Stochastic Dynamic Programming. Jesus Fernandez-Villaverde University of Pennsylvania

Size: px
Start display at page:

Download "Stochastic Dynamic Programming. Jesus Fernandez-Villaverde University of Pennsylvania"

Transcription

1 Stochastic Dynamic Programming Jesus Fernande-Villaverde University of Pennsylvania 1

2 Introducing Uncertainty in Dynamic Programming Stochastic dynamic programming presents a very exible framework to handle multitude of problems in economics. We generalie the results of deterministic dynamic programming. Problem: taking care of measurability. 2

3 References Read chapter 9 of SLP!!!!!!!!!!!!!! Problem of SLP: based on Borel sets. Raises issues of measurability. See page 253 and 254 of SLP. Bertsekas and Shreve (Stochastic Optimal Control, 1978) redo much of the theory with universal measurability Read chapter 10 of SLP: it is full of economic applications. 3

4 Environment (X; X ): universally measurable space for the endogenous state. (Z; Z): universally measurable space for the exogenous state. (S; S): (X; X ) (Z; Z) : Q: stationary transition function for (Z; Z). : X Z! X: correspondence constraint. A = f(x; y; ) 2 X X Z : y 2 (x; )g: graph of. F : A! R: one-period return function. : discount factor. 4

5 Plans t : Z t! X for t = 1; 2; :::: sequence of measurable functions. = ( 0 2 X; t ): plan. Interpretation of a plan: contingent decision rules. A plan is feasible from s 0 2 S if: (s 0 ) : 2. t 2 t 1 t 1 ; t for t 2 Z t, t = 1; 2; ::: (s 0 ): set of all feasible plans from s 0 2 S: If does not depend on t but only on t, we call the plan stationary or Markov. 5

6 Some Preliminary Results I Assumption 1: 1. is non-empty valued. 2. A is (X X Z) measurable a measurable selection h : S! X s.t. h (s) 2 (s) for 8s 2 S. Lemma 1: under previous assumption, (s 0 ) is nonempty for 8s 0 2 S. Lemma 2: A = (X X Z) is a algebra. Corollary 1: F t 1 t 1 ; t t ; t is Z t measurable. 6

7 Given Q on (Z; Z) and s 0 2 S, Some Preliminary Results II Assumption 2: F : A! R is A holds: a. F 0 or F 0: t ( 0 ; ) : Z t! [0; 1], t = 1; 2; ::: measurable and either (a) or (b) b. For each (x 0 ; 0 ) = s 0 2 S and each plan 2 (s 0 ), F t 1 t 1 ; t t ; t is t ( 0 ; ) integrable, t = 1; 2; ::: and the limit: F (x 0 ; 0 ; 0 )+ lim t!1 1X t=1 Z Z t t F t 1 exists (though it may be plus or minus innity). 7 t 1 ; t t ; t t ( 0 ; )

8 Sequential Problem Dene u n (; s 0 ) : (s 0 )! R; n = 0; 1; ::: by: u 0 (; s 0 ) = F (x 0 ; 0 ; 0 ) u n (; s 0 ) = F (x 0 ; 0 ; 0 ) + nx t=1 Z Z t t F t 1 Dene u (; s 0 ) : (s 0 )! R 1 by t 1 ; t t ; t t 0 ; d t Dene v : S! R 1 by u (; s 0 ) = v (s) = lim n!1 u n (; s 0 ) sup u (; s 0 ) 2(s) 8

9 Recursive Problem Functional equation: v (s) = v (x; ) = sup F (x; y; ) + y2 (x;) Z v y; 0 Q ; d 0 Associate with the functional equation, we have a policy correspondence: Z G (x; ) = y 2 (x; ) : v (x; ) = F (x; y; ) + v y; 0 Q ; d 0 If G is nonempty and if there is a sequence of measurable selections g 1 ; ::: from G, we have the plan generated by G from s 0 : 0 = g 0 (s 0 ) t t = g t h t 1 t 1 ; ti, 8 t 2 Z t, t = 1; 2; ::: 9

10 Transversality Condition In general, dynamic programming problems require two boundary conditions: an initial condition and a nal condition. Transversality condition plays the role of the second condition. To ensure the equivalence of the sequential and recursive problem, we also need then a transversality condition: lim t!1 t Z v t 1 t 1 ; t t 0 ; d t = 0; 8 2 (s 0 ), s 0 2 S 10

11 Equivalence of Sequential and Recursive Problem Under our previous assumptions: 1. v = v 2. Any plan generated by G obtains the supremum in v (s) = sup 2(s) u (; s 0 ) Under our previous assumptions and an additional boundness condition, a plan is optimal only if it is generated a.e. by G: Our results are equivalent to theorems in SLP for the deterministic case. 11

12 Bounded Returns As in the deterministic case, we want to show further results. Assumptions: 1. F is bounded and continuous. 2. < 1: 3. X is a compact set in R l and X is a universally measurable algebra. 4. Z is a compact set in R k and Z is a universally measurable algebra. 5. Q has the Feller property. Intuition: integration will preserve properties of the return function. 12

