. Institutional Change and Democratization

Political Economy of Institutions and Development. Lecture 8. Institutional Change and Democratization 14.773 Political Economy of Institutions and Development. Lecture 8. Institutional Change and Democratization Daron Acemoglu MIT March 5, 2013. Daron Acemoglu (MIT) Political Economy Lecture 8 March 5,

More information

Price and Capacity Competition

Price and Capacity Competition Price and Capacity Competition Daron Acemoglu, Kostas Bimpikis, and Asuman Ozdaglar October 9, 2007 Abstract We study the efficiency of oligopoly equilibria in a model where firms compete over capacities

More information

Economics 2010c: Lecture 2 Iterative Methods in Dynamic Programming

Economics 2010c: Lecture 2 Iterative Methods in Dynamic Programming Economics 2010c: Lecture 2 Iterative Methods in Dynamic Programming David Laibson 9/04/2014 Outline: 1. Functional operators 2. Iterative solutions for the Bellman Equation 3. Contraction Mapping Theorem

More information

Lecture 2 The Centralized Economy

Lecture 2 The Centralized Economy Lecture 2 The Centralized Economy Economics 5118 Macroeconomic Theory Kam Yu Winter 2013 Outline 1 Introduction 2 The Basic DGE Closed Economy 3 Golden Rule Solution 4 Optimal Solution The Euler Equation

More information

Bargaining, Contracts, and Theories of the Firm. Dr. Margaret Meyer Nuffield College

Bargaining, Contracts, and Theories of the Firm. Dr. Margaret Meyer Nuffield College Bargaining, Contracts, and Theories of the Firm Dr. Margaret Meyer Nuffield College 2015 Course Overview 1. Bargaining 2. Hidden information and self-selection Optimal contracting with hidden information

More information

Economics 210B Due: September 16, Problem Set 10. s.t. k t+1 = R(k t c t ) for all t 0, and k 0 given, lim. and

Economics 210B Due: September 16, Problem Set 10. s.t. k t+1 = R(k t c t ) for all t 0, and k 0 given, lim. and Economics 210B Due: September 16, 2010 Problem 1: Constant returns to saving Consider the following problem. c0,k1,c1,k2,... β t Problem Set 10 1 α c1 α t s.t. k t+1 = R(k t c t ) for all t 0, and k 0

More information

Non-convex Aggregate Technology and Optimal Economic Growth

Non-convex Aggregate Technology and Optimal Economic Growth Non-convex Aggregate Technology and Optimal Economic Growth N. M. Hung y, C. Le Van z, P. Michel x September 26, 2007 Abstract This paper examines a model of optimal growth where the aggregation of two

More information

NBER WORKING PAPER SERIES PRICE AND CAPACITY COMPETITION. Daron Acemoglu Kostas Bimpikis Asuman Ozdaglar

NBER WORKING PAPER SERIES PRICE AND CAPACITY COMPETITION. Daron Acemoglu Kostas Bimpikis Asuman Ozdaglar NBER WORKING PAPER SERIES PRICE AND CAPACITY COMPETITION Daron Acemoglu Kostas Bimpikis Asuman Ozdaglar Working Paper 12804 http://www.nber.org/papers/w12804 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts

More information

Computing Equilibria of Repeated And Dynamic Games

Computing Equilibria of Repeated And Dynamic Games Computing Equilibria of Repeated And Dynamic Games Şevin Yeltekin Carnegie Mellon University ICE 2012 July 2012 1 / 44 Introduction Repeated and dynamic games have been used to model dynamic interactions

More information

Monetary Economics: Solutions Problem Set 1

Monetary Economics: Solutions Problem Set 1 Monetary Economics: Solutions Problem Set 1 December 14, 2006 Exercise 1 A Households Households maximise their intertemporal utility function by optimally choosing consumption, savings, and the mix of

