Lecture Notes 8

Size: px
Start display at page:

Download "Lecture Notes 8"

Transcription

1 Lecture Notes 8 Guido Lorenzoni Fall 29 1 Stochastic dynamic programming: an example We no turn to analyze problems ith uncertainty, in discrete time. We begin ith an example that illustrates the poer of recursive methods. Take an unemployed orker ith linear utility function. The orker is draing age-o ers from a knon distribution ith continuous c.d.f. F () on [; ]. At any point in time, he can stop and accept the o er. If he accepts he gets to ork at age and then orks forever getting utility = (1 ). Sequence setup: history is sequence of observed o ers t = ( ; 1 ; :::; t ) : A plan is to stop or not after any possible history, i.e., choose ( t ) 2 f; 1g. The stopping time T is a random variable that depends on the plan (:): T is the rst time here ( t ) = 1. Objective is to choose (:) to maximize " # T E 1 T : Recursive setup. State variable: did you stop in the past? if yes hat age did you accept? So the state space is no X = funemployedg [ R +. The value after stopping at age is just V () = = (1 ). So e need to characterize V (unemployed), hich e ill denote V U. Each period decision after never stopped is max 1 ; V U or, equivalently, max 2f;1g 1 + (1 ) V U : So optimal policy is to stop if > ^, not stop if < ^, and indi erence if = ^, here ^ = (1 ) V U. 1

2 Bellman equation V U = max 1 ; V U df () : We can rerite it in terms of the cuto ^ and e have ^ = (1 ) max 1 ; V U df () = max f; ^g df () nd xed point, here simply nd ^ that solves here Properties of this map: T (v) ^ = T ( ^) it is continuous increasing on [; ]; has derivative max f; vg df () : T (v) = F (v) vf (v) + vf (v) = F (v) 2 [; ] for v 2 (; ) (here e use continuous distribution); has T () = E [] and T ( ) =. Therefore, a unique xed point ^ exists and is in (; ) (you can use contraction mapping to prove it). Comparative statics 1. An increase in increases the cuto ^. Just look at T (v) = max f; vg df () and see that it is increasing in both and v at the xed point ^. Comparative statics 2. A rst-order stochastic shift in the distribution F leads to a (eak) increase in ^. Comparative statics 3. A second-order stochastic shift in the distribution F leads to a (eak) increase in ^. What is rst-order and second-order stochastic dominance? Take to distributions F and G on R. 2

3 De nition 1 The distribution F dominates the distribution G in the sense of 1st order stochastic dominance i h (x) df (x) h (x) dg (x) for all monotone functions h : R! R. De nition 2 The distribution F dominates the distribution G in the sense of 2nd order stochastic dominance i h (x) df (x) h (x) dg (x) for all convex functions h : R! R. Sometimes you see stochastic dominance (1st and 2nd order) de ned in terms of comparisons of the c.d.f. of F and G and then the de nitions above are theorems! Exercise: using the de nitions above prove comparative statics 2 and 3. Characterizing the dynamics. Let us make the problem more interesting (and stationary) by assuming that hen employed agents lose their job ith exogenous probability. The state space is still X = funemployedg [ R +. No the Bellman equation(s) are V () = + V U + (1 ) V () V U = max V () ; V U df () From the rst e get V () = + V U 1 (1 ) and e have to nd V U from + V V U U = max 1 (1 ) ; V U df () Exercise: prove that this de nes a contraction ith modulus. So e still have a cuto given by ^ = (1 ) (1 ) V U : No the ne thing is that the optimal policy de nes a Markov process for the state x t 2 X. No let us simplify assuming the distribution of ages is a discrete distribution ith J possible realizations f! 1 ;! 2 ; :::;! J g and probabilities f 1 ; 2 ; :::; J g (the c.d.f. is no a step function). Suppose!^ 1 < ^ <!^. 3

4 No e have a Markov chain ith transition probabilities given as follos: Pr (x t+1 = unemployed j x t = unemployed) = X ^ 1 j j=1 Pr (x t+1 =! j j x t = unemployed) = for j = 1; :::; ^ 1 Pr (x t+1 =! j j x t = unemployed) = j for j = ^ ; :::; J Pr (x t+1 = unemployed j x t =! j ) = for all j Pr (x t+1 =! j j x t =! j ) = 1 for all j Pr (x t+1 =! j j x t =! j ) = for all j 6= j and all j We can then address questions like: suppose you have a large population of agents (ith independent age dras and separation shocks) and you start from some distribution on the state X, if the economy goes on for a hile do you converge to some invariant distribution on X? This is the analogous of the deterministic dynamics, but the notion of convergence is di erent. No steady state but invariant distribution. Example: f! 1 ;! 2 ;! 3 g ith ^ = 2, then X = funemployed;! 1 ;! 2 ;! 3 g and transition matrix: M = Suppose you start from distribution. 1; ; 2; ; 3; ; 4; What happens to the distribution after t periods? ;t 1; 6 2;t 4 3;t 5 = M t 6 2; 4 3; 5 4;t 4; Does it converge? 3 5 : 4