13 Results I Under these assumptions, we can prove. that: 1. The Bellman operator: (T f) (x; ) = sup y2 (x;) has a unique xed point. F (x; y; ) + Z v y; 0 Q ; d 0 2. Contractivity: kt n v 0 vk n kv 0 vk, n = 1; 2; ::: 3. The policy correspondence G (x; ) = y 2 (x; ) : v (x; ) = F (x; y; ) + is non-empty, compact-valued, and u.h.c. Z v y; 0 Q ; d 0 4. The value function will inherit increasing properties from F and Q. 13

14 Concavity Assumption concavity 1: For each 2 Z, F (; ; ) : A! R satises: F (x; y) + (1 ) x 0 ; y 0 ; F (x; y; ) + (1 ) F x 0 ; y 0 ; and the inequality is strict if x 6= x (0; 1), 8 (x; y) ; x 0 ; y 0 2 A Assumption concavity 2: For 8 2 Z and 8x; x 0 2 X, y 2 y 0 2 x 0 ; (x; ) and y + (1 ) y 0 2 x + (1 ) x 0 ; ; 8 2 (0; 1) 14

15 Results II 1. Under previous assumptions, v (; ) : X! R is strictly concave and G (; ) : X! X is a continuous, single-valued function. 2. Let v n = T v n 1 and g n (x; ) = arg max y2 (x;) F (x; y; ) + Z v y; 0 Q ; d 0 for n = 1; 2; ::: Then, g n! g uniformly. 3. If x 0 2 int (X) and g (x 0 ; 0 ) 2 int ( (x 0 ; 0 )), v (; 0 ) is continuously dierentiable in x at x 0 with derivatives given by: v i (x 0 ; 0 ) = F i [x 0 ; g (x 0 ; 0 ) ; 0 ] ; i = 1; :::; l 15

16 Unbounded Returns What if returns, like in most applications of interest in economics, are unbounded? This was already an issue in the deterministic set-up. We can get most of the substance of previous results if F is constant returns to scale. In the case of CRRA utility functions, we would need to do some ad-hoc work. 16

17 Policy Functions and Transition Functions I Let us imagine that the decision maker follows g (x; ) given an initial condition s 0 : The policy function generates a sequence fs t g : What do we know about fs t g? Read chapters of SLP. 17

18 Policy Functions and Transition Functions II Let (X; X ), (Z; Z) ; and (S; S): (X; X ) (Z; Z) be universally measurable spaces; let Q be a transition function on (Z; Z) ; and let g : S! X be a measurable function. Then: ( Q (; B) if g (x; ) 2 A P [(x; ) ; A B] = 0 otherwise for 8x 2 X; 2 Z; A 2 X ; and B 2 Z, denes a transition function on (S; S). If g is continuous, then P has the Feller property. Characteriing long run behavior of the model. 18

Stochastic Dynamic Programming: The One Sector Growth Model

Stochastic Dynamic Programming: The One Sector Growth Model Stochastic Dynamic Programming: The One Sector Growth Model Esteban Rossi-Hansberg Princeton University March 26, 2012 Esteban Rossi-Hansberg () Stochastic Dynamic Programming March 26, 2012 1 / 31 References

More information

Lecture 5: The Bellman Equation

Lecture 5: The Bellman Equation Lecture 5: The Bellman Equation Florian Scheuer 1 Plan Prove properties of the Bellman equation (In particular, existence and uniqueness of solution) Use this to prove properties of the solution Think

More information

Stochastic convexity in dynamic programming

Stochastic convexity in dynamic programming Economic Theory 22, 447 455 (2003) Stochastic convexity in dynamic programming Alp E. Atakan Department of Economics, Columbia University New York, NY 10027, USA (e-mail: aea15@columbia.edu) Received:

More information

Basic Deterministic Dynamic Programming

Basic Deterministic Dynamic Programming Basic Deterministic Dynamic Programming Timothy Kam School of Economics & CAMA Australian National University ECON8022, This version March 17, 2008 Motivation What do we do? Outline Deterministic IHDP

More information

Recursive Methods. Introduction to Dynamic Optimization

Recursive Methods. Introduction to Dynamic Optimization Recursive Methods Nr. 1 Outline Today s Lecture finish off: theorem of the maximum Bellman equation with bounded and continuous F differentiability of value function application: neoclassical growth model

More information

1 Stochastic Dynamic Programming

1 Stochastic Dynamic Programming 1 Stochastic Dynamic Programming Formally, a stochastic dynamic program has the same components as a deterministic one; the only modification is to the state transition equation. When events in the future

More information

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko Indirect Utility Recall: static consumer theory; J goods, p j is the price of good j (j = 1; : : : ; J), c j is consumption

More information

Outline Today s Lecture

Outline Today s Lecture Outline Today s Lecture finish Euler Equations and Transversality Condition Principle of Optimality: Bellman s Equation Study of Bellman equation with bounded F contraction mapping and theorem of the maximum