More information

Bertrand-Edgeworth Equilibrium in Oligopoly

Bertrand-Edgeworth Equilibrium in Oligopoly Bertrand-Edgeworth Equilibrium in Oligopoly Daisuke Hirata Graduate School of Economics, University of Tokyo March 2008 Abstract This paper investigates a simultaneous move capacity constrained price competition

More information

Government The government faces an exogenous sequence {g t } t=0

Government The government faces an exogenous sequence {g t } t=0 Part 6 1. Borrowing Constraints II 1.1. Borrowing Constraints and the Ricardian Equivalence Equivalence between current taxes and current deficits? Basic paper on the Ricardian Equivalence: Barro, JPE,

More information

Lecture 5: The Bellman Equation

Lecture 5: The Bellman Equation Lecture 5: The Bellman Equation Florian Scheuer 1 Plan Prove properties of the Bellman equation (In particular, existence and uniqueness of solution) Use this to prove properties of the solution Think

More information

Mean Field Consumption-Accumulation Optimization with HAR

Mean Field Consumption-Accumulation Optimization with HAR Mean Field Consumption-Accumulation Optimization with HARA Utility School of Mathematics and Statistics Carleton University, Ottawa Workshop on Mean Field Games and Related Topics 2 Padova, September 4-7,

More information

Suggested Solutions to Homework #3 Econ 511b (Part I), Spring 2004

Suggested Solutions to Homework #3 Econ 511b (Part I), Spring 2004 Suggested Solutions to Homework #3 Econ 5b (Part I), Spring 2004. Consider an exchange economy with two (types of) consumers. Type-A consumers comprise fraction λ of the economy s population and type-b

More information

slides chapter 3 an open economy with capital

slides chapter 3 an open economy with capital slides chapter 3 an open economy with capital Princeton University Press, 2017 Motivation In this chaper we introduce production and physical capital accumulation. Doing so will allow us to address two

More information

Introduction to Game Theory

Introduction to Game Theory Introduction to Game Theory Part 2. Dynamic games of complete information Chapter 2. Two-stage games of complete but imperfect information Ciclo Profissional 2 o Semestre / 2011 Graduação em Ciências Econômicas

More information

Backwards Induction. Extensive-Form Representation. Backwards Induction (cont ) The player 2 s optimization problem in the second stage

Backwards Induction. Extensive-Form Representation. Backwards Induction (cont ) The player 2 s optimization problem in the second stage Lecture Notes II- Dynamic Games of Complete Information Extensive Form Representation (Game tree Subgame Perfect Nash Equilibrium Repeated Games Trigger Strategy Dynamic Games of Complete Information Dynamic

More information

Lectures Road Map

Lectures Road Map Lectures 0 - Repeated Games 4. Game Theory Muhamet Yildiz Road Map. Forward Induction Examples. Finitely Repeated Games with observable actions. Entry-Deterrence/Chain-store paradox. Repeated Prisoners

More information

HOMEWORK #1 This homework assignment is due at 5PM on Friday, November 3 in Marnix Amand s mailbox.

HOMEWORK #1 This homework assignment is due at 5PM on Friday, November 3 in Marnix Amand s mailbox. Econ 50a (second half) Yale University Fall 2006 Prof. Tony Smith HOMEWORK # This homework assignment is due at 5PM on Friday, November 3 in Marnix Amand s mailbox.. Consider a growth model with capital

More information

[A + 1 ] + (1 ) v: : (b) Show: the derivative of T at v = v 0 < 0 is: = (v 0 ) (1 ) ; [A + 1 ]

[A + 1 ] + (1 ) v: : (b) Show: the derivative of T at v = v 0 < 0 is: = (v 0 ) (1 ) ; [A + 1 ] Homework #2 Economics 4- Due Wednesday, October 5 Christiano. This question is designed to illustrate Blackwell's Theorem, Theorem 3.3 on page 54 of S-L. That theorem represents a set of conditions that

More information

Department of Economics Working Paper Series

Department of Economics Working Paper Series Department of Economics Working Paper Series On the Existence and Characterization of Markovian Equilibrium in Models with Simple Non-Paternalistic Altruism Olivier F. Morand University of Connecticut

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2016

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2016 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2016 The time limit for this exam is four hours. The exam has four sections. Each section includes two questions.