5 MIT OpenCourseWare Dynamic Optimization Methods ith Applications Fall 29 For information about citing these materials or our Terms of Use, visit:

Labor Economics, Lecture 11: Partial Equilibrium Sequential Search

Labor Economics, Lecture 11: Partial Equilibrium Sequential Search Labor Economics, 14.661. Lecture 11: Partial Equilibrium Sequential Search Daron Acemoglu MIT December 6, 2011. Daron Acemoglu (MIT) Sequential Search December 6, 2011. 1 / 43 Introduction Introduction

More information

Lecture 7: Stochastic Dynamic Programing and Markov Processes

Lecture 7: Stochastic Dynamic Programing and Markov Processes Lecture 7: Stochastic Dynamic Programing and Markov Processes Florian Scheuer References: SLP chapters 9, 10, 11; LS chapters 2 and 6 1 Examples 1.1 Neoclassical Growth Model with Stochastic Technology

More information

Training, Search and Wage Dispersion Technical Appendix

Training, Search and Wage Dispersion Technical Appendix Training, Search and Wage Dispersion Technical Appendix Chao Fu University of Wisconsin-Madison October, 200 Abstract This paper combines on-the-job search and human capital theory to study the coexistence

More information

Time is discrete and indexed by t =0; 1;:::;T,whereT<1. An individual is interested in maximizing an objective function given by. tu(x t ;a t ); (0.

Time is discrete and indexed by t =0; 1;:::;T,whereT<1. An individual is interested in maximizing an objective function given by. tu(x t ;a t ); (0. Chapter 0 Discrete Time Dynamic Programming 0.1 The Finite Horizon Case Time is discrete and indexed by t =0; 1;:::;T,whereT

More information

Macroeconomics IV Problem Set I

Macroeconomics IV Problem Set I 14.454 - Macroeconomics IV Problem Set I 04/02/2011 Due: Monday 4/11/2011 1 Question 1 - Kocherlakota (2000) Take an economy with a representative, in nitely-lived consumer. The consumer owns a technology

More information

Stochastic Problems. 1 Examples. 1.1 Neoclassical Growth Model with Stochastic Technology. 1.2 A Model of Job Search

Stochastic Problems. 1 Examples. 1.1 Neoclassical Growth Model with Stochastic Technology. 1.2 A Model of Job Search Stochastic Problems References: SLP chapters 9, 10, 11; L&S chapters 2 and 6 1 Examples 1.1 Neoclassical Growth Model with Stochastic Technology Production function y = Af k where A is random Let A s t

More information

Lecture 6: Contraction mapping, inverse and implicit function theorems

Lecture 6: Contraction mapping, inverse and implicit function theorems Lecture 6: Contraction mapping, inverse and implicit function theorems 1 The contraction mapping theorem De nition 11 Let X be a metric space, with metric d If f : X! X and if there is a number 2 (0; 1)

More information

Business Cycles: The Classical Approach

Business Cycles: The Classical Approach San Francisco State University ECON 302 Business Cycles: The Classical Approach Introduction Michael Bar Recall from the introduction that the output per capita in the U.S. is groing steady, but there

More information

Advanced Economic Growth: Lecture 21: Stochastic Dynamic Programming and Applications

Advanced Economic Growth: Lecture 21: Stochastic Dynamic Programming and Applications Advanced Economic Growth: Lecture 21: Stochastic Dynamic Programming and Applications Daron Acemoglu MIT November 19, 2007 Daron Acemoglu (MIT) Advanced Growth Lecture 21 November 19, 2007 1 / 79 Stochastic

More information

Internation1al Trade

Internation1al Trade 14.581 Internation1al Trade Class notes on 3/4/2013 1 Factor Proportion Theory The law of comparative advantage establishes the relationship between relative autarky prices and trade ows But where do relative

More information

1 Bewley Economies with Aggregate Uncertainty

1 Bewley Economies with Aggregate Uncertainty 1 Bewley Economies with Aggregate Uncertainty Sofarwehaveassumedawayaggregatefluctuations (i.e., business cycles) in our description of the incomplete-markets economies with uninsurable idiosyncratic risk

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics Ordinal preference theory Harald Wiese University of Leipzig Harald Wiese (University of Leipzig) Advanced Microeconomics 1 / 68 Part A. Basic decision and preference theory 1 Decisions

More information

Notes on Measure Theory and Markov Processes

Notes on Measure Theory and Markov Processes Notes on Measure Theory and Markov Processes Diego Daruich March 28, 2014 1 Preliminaries 1.1 Motivation The objective of these notes will be to develop tools from measure theory and probability to allow