More information

Dynamic Programming Theorems

Dynamic Programming Theorems Dynamic Programming Theorems Prof. Lutz Hendricks Econ720 September 11, 2017 1 / 39 Dynamic Programming Theorems Useful theorems to characterize the solution to a DP problem. There is no reason to remember

More information

[A + 1 ] + (1 ) v: : (b) Show: the derivative of T at v = v 0 < 0 is: = (v 0 ) (1 ) ; [A + 1 ]

[A + 1 ] + (1 ) v: : (b) Show: the derivative of T at v = v 0 < 0 is: = (v 0 ) (1 ) ; [A + 1 ] Homework #2 Economics 4- Due Wednesday, October 5 Christiano. This question is designed to illustrate Blackwell's Theorem, Theorem 3.3 on page 54 of S-L. That theorem represents a set of conditions that

More information

Markov Decision Processes Infinite Horizon Problems

Markov Decision Processes Infinite Horizon Problems Markov Decision Processes Infinite Horizon Problems Alan Fern * * Based in part on slides by Craig Boutilier and Daniel Weld 1 What is a solution to an MDP? MDP Planning Problem: Input: an MDP (S,A,R,T)

More information

Fixed Term Employment Contracts. in an Equilibrium Search Model

Fixed Term Employment Contracts. in an Equilibrium Search Model Supplemental material for: Fixed Term Employment Contracts in an Equilibrium Search Model Fernando Alvarez University of Chicago and NBER Marcelo Veracierto Federal Reserve Bank of Chicago This document

More information

The Principle of Optimality

The Principle of Optimality The Principle of Optimality Sequence Problem and Recursive Problem Sequence problem: Notation: V (x 0 ) sup {x t} β t F (x t, x t+ ) s.t. x t+ Γ (x t ) x 0 given t () Plans: x = {x t } Continuation plans

More information

Stochastic Shortest Path Problems

Stochastic Shortest Path Problems Chapter 8 Stochastic Shortest Path Problems 1 In this chapter, we study a stochastic version of the shortest path problem of chapter 2, where only probabilities of transitions along different arcs can

More information

Contents. An example 5. Mathematical Preliminaries 13. Dynamic programming under certainty 29. Numerical methods 41. Some applications 57

Contents. An example 5. Mathematical Preliminaries 13. Dynamic programming under certainty 29. Numerical methods 41. Some applications 57 T H O M A S D E M U Y N C K DY N A M I C O P T I M I Z AT I O N Contents An example 5 Mathematical Preliminaries 13 Dynamic programming under certainty 29 Numerical methods 41 Some applications 57 Stochastic

More information

Total Expected Discounted Reward MDPs: Existence of Optimal Policies

Total Expected Discounted Reward MDPs: Existence of Optimal Policies Total Expected Discounted Reward MDPs: Existence of Optimal Policies Eugene A. Feinberg Department of Applied Mathematics and Statistics State University of New York at Stony Brook Stony Brook, NY 11794-3600

More information

On the Principle of Optimality for Nonstationary Deterministic Dynamic Programming

On the Principle of Optimality for Nonstationary Deterministic Dynamic Programming On the Principle of Optimality for Nonstationary Deterministic Dynamic Programming Takashi Kamihigashi January 15, 2007 Abstract This note studies a general nonstationary infinite-horizon optimization

More information

Deterministic Dynamic Programming in Discrete Time: A Monotone Convergence Principle

Deterministic Dynamic Programming in Discrete Time: A Monotone Convergence Principle Deterministic Dynamic Programming in Discrete Time: A Monotone Convergence Principle Takashi Kamihigashi Masayuki Yao March 30, 2015 Abstract We consider infinite-horizon deterministic dynamic programming

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

Economics 2010c: Lecture 2 Iterative Methods in Dynamic Programming

Economics 2010c: Lecture 2 Iterative Methods in Dynamic Programming Economics 2010c: Lecture 2 Iterative Methods in Dynamic Programming David Laibson 9/04/2014 Outline: 1. Functional operators 2. Iterative solutions for the Bellman Equation 3. Contraction Mapping Theorem

More information

A simple macro dynamic model with endogenous saving rate: the representative agent model

A simple macro dynamic model with endogenous saving rate: the representative agent model A simple macro dynamic model with endogenous saving rate: the representative agent model Virginia Sánchez-Marcos Macroeconomics, MIE-UNICAN Macroeconomics (MIE-UNICAN) A simple macro dynamic model with

More information

Notes on Measure Theory and Markov Processes

Notes on Measure Theory and Markov Processes Notes on Measure Theory and Markov Processes Diego Daruich March 28, 2014 1 Preliminaries 1.1 Motivation The objective of these notes will be to develop tools from measure theory and probability to allow

More information

Chapter 3. Dynamic Programming

Chapter 3. Dynamic Programming Chapter 3. Dynamic Programming This chapter introduces basic ideas and methods of dynamic programming. 1 It sets out the basic elements of a recursive optimization problem, describes the functional equation

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

ECON 2010c Solution to Problem Set 1

ECON 2010c Solution to Problem Set 1 ECON 200c Solution to Problem Set By the Teaching Fellows for ECON 200c Fall 204 Growth Model (a) Defining the constant κ as: κ = ln( αβ) + αβ αβ ln(αβ), the problem asks us to show that the following

More information

Time is discrete and indexed by t =0; 1;:::;T,whereT<1. An individual is interested in maximizing an objective function given by. tu(x t ;a t ); (0.