More information

ECON607 Fall 2010 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 2

ECON607 Fall 2010 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 2 ECON607 Fall 200 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 2 The due date for this assignment is Tuesday, October 2. ( Total points = 50). (Two-sector growth model) Consider the

More information

Organizational Equilibrium with Capital

Organizational Equilibrium with Capital Organizational Equilibrium with Capital Marco Bassetto, Zhen Huo, and José-Víctor Ríos-Rull FRB of Chicago, Yale University, Penn, UCL, CAERP Bristol Macroeconomic Workshop, May 31, 2017 1 / 57 Question

More information

On the Informed Principal Model with Common Values

On the Informed Principal Model with Common Values On the Informed Principal Model with Common Values Anastasios Dosis ESSEC Business School and THEMA École Polytechnique/CREST, 3/10/2018 Anastasios Dosis (ESSEC and THEMA) Informed Principal with Common

More information

Example I: Capital Accumulation

Example I: Capital Accumulation 1 Example I: Capital Accumulation Time t = 0, 1,..., T < Output y, initial output y 0 Fraction of output invested a, capital k = ay Transition (production function) y = g(k) = g(ay) Reward (utility of

More information

Political Economy of Institutions and Development: Problem Set 1. Due Date: Thursday, February 23, in class.

Political Economy of Institutions and Development: Problem Set 1. Due Date: Thursday, February 23, in class. Political Economy of Institutions and Development: 14.773 Problem Set 1 Due Date: Thursday, February 23, in class. Answer Questions 1-3. handed in. The other two questions are for practice and are not

More information

REPEATED GAMES. Jörgen Weibull. April 13, 2010

REPEATED GAMES. Jörgen Weibull. April 13, 2010 REPEATED GAMES Jörgen Weibull April 13, 2010 Q1: Can repetition induce cooperation? Peace and war Oligopolistic collusion Cooperation in the tragedy of the commons Q2: Can a game be repeated? Game protocols

More information

Mathematical Methods in Economics (Part I) Lecture Note

Mathematical Methods in Economics (Part I) Lecture Note Mathematical Methods in Economics (Part I) Lecture Note Kai Hao Yang 09/03/2018 Contents 1 Basic Topology and Linear Algebra 4 1.1 Review of Metric Space and Introduction of Topological Space........ 4

More information

Final Exam - Math Camp August 27, 2014

Final Exam - Math Camp August 27, 2014 Final Exam - Math Camp August 27, 2014 You will have three hours to complete this exam. Please write your solution to question one in blue book 1 and your solutions to the subsequent questions in blue

More information

An Application to Growth Theory

An Application to Growth Theory An Application to Growth Theory First let s review the concepts of solution function and value function for a maximization problem. Suppose we have the problem max F (x, α) subject to G(x, β) 0, (P) x

More information

Economic Growth: Lecture 8, Overlapping Generations

Economic Growth: Lecture 8, Overlapping Generations 14.452 Economic Growth: Lecture 8, Overlapping Generations Daron Acemoglu MIT November 20, 2018 Daron Acemoglu (MIT) Economic Growth Lecture 8 November 20, 2018 1 / 46 Growth with Overlapping Generations

More information

Multiple Interior Steady States in the Ramsey Model with Elastic Labor Supply

Multiple Interior Steady States in the Ramsey Model with Elastic Labor Supply Multiple Interior Steady States in the Ramsey Model with Elastic Labor Supply Takashi Kamihigashi July 31, 2014 Abstract In this paper, we show that multiple interior steady states are possible in the