More information

Discrete planning (an introduction)

Discrete planning (an introduction) Sistemi Intelligenti Corso di Laurea in Informatica, A.A. 2017-2018 Università degli Studi di Milano Discrete planning (an introduction) Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

D(f/g)(P ) = D(f)(P )g(p ) f(p )D(g)(P ). g 2 (P )

D(f/g)(P ) = D(f)(P )g(p ) f(p )D(g)(P ). g 2 (P ) We first record a very useful: 11. Higher derivatives Theorem 11.1. Let A R n be an open subset. Let f : A R m and g : A R m be two functions and suppose that P A. Let λ A be a scalar. If f and g are differentiable

More information

Layo Costs and E ciency with Asymmetric Information

Layo Costs and E ciency with Asymmetric Information Layo Costs and E ciency with Asymmetric Information Alain Delacroix (UQAM) and Etienne Wasmer (Sciences-Po) September 4, 2009 Abstract Wage determination under asymmetric information generates ine ciencies

More information

z = f (x; y) = x 3 3x 2 y x 2 3

z = f (x; y) = x 3 3x 2 y x 2 3 BEE Mathematics for Economists Week, ecture Thursday..7 Functions in two variables Dieter Balkenborg Department of Economics University of Exeter Objective This lecture has the purpose to make you familiar

More information

Decision Theory: Q-Learning

Decision Theory: Q-Learning Decision Theory: Q-Learning CPSC 322 Decision Theory 5 Textbook 12.5 Decision Theory: Q-Learning CPSC 322 Decision Theory 5, Slide 1 Lecture Overview 1 Recap 2 Asynchronous Value Iteration 3 Q-Learning

More information

LECTURE 2. Convexity and related notions. Last time: mutual information: definitions and properties. Lecture outline

LECTURE 2. Convexity and related notions. Last time: mutual information: definitions and properties. Lecture outline LECTURE 2 Convexity and related notions Last time: Goals and mechanics of the class notation entropy: definitions and properties mutual information: definitions and properties Lecture outline Convexity

More information

The Markov Decision Process (MDP) model

The Markov Decision Process (MDP) model Decision Making in Robots and Autonomous Agents The Markov Decision Process (MDP) model Subramanian Ramamoorthy School of Informatics 25 January, 2013 In the MAB Model We were in a single casino and the

More information

(a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

(a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming 1. Government Purchases and Endogenous Growth Consider the following endogenous growth model with government purchases (G) in continuous time. Government purchases enhance production, and the production

More information

Recursive Methods Recursive Methods Nr. 1

Recursive Methods Recursive Methods Nr. 1 Recursive Methods Recursive Methods Nr. 1 Outline Today s Lecture continue APS: worst and best value Application: Insurance with Limitted Commitment stochastic dynamics Recursive Methods Nr. 2 B(W) operator

More information

BEE1024 Mathematics for Economists

BEE1024 Mathematics for Economists BEE1024 Mathematics for Economists Dieter and Jack Rogers and Juliette Stephenson Department of Economics, University of Exeter February 1st 2007 1 Objective 2 Isoquants 3 Objective. The lecture should

More information

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction MS&E338 Reinforcement Learning Lecture 1 - April 2, 2018 Introduction Lecturer: Ben Van Roy Scribe: Gabriel Maher 1 Reinforcement Learning Introduction In reinforcement learning (RL) we consider an agent

More information

4- Current Method of Explaining Business Cycles: DSGE Models. Basic Economic Models

4- Current Method of Explaining Business Cycles: DSGE Models. Basic Economic Models 4- Current Method of Explaining Business Cycles: DSGE Models Basic Economic Models In Economics, we use theoretical models to explain the economic processes in the real world. These models de ne a relation

More information

In the Ramsey model we maximized the utility U = u[c(t)]e nt e t dt. Now

In the Ramsey model we maximized the utility U = u[c(t)]e nt e t dt. Now PERMANENT INCOME AND OPTIMAL CONSUMPTION On the previous notes we saw how permanent income hypothesis can solve the Consumption Puzzle. Now we use this hypothesis, together with assumption of rational

More information

An adaptation of Pissarides (1990) by using random job destruction rate

An adaptation of Pissarides (1990) by using random job destruction rate MPRA Munich Personal RePEc Archive An adaptation of Pissarides (990) by using random job destruction rate Huiming Wang December 2009 Online at http://mpra.ub.uni-muenchen.de/203/ MPRA Paper No. 203, posted

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture # 12 Scribe: Indraneel Mukherjee March 12, 2008

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture # 12 Scribe: Indraneel Mukherjee March 12, 2008 COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture # 12 Scribe: Indraneel Mukherjee March 12, 2008 In the previous lecture, e ere introduced to the SVM algorithm and its basic motivation