Time is discrete and indexed by t =0; 1;:::;T,whereT<1. An individual is interested in maximizing an objective function given by. tu(x t ;a t ); (0. Chapter 0 Discrete Time Dynamic Programming 0.1 The Finite Horizon Case Time is discrete and indexed by t =0; 1;:::;T,whereT

More information

Uniform turnpike theorems for finite Markov decision processes

Uniform turnpike theorems for finite Markov decision processes MATHEMATICS OF OPERATIONS RESEARCH Vol. 00, No. 0, Xxxxx 0000, pp. 000 000 issn 0364-765X eissn 1526-5471 00 0000 0001 INFORMS doi 10.1287/xxxx.0000.0000 c 0000 INFORMS Authors are encouraged to submit

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

Macro 1: Dynamic Programming 1

Macro 1: Dynamic Programming 1 Macro 1: Dynamic Programming 1 Mark Huggett 2 2 Georgetown September, 2016 DP Warm up: Cake eating problem ( ) max f 1 (y 1 ) + f 2 (y 2 ) s.t. y 1 + y 2 100, y 1 0, y 2 0 1. v 1 (x) max f 1(y 1 ) + f

More information

Economics 8105 Macroeconomic Theory Recitation 3

Economics 8105 Macroeconomic Theory Recitation 3 Economics 8105 Macroeconomic Theory Recitation 3 Conor Ryan September 20th, 2016 Outline: Minnesota Economics Lecture Problem Set 1 Midterm Exam Fit Growth Model into SLP Corollary of Contraction Mapping

More information

Notes on Iterated Expectations Stephen Morris February 2002

Notes on Iterated Expectations Stephen Morris February 2002 Notes on Iterated Expectations Stephen Morris February 2002 1. Introduction Consider the following sequence of numbers. Individual 1's expectation of random variable X; individual 2's expectation of individual

More information

arxiv: v1 [math.oc] 9 Oct 2018

arxiv: v1 [math.oc] 9 Oct 2018 A Convex Optimization Approach to Dynamic Programming in Continuous State and Action Spaces Insoon Yang arxiv:1810.03847v1 [math.oc] 9 Oct 2018 Abstract A convex optimization-based method is proposed to

More information

1 Stochastic Dynamic Programming

1 Stochastic Dynamic Programming 1 Stochastic Dynamic Programming Formally, a stochastic dynamic program has the same components as a deterministic one; the only modification is to the state transition equation. When events in the future

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Lecture notes for the course Games on Graphs B. Srivathsan Chennai Mathematical Institute, India 1 Markov Chains We will define Markov chains in a manner that will be useful to

More information

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

g 2 (x) (1/3)M 1 = (1/3)(2/3)M. COMPACTNESS If C R n is closed and bounded, then by B-W it is sequentially compact: any sequence of points in C has a subsequence converging to a point in C Conversely, any sequentially compact C R n is

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Dipendra Misra Cornell University dkm@cs.cornell.edu https://dipendramisra.wordpress.com/ Task Grasp the green cup. Output: Sequence of controller actions Setup from Lenz et. al.

More information

1 Markov decision processes

1 Markov decision processes 2.997 Decision-Making in Large-Scale Systems February 4 MI, Spring 2004 Handout #1 Lecture Note 1 1 Markov decision processes In this class we will study discrete-time stochastic systems. We can describe

More information

Reductions Of Undiscounted Markov Decision Processes and Stochastic Games To Discounted Ones. Jefferson Huang

Reductions Of Undiscounted Markov Decision Processes and Stochastic Games To Discounted Ones. Jefferson Huang Reductions Of Undiscounted Markov Decision Processes and Stochastic Games To Discounted Ones Jefferson Huang School of Operations Research and Information Engineering Cornell University November 16, 2016

More information

Weighted Sup-Norm Contractions in Dynamic Programming: A Review and Some New Applications

Weighted Sup-Norm Contractions in Dynamic Programming: A Review and Some New Applications May 2012 Report LIDS - 2884 Weighted Sup-Norm Contractions in Dynamic Programming: A Review and Some New Applications Dimitri P. Bertsekas Abstract We consider a class of generalized dynamic programming

More information

Adaptive linear quadratic control using policy. iteration. Steven J. Bradtke. University of Massachusetts.