More information

Lecture Notes: Self-enforcing agreements

Lecture Notes: Self-enforcing agreements Lecture Notes: Self-enforcing agreements Bård Harstad ECON 4910 March 2016 Bård Harstad (ECON 4910) Self-enforcing agreements March 2016 1 / 34 1. Motivation Many environmental problems are international

More information

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko Indirect Utility Recall: static consumer theory; J goods, p j is the price of good j (j = 1; : : : ; J), c j is consumption

More information

Competitive Equilibrium when Preferences Change over Time

Competitive Equilibrium when Preferences Change over Time Competitive Equilibrium when Preferences Change over Time Erzo G.J. Luttmer Thomas Mariotti June 24, 2002 Abstract We show the existence of a competitive equilibrium in an economy with many consumers whose

More information

Lecture Notes 10: Dynamic Programming

Lecture Notes 10: Dynamic Programming University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 1 of 81 Lecture Notes 10: Dynamic Programming Peter J. Hammond 2018 September 28th University of Warwick, EC9A0 Maths for Economists Peter

More information

Microeconomics III Final Exam Answers 3/22/11 Muhamet Yildiz

Microeconomics III Final Exam Answers 3/22/11 Muhamet Yildiz 4.3 Microeconomics III Final Exam Answers 3// Muhamet Yildiz Instructions. This is an open-book exam. You can use the results in the notes and the answers to the problem sets without proof, but you need

More information

Dynamic Optimization Using Lagrange Multipliers

Dynamic Optimization Using Lagrange Multipliers Dynamic Optimization Using Lagrange Multipliers Barbara Annicchiarico barbara.annicchiarico@uniroma2.it Università degli Studi di Roma "Tor Vergata" Presentation #2 Deterministic Infinite-Horizon Ramsey

More information

CONSUMPTION-SAVINGS DECISIONS WITH QUASI-GEOMETRIC DISCOUNTING. By Per Krusell and Anthony A. Smith, Jr introduction

CONSUMPTION-SAVINGS DECISIONS WITH QUASI-GEOMETRIC DISCOUNTING. By Per Krusell and Anthony A. Smith, Jr introduction Econometrica, Vol. 71, No. 1 (January, 2003), 365 375 CONSUMPTION-SAVINGS DECISIONS WITH QUASI-GEOMETRIC DISCOUNTING By Per Krusell and Anthony A. Smith, Jr. 1 1 introduction The purpose of this paper

More information

Lecture Notes on Bargaining

Lecture Notes on Bargaining Lecture Notes on Bargaining Levent Koçkesen 1 Axiomatic Bargaining and Nash Solution 1.1 Preliminaries The axiomatic theory of bargaining originated in a fundamental paper by Nash (1950, Econometrica).

More information

Extensive Form Games I

Extensive Form Games I Extensive Form Games I Definition of Extensive Form Game a finite game tree X with nodes x X nodes are partially ordered and have a single root (minimal element) terminal nodes are z Z (maximal elements)

More information

Informed Principal in Private-Value Environments

Informed Principal in Private-Value Environments Informed Principal in Private-Value Environments Tymofiy Mylovanov Thomas Tröger University of Bonn June 21, 2008 1/28 Motivation 2/28 Motivation In most applications of mechanism design, the proposer

More information

ECONOMICS 001 Microeconomic Theory Summer Mid-semester Exam 2. There are two questions. Answer both. Marks are given in parentheses.

ECONOMICS 001 Microeconomic Theory Summer Mid-semester Exam 2. There are two questions. Answer both. Marks are given in parentheses. Microeconomic Theory Summer 206-7 Mid-semester Exam 2 There are two questions. Answer both. Marks are given in parentheses.. Consider the following 2 2 economy. The utility functions are: u (.) = x x 2

More information

Notes for ECON 970 and ECON 973 Loris Rubini University of New Hampshire

Notes for ECON 970 and ECON 973 Loris Rubini University of New Hampshire Notes for ECON 970 and ECON 973 Loris Rubini University of New Hampshire 1 Introduction Economics studies resource allocation problems. In macroeconomics, we study economywide resource allocation problems.