Adaptive linear quadratic control using policy. iteration. Steven J. Bradtke. University of Massachusetts. Adaptive linear quadratic control using policy iteration Steven J. Bradtke Computer Science Department University of Massachusetts Amherst, MA 01003 bradtke@cs.umass.edu B. Erik Ydstie Department of Chemical

More information

Continuity of equilibria for two-person zero-sum games with noncompact action sets and unbounded payoffs

Continuity of equilibria for two-person zero-sum games with noncompact action sets and unbounded payoffs DOI 10.1007/s10479-017-2677-y FEINBERG: PROBABILITY Continuity of equilibria for two-person zero-sum games with noncompact action sets and unbounded payoffs Eugene A. Feinberg 1 Pavlo O. Kasyanov 2 Michael

More information

Advanced Economic Growth: Lecture 21: Stochastic Dynamic Programming and Applications

Advanced Economic Growth: Lecture 21: Stochastic Dynamic Programming and Applications Advanced Economic Growth: Lecture 21: Stochastic Dynamic Programming and Applications Daron Acemoglu MIT November 19, 2007 Daron Acemoglu (MIT) Advanced Growth Lecture 21 November 19, 2007 1 / 79 Stochastic

More information

Computation Of Asymptotic Distribution. For Semiparametric GMM Estimators. Hidehiko Ichimura. Graduate School of Public Policy

Computation Of Asymptotic Distribution. For Semiparametric GMM Estimators. Hidehiko Ichimura. Graduate School of Public Policy Computation Of Asymptotic Distribution For Semiparametric GMM Estimators Hidehiko Ichimura Graduate School of Public Policy and Graduate School of Economics University of Tokyo A Conference in honor of

More information

Department of Economics Working Paper Series

Department of Economics Working Paper Series Department of Economics Working Paper Series On the Existence and Characterization of Markovian Equilibrium in Models with Simple Non-Paternalistic Altruism Olivier F. Morand University of Connecticut

More information

Understanding (Exact) Dynamic Programming through Bellman Operators

Understanding (Exact) Dynamic Programming through Bellman Operators Understanding (Exact) Dynamic Programming through Bellman Operators Ashwin Rao ICME, Stanford University January 15, 2019 Ashwin Rao (Stanford) Bellman Operators January 15, 2019 1 / 11 Overview 1 Value

More information

and C be the space of continuous and bounded real-valued functions endowed with the sup-norm 1.

and C be the space of continuous and bounded real-valued functions endowed with the sup-norm 1. 1 Proof T : C C Let T be the following mapping: Tϕ = max {u (x, a)+βeϕ [f (x, a, ε)]} (1) a Γ(x) and C be the space of continuous and bounded real-valued functions endowed with the sup-norm 1. Proposition

More information

A Proof of the EOQ Formula Using Quasi-Variational. Inequalities. March 19, Abstract

A Proof of the EOQ Formula Using Quasi-Variational. Inequalities. March 19, Abstract A Proof of the EOQ Formula Using Quasi-Variational Inequalities Dir Beyer y and Suresh P. Sethi z March, 8 Abstract In this paper, we use quasi-variational inequalities to provide a rigorous proof of the

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

Slides II - Dynamic Programming

Slides II - Dynamic Programming Slides II - Dynamic Programming Julio Garín University of Georgia Macroeconomic Theory II (Ph.D.) Spring 2017 Macroeconomic Theory II Slides II - Dynamic Programming Spring 2017 1 / 32 Outline 1. Lagrangian

More information

Costly Expertise. Dino Gerardi and Leeat Yariv yz. Current Version: December, 2007

Costly Expertise. Dino Gerardi and Leeat Yariv yz. Current Version: December, 2007 Costly Expertise Dino Gerardi and Leeat Yariv yz Current Version: December, 007 In many environments expertise is costly. Costs can manifest themselves in numerous ways, ranging from the time that is required

More information

Discussion Class Notes

Discussion Class Notes Department of Economics University of Minnesota Macroeconomic Theory Varadarajan V. Chari Spring 2015 Discussion Class Notes Keyvan Eslami The following notes are prepared as a complement to V.V. Chari

More information

G Recitation 3: Ramsey Growth model with technological progress; discrete time dynamic programming and applications

G Recitation 3: Ramsey Growth model with technological progress; discrete time dynamic programming and applications G6215.1 - Recitation 3: Ramsey Growth model with technological progress; discrete time dynamic Contents 1 The Ramsey growth model with technological progress 2 1.1 A useful lemma..................................................

More information

MATH4406 Assignment 5

MATH4406 Assignment 5 MATH4406 Assignment 5 Patrick Laub (ID: 42051392) October 7, 2014 1 The machine replacement model 1.1 Real-world motivation Consider the machine to be the entire world. Over time the creator has running

More information

A Simple No-Bubble Theorem for Deterministic Sequential Economies

A Simple No-Bubble Theorem for Deterministic Sequential Economies A Simple No-Bubble Theorem for Deterministic Sequential Economies Takashi Kamihigashi September 28, 2015 Abstract We show a simple no-bubble theorem that applies to a wide range of deterministic sequential

More information

Approximate dynamic programming for stochastic reachability

Approximate dynamic programming for stochastic reachability Approximate dynamic programming for stochastic reachability Nikolaos Kariotoglou, Sean Summers, Tyler Summers, Maryam Kamgarpour and John Lygeros Abstract In this work we illustrate how approximate dynamic

More information

Markov Decision Problems where Means bound Variances

Markov Decision Problems where Means bound Variances Markov Decision Problems where Means bound Variances Alessandro Arlotto The Fuqua School of Business; Duke University; Durham, NC, 27708, U.S.A.; aa249@duke.edu Noah Gans OPIM Department; The Wharton School;

More information

University of Warwick, EC9A0 Maths for Economists Lecture Notes 10: Dynamic Programming

University of Warwick, EC9A0 Maths for Economists Lecture Notes 10: Dynamic Programming University of Warwick, EC9A0 Maths for Economists 1 of 63 University of Warwick, EC9A0 Maths for Economists Lecture Notes 10: Dynamic Programming Peter J. Hammond Autumn 2013, revised 2014 University of

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

REMARKS ON THE EXISTENCE OF SOLUTIONS IN MARKOV DECISION PROCESSES. Emmanuel Fernández-Gaucherand, Aristotle Arapostathis, and Steven I.

REMARKS ON THE EXISTENCE OF SOLUTIONS IN MARKOV DECISION PROCESSES. Emmanuel Fernández-Gaucherand, Aristotle Arapostathis, and Steven I. REMARKS ON THE EXISTENCE OF SOLUTIONS TO THE AVERAGE COST OPTIMALITY EQUATION IN MARKOV DECISION PROCESSES Emmanuel Fernández-Gaucherand, Aristotle Arapostathis, and Steven I. Marcus Department of Electrical

More information

Problem Set 2: Proposed solutions Econ Fall Cesar E. Tamayo Department of Economics, Rutgers University

Problem Set 2: Proposed solutions Econ Fall Cesar E. Tamayo Department of Economics, Rutgers University Problem Set 2: Proposed solutions Econ 504 - Fall 202 Cesar E. Tamayo ctamayo@econ.rutgers.edu Department of Economics, Rutgers University Simple optimal growth (Problems &2) Suppose that we modify slightly

More information

Introduction to Continuous-Time Dynamic Optimization: Optimal Control Theory

Introduction to Continuous-Time Dynamic Optimization: Optimal Control Theory Econ 85/Chatterjee Introduction to Continuous-ime Dynamic Optimization: Optimal Control heory 1 States and Controls he concept of a state in mathematical modeling typically refers to a specification of

More information

Practical Dynamic Programming: An Introduction. Associated programs dpexample.m: deterministic dpexample2.m: stochastic

Practical Dynamic Programming: An Introduction. Associated programs dpexample.m: deterministic dpexample2.m: stochastic Practical Dynamic Programming: An Introduction Associated programs dpexample.m: deterministic dpexample2.m: stochastic Outline 1. Specific problem: stochastic model of accumulation from a DP perspective

More information

THE CARLO ALBERTO NOTEBOOKS

THE CARLO ALBERTO NOTEBOOKS THE CARLO ALBERTO NOTEBOOKS Unique Solutions of Some Recursive Equations in Economic Dynamics Working Paper No. 46 June 2007 www.carloalberto.org Massimo Marinacci Luigi Montrucchio Unique Solutions of

More information

1 Definition of the Riemann integral

1 Definition of the Riemann integral MAT337H1, Introduction to Real Analysis: notes on Riemann integration 1 Definition of the Riemann integral Definition 1.1. Let [a, b] R be a closed interval. A partition P of [a, b] is a finite set of

More information

Simple Consumption / Savings Problems (based on Ljungqvist & Sargent, Ch 16, 17) Jonathan Heathcote. updated, March The household s problem X

Simple Consumption / Savings Problems (based on Ljungqvist & Sargent, Ch 16, 17) Jonathan Heathcote. updated, March The household s problem X Simple Consumption / Savings Problems (based on Ljungqvist & Sargent, Ch 16, 17) subject to for all t Jonathan Heathcote updated, March 2006 1. The household s problem max E β t u (c t ) t=0 c t + a t+1

More information

On the Approximate Solution of POMDP and the Near-Optimality of Finite-State Controllers

On the Approximate Solution of POMDP and the Near-Optimality of Finite-State Controllers On the Approximate Solution of POMDP and the Near-Optimality of Finite-State Controllers Huizhen (Janey) Yu (janey@mit.edu) Dimitri Bertsekas (dimitrib@mit.edu) Lab for Information and Decision Systems,

More information

MATHS 730 FC Lecture Notes March 5, Introduction

MATHS 730 FC Lecture Notes March 5, Introduction 1 INTRODUCTION MATHS 730 FC Lecture Notes March 5, 2014 1 Introduction Definition. If A, B are sets and there exists a bijection A B, they have the same cardinality, which we write as A, #A. If there exists

More information

Lecture 1- The constrained optimization problem

Lecture 1- The constrained optimization problem Lecture 1- The constrained optimization problem The role of optimization in economic theory is important because we assume that individuals are rational. Why constrained optimization? the problem of scarcity.