More information

Negotiation: Strategic Approach

Negotiation: Strategic Approach Negotiation: Strategic pproach (September 3, 007) How to divide a pie / find a compromise among several possible allocations? Wage negotiations Price negotiation between a seller and a buyer Bargaining

More information

Bayes Correlated Equilibrium and Comparing Information Structures

Bayes Correlated Equilibrium and Comparing Information Structures Bayes Correlated Equilibrium and Comparing Information Structures Dirk Bergemann and Stephen Morris Spring 2013: 521 B Introduction game theoretic predictions are very sensitive to "information structure"

More information

Chapter 3. Dynamic Programming

Chapter 3. Dynamic Programming Chapter 3. Dynamic Programming This chapter introduces basic ideas and methods of dynamic programming. 1 It sets out the basic elements of a recursive optimization problem, describes the functional equation

More information

Lecture 3: Growth with Overlapping Generations (Acemoglu 2009, Chapter 9, adapted from Zilibotti)

Lecture 3: Growth with Overlapping Generations (Acemoglu 2009, Chapter 9, adapted from Zilibotti) Lecture 3: Growth with Overlapping Generations (Acemoglu 2009, Chapter 9, adapted from Zilibotti) Kjetil Storesletten September 5, 2014 Kjetil Storesletten () Lecture 3 September 5, 2014 1 / 56 Growth

More information

On Reputation with Imperfect Monitoring

On Reputation with Imperfect Monitoring On Reputation with Imperfect Monitoring M. W. Cripps, G. Mailath, L. Samuelson UCL, Northwestern, Pennsylvania, Yale Theory Workshop Reputation Effects or Equilibrium Robustness Reputation Effects: Kreps,

More information

Recursive Methods Recursive Methods Nr. 1

Recursive Methods Recursive Methods Nr. 1 Nr. 1 Outline Today s Lecture Dynamic Programming under Uncertainty notation of sequence problem leave study of dynamics for next week Dynamic Recursive Games: Abreu-Pearce-Stachetti Application: today

More information

Economic Growth: Lecture 7, Overlapping Generations

Economic Growth: Lecture 7, Overlapping Generations 14.452 Economic Growth: Lecture 7, Overlapping Generations Daron Acemoglu MIT November 17, 2009. Daron Acemoglu (MIT) Economic Growth Lecture 7 November 17, 2009. 1 / 54 Growth with Overlapping Generations

More information

Area I: Contract Theory Question (Econ 206)

Area I: Contract Theory Question (Econ 206) Theory Field Exam Summer 2011 Instructions You must complete two of the four areas (the areas being (I) contract theory, (II) game theory A, (III) game theory B, and (IV) psychology & economics). Be sure

More information

Introduction to Numerical Methods

Introduction to Numerical Methods Introduction to Numerical Methods Wouter J. Den Haan London School of Economics c by Wouter J. Den Haan "D", "S", & "GE" Dynamic Stochastic General Equilibrium What is missing in the abbreviation? DSGE

More information

A t = B A F (φ A t K t, N A t X t ) S t = B S F (φ S t K t, N S t X t ) M t + δk + K = B M F (φ M t K t, N M t X t )

A t = B A F (φ A t K t, N A t X t ) S t = B S F (φ S t K t, N S t X t ) M t + δk + K = B M F (φ M t K t, N M t X t ) Notes on Kongsamut et al. (2001) The goal of this model is to be consistent with the Kaldor facts (constancy of growth rates, capital shares, capital-output ratios) and the Kuznets facts (employment in

More information

Sequences. Limits of Sequences. Definition. A real-valued sequence s is any function s : N R.