More information

Near convexity, metric convexity, and convexity

Near convexity, metric convexity, and convexity Near convexity, metric convexity, and convexity Fred Richman Florida Atlantic University Boca Raton, FL 33431 28 February 2005 Abstract It is shown that a subset of a uniformly convex normed space is nearly

More information

Introduction to Recursive Methods

Introduction to Recursive Methods Chapter 1 Introduction to Recursive Methods These notes are targeted to advanced Master and Ph.D. students in economics. They can be of some use to researchers in macroeconomic theory. The material contained

More information

Equilibria in a Stochastic OLG Model: A Recursive Approach

Equilibria in a Stochastic OLG Model: A Recursive Approach Pareto Optimality and Existence of Monetary Equilibria in a tochastic OLG Model: A Recursive Approach Martin Barbie and Ashok Kaul First Draft: December 8, 2006. This version: October 20, 205 Abstract

More information

On Kusuoka Representation of Law Invariant Risk Measures

On Kusuoka Representation of Law Invariant Risk Measures MATHEMATICS OF OPERATIONS RESEARCH Vol. 38, No. 1, February 213, pp. 142 152 ISSN 364-765X (print) ISSN 1526-5471 (online) http://dx.doi.org/1.1287/moor.112.563 213 INFORMS On Kusuoka Representation of

More information

Deterministic Dynamic Programming

Deterministic Dynamic Programming Chapter 3 Deterministic Dynamic Programming 3.1 The Bellman Principle of Optimality Richard Bellman (1957) states his Principle of Optimality in full generality as follows: An optimal policy has the property

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #1. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #1. Solutions Math 501 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 015 EXERCISES FROM CHAPTER 1 Homework #1 Solutions The following version of the

More information

Math 421, Homework #9 Solutions

Math 421, Homework #9 Solutions Math 41, Homework #9 Solutions (1) (a) A set E R n is said to be path connected if for any pair of points x E and y E there exists a continuous function γ : [0, 1] R n satisfying γ(0) = x, γ(1) = y, and

More information

Value and Policy Iteration

Value and Policy Iteration Chapter 7 Value and Policy Iteration 1 For infinite horizon problems, we need to replace our basic computational tool, the DP algorithm, which we used to compute the optimal cost and policy for finite

More information

We say that the function f obtains a maximum value provided that there. We say that the function f obtains a minimum value provided that there

We say that the function f obtains a maximum value provided that there. We say that the function f obtains a minimum value provided that there Math 311 W08 Day 10 Section 3.2 Extreme Value Theorem (It s EXTREME!) 1. Definition: For a function f: D R we define the image of the function to be the set f(d) = {y y = f(x) for some x in D} We say that

More information

Lecture 1: Dynamic Programming

Lecture 1: Dynamic Programming Lecture 1: Dynamic Programming Fatih Guvenen November 2, 2016 Fatih Guvenen Lecture 1: Dynamic Programming November 2, 2016 1 / 32 Goal Solve V (k, z) =max c,k 0 u(c)+ E(V (k 0, z 0 ) z) c + k 0 =(1 +

More information

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 1: Preliminaries

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 1: Preliminaries EC 521 MATHEMATICAL METHODS FOR ECONOMICS Lecture 1: Preliminaries Murat YILMAZ Boğaziçi University In this lecture we provide some basic facts from both Linear Algebra and Real Analysis, which are going

More information

Berge s Maximum Theorem

Berge s Maximum Theorem Berge s Maximum Theorem References: Acemoglu, Appendix A.6 Stokey-Lucas-Prescott, Section 3.3 Ok, Sections E.1-E.3 Claude Berge, Topological Spaces (1963), Chapter 6 Berge s Maximum Theorem So far, we

More information

Value Iteration and Action ɛ-approximation of Optimal Policies in Discounted Markov Decision Processes

Value Iteration and Action ɛ-approximation of Optimal Policies in Discounted Markov Decision Processes Value Iteration and Action ɛ-approximation of Optimal Policies in Discounted Markov Decision Processes RAÚL MONTES-DE-OCA Departamento de Matemáticas Universidad Autónoma Metropolitana-Iztapalapa San Rafael

More information

Payoff Continuity in Incomplete Information Games

Payoff Continuity in Incomplete Information Games journal of economic theory 82, 267276 (1998) article no. ET982418 Payoff Continuity in Incomplete Information Games Atsushi Kajii* Institute of Policy and Planning Sciences, University of Tsukuba, 1-1-1

More information

DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION

DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION UNIVERSITY OF MARYLAND: ECON 600. Alternative Methods of Discrete Time Intertemporal Optimization We will start by solving a discrete time intertemporal

More information

A Perturbation Approach to Approximate Value Iteration for Average Cost Markov Decision Process with Borel Spaces and Bounded Costs

A Perturbation Approach to Approximate Value Iteration for Average Cost Markov Decision Process with Borel Spaces and Bounded Costs A Perturbation Approach to Approximate Value Iteration for Average Cost Markov Decision Process with Borel Spaces and Bounded Costs Óscar Vega-Amaya Joaquín López-Borbón August 21, 2015 Abstract The present

More information

6.254 : Game Theory with Engineering Applications Lecture 7: Supermodular Games

6.254 : Game Theory with Engineering Applications Lecture 7: Supermodular Games 6.254 : Game Theory with Engineering Applications Lecture 7: Asu Ozdaglar MIT February 25, 2010 1 Introduction Outline Uniqueness of a Pure Nash Equilibrium for Continuous Games Reading: Rosen J.B., Existence

More information

INTRODUCTION TO MARKOV DECISION PROCESSES

INTRODUCTION TO MARKOV DECISION PROCESSES INTRODUCTION TO MARKOV DECISION PROCESSES Balázs Csanád Csáji Research Fellow, The University of Melbourne Signals & Systems Colloquium, 29 April 2010 Department of Electrical and Electronic Engineering,

More information

Lecture Notes 8

Lecture Notes 8 14.451 Lecture Notes 8 Guido Lorenzoni Fall 29 1 Stochastic dynamic programming: an example We no turn to analyze problems ith uncertainty, in discrete time. We begin ith an example that illustrates the

More information

Example I: Capital Accumulation

Example I: Capital Accumulation 1 Example I: Capital Accumulation Time t = 0, 1,..., T < Output y, initial output y 0 Fraction of output invested a, capital k = ay Transition (production function) y = g(k) = g(ay) Reward (utility of

More information

UNIVERSITY OF VIENNA

UNIVERSITY OF VIENNA WORKING PAPERS Cycles and chaos in the one-sector growth model with elastic labor supply Gerhard Sorger May 2015 Working Paper No: 1505 DEPARTMENT OF ECONOMICS UNIVERSITY OF VIENNA All our working papers

More information

Information Relaxation Bounds for Infinite Horizon Markov Decision Processes

Information Relaxation Bounds for Infinite Horizon Markov Decision Processes Information Relaxation Bounds for Infinite Horizon Markov Decision Processes David B. Brown Fuqua School of Business Duke University dbbrown@duke.edu Martin B. Haugh Department of IE&OR Columbia University

More information

Decomposability and time consistency of risk averse multistage programs

Decomposability and time consistency of risk averse multistage programs Decomposability and time consistency of risk averse multistage programs arxiv:1806.01497v1 [math.oc] 5 Jun 2018 A. Shapiro School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta,

More information

Almost sure convergence to zero in stochastic growth models

Almost sure convergence to zero in stochastic growth models Forthcoming in Economic Theory Almost sure convergence to zero in stochastic growth models Takashi Kamihigashi RIEB, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan (email: tkamihig@rieb.kobe-u.ac.jp)

More information

4. Convex Sets and (Quasi-)Concave Functions

4. Convex Sets and (Quasi-)Concave Functions 4. Convex Sets and (Quasi-)Concave Functions Daisuke Oyama Mathematics II April 17, 2017 Convex Sets Definition 4.1 A R N is convex if (1 α)x + αx A whenever x, x A and α [0, 1]. A R N is strictly convex

More information

Fixed Point Theorems

Fixed Point Theorems Fixed Point Theorems Definition: Let X be a set and let f : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation

More information

Lecture notes for Macroeconomics I, 2004

Lecture notes for Macroeconomics I, 2004 Lecture notes for Macroeconomics I, 2004 Per Krusell Please do NOT distribute without permission Comments and suggestions are welcome! 1 2 Chapter 1 Introduction These lecture notes cover a one-semester

More information

ECON607 Fall 2010 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 2

ECON607 Fall 2010 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 2 ECON607 Fall 200 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 2 The due date for this assignment is Tuesday, October 2. ( Total points = 50). (Two-sector growth model) Consider the

More information

ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME

ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME SAUL D. JACKA AND ALEKSANDAR MIJATOVIĆ Abstract. We develop a general approach to the Policy Improvement Algorithm (PIA) for stochastic control problems

More information

Economics 204 Summer/Fall 2017 Lecture 7 Tuesday July 25, 2017

Economics 204 Summer/Fall 2017 Lecture 7 Tuesday July 25, 2017 Economics 204 Summer/Fall 2017 Lecture 7 Tuesday July 25, 2017 Section 2.9. Connected Sets Definition 1 Two sets A, B in a metric space are separated if Ā B = A B = A set in a metric space is connected

More information

Coordinating Inventory Control and Pricing Strategies with Random Demand and Fixed Ordering Cost: The Finite Horizon Case

Coordinating Inventory Control and Pricing Strategies with Random Demand and Fixed Ordering Cost: The Finite Horizon Case OPERATIONS RESEARCH Vol. 52, No. 6, November December 2004, pp. 887 896 issn 0030-364X eissn 1526-5463 04 5206 0887 informs doi 10.1287/opre.1040.0127 2004 INFORMS Coordinating Inventory Control Pricing

More information