Sequences. Limits of Sequences. Definition. A real-valued sequence s is any function s : N R. Sequences Limits of Sequences. Definition. A real-valued sequence s is any function s : N R. Usually, instead of using the notation s(n), we write s n for the value of this function calculated at n. We

More information

The Ramsey Model. Alessandra Pelloni. October TEI Lecture. Alessandra Pelloni (TEI Lecture) Economic Growth October / 61

The Ramsey Model. Alessandra Pelloni. October TEI Lecture. Alessandra Pelloni (TEI Lecture) Economic Growth October / 61 The Ramsey Model Alessandra Pelloni TEI Lecture October 2015 Alessandra Pelloni (TEI Lecture) Economic Growth October 2015 1 / 61 Introduction Introduction Introduction Ramsey-Cass-Koopmans model: di ers

More information

Lecture Notes: Self-enforcing agreements

Lecture Notes: Self-enforcing agreements Lecture Notes: Self-enforcing agreements Bård Harstad ECON 4910 April 2017 Bård Harstad (ECON 4910) Self-enforcing agreements April 2017 1 / 15 Outline for today Motivation a. Concepts b. Repeated games

More information

Neoclassical Growth Model: I

Neoclassical Growth Model: I Neoclassical Growth Model: I Mark Huggett 2 2 Georgetown October, 2017 Growth Model: Introduction Neoclassical Growth Model is the workhorse model in macroeconomics. It comes in two main varieties: infinitely-lived

More information

Pricing and Capacity Allocation for Shared Services: Technical Online Appendix Vasiliki Kostami Dimitris Kostamis Serhan Ziya. λ 1 + λ 2 K.

Pricing and Capacity Allocation for Shared Services: Technical Online Appendix Vasiliki Kostami Dimitris Kostamis Serhan Ziya. λ 1 + λ 2 K. Appendix Proof of Proposition 1 Pricing and Capacity Allocation for Shared Services: Technical Online Appendix Vasiliki Kostami Dimitris Kostamis Serhan Ziya The prices (p 1, p ) are simultaneously announced.

More information

Equilibrium in the growth model with an endogenous labor-leisure choice

Equilibrium in the growth model with an endogenous labor-leisure choice Equilibrium in the growth model with an endogenous labor-leisure choice Aditya Goenka Manh-Hung Nguyen April 6, 2011 Abstract We prove the existence of competitive equilibrium in an optimal growth model

More information

Expanding Variety Models

Expanding Variety Models Expanding Variety Models Yin-Chi Wang The Chinese University of Hong Kong November, 2012 References: Acemoglu (2009) ch13 Introduction R&D and technology adoption are purposeful activities The simplest

More information

Social Welfare Functions for Sustainable Development

Social Welfare Functions for Sustainable Development Social Welfare Functions for Sustainable Development Thai Ha-Huy, Cuong Le Van September 9, 2015 Abstract Keywords: criterion. anonymity; sustainable development, welfare function, Rawls JEL Classification:

More information

Myopic and perfect foresight in the OLG model

Myopic and perfect foresight in the OLG model Economics Letters 67 (2000) 53 60 www.elsevier.com/ locate/ econbase a Myopic and perfect foresight in the OLG model a b, * Philippe Michel, David de la Croix IUF, Universite de la Mediterranee and GREQAM,

More information

Assortative Matching in Two-sided Continuum Economies

Assortative Matching in Two-sided Continuum Economies Assortative Matching in Two-sided Continuum Economies Patrick Legros and Andrew Newman February 2006 (revised March 2007) Abstract We consider two-sided markets with a continuum of agents and a finite

More information

Procedural Fairness and Redistributive Proportional Tax

Procedural Fairness and Redistributive Proportional Tax Procedural Fairness and Redistributive Proportional Tax P. Jean-Jacques Herings Arkadi Predtetchinski October 13, 2014 Abstract We study the implications of procedural fairness on the share of income that

More information