More information

Lecture 1. Evolution of Market Concentration

Lecture 1. Evolution of Market Concentration Lecture 1 Evolution of Market Concentration Take a look at : Doraszelski and Pakes, A Framework for Applied Dynamic Analysis in IO, Handbook of I.O. Chapter. (see link at syllabus). Matt Shum s notes are

More information

1 Basic Analysis of Forward-Looking Decision Making

1 Basic Analysis of Forward-Looking Decision Making 1 Basic Analysis of Forward-Looking Decision Making Individuals and families make the key decisions that determine the future of the economy. The decisions involve balancing current sacrifice against future

More information

Proofs for Stress and Coping - An Economic Approach Klaus Wälde 56 October 2017

Proofs for Stress and Coping - An Economic Approach Klaus Wälde 56 October 2017 A Appendix Proofs for Stress and Coping - An Economic Approach Klaus älde 56 October 2017 A.1 Solution of the maximization problem A.1.1 The Bellman equation e start from the general speci cation of a

More information

1 Stochastic Dynamic Programming

1 Stochastic Dynamic Programming 1 Stochastic Dynamic Programming Formally, a stochastic dynamic program has the same components as a deterministic one; the only modification is to the state transition equation. When events in the future

More information

ECE380 Digital Logic. Synchronous sequential circuits

ECE380 Digital Logic. Synchronous sequential circuits ECE38 Digital Logic Synchronous Sequential Circuits: State Diagrams, State Tables Dr. D. J. Jackson Lecture 27- Synchronous sequential circuits Circuits here a clock signal is used to control operation

More information

1 Markov decision processes

1 Markov decision processes 2.997 Decision-Making in Large-Scale Systems February 4 MI, Spring 2004 Handout #1 Lecture Note 1 1 Markov decision processes In this class we will study discrete-time stochastic systems. We can describe

More information

1 Uncertainty. These notes correspond to chapter 2 of Jehle and Reny.

1 Uncertainty. These notes correspond to chapter 2 of Jehle and Reny. These notes correspond to chapter of Jehle and Reny. Uncertainty Until now we have considered our consumer s making decisions in a world with perfect certainty. However, we can extend the consumer theory

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning March May, 2013 Schedule Update Introduction 03/13/2015 (10:15-12:15) Sala conferenze MDPs 03/18/2015 (10:15-12:15) Sala conferenze Solving MDPs 03/20/2015 (10:15-12:15) Aula Alpha

More information

Session 4: Money. Jean Imbs. November 2010

Session 4: Money. Jean Imbs. November 2010 Session 4: Jean November 2010 I So far, focused on real economy. Real quantities consumed, produced, invested. No money, no nominal in uences. I Now, introduce nominal dimension in the economy. First and

More information

1 Extensive Form Games

1 Extensive Form Games 1 Extensive Form Games De nition 1 A nite extensive form game is am object K = fn; (T ) ; P; A; H; u; g where: N = f0; 1; :::; ng is the set of agents (player 0 is nature ) (T ) is the game tree P is the

More information

Competitive Equilibrium and the Welfare Theorems

Competitive Equilibrium and the Welfare Theorems Competitive Equilibrium and the Welfare Theorems Craig Burnside Duke University September 2010 Craig Burnside (Duke University) Competitive Equilibrium September 2010 1 / 32 Competitive Equilibrium and

More information

MDP Preliminaries. Nan Jiang. February 10, 2019

MDP Preliminaries. Nan Jiang. February 10, 2019 MDP Preliminaries Nan Jiang February 10, 2019 1 Markov Decision Processes In reinforcement learning, the interactions between the agent and the environment are often described by a Markov Decision Process

More information

18.440: Lecture 25 Covariance and some conditional expectation exercises

18.440: Lecture 25 Covariance and some conditional expectation exercises 18.440: Lecture 25 Covariance and some conditional expectation exercises Scott Sheffield MIT Outline Covariance and correlation Outline Covariance and correlation A property of independence If X and Y

More information

Stochastic Dynamic Programming. Jesus Fernandez-Villaverde University of Pennsylvania

Stochastic Dynamic Programming. Jesus Fernandez-Villaverde University of Pennsylvania Stochastic Dynamic Programming Jesus Fernande-Villaverde University of Pennsylvania 1 Introducing Uncertainty in Dynamic Programming Stochastic dynamic programming presents a very exible framework to handle

More information

LECTURE 12 UNIT ROOT, WEAK CONVERGENCE, FUNCTIONAL CLT

LECTURE 12 UNIT ROOT, WEAK CONVERGENCE, FUNCTIONAL CLT MARCH 29, 26 LECTURE 2 UNIT ROOT, WEAK CONVERGENCE, FUNCTIONAL CLT (Davidson (2), Chapter 4; Phillips Lectures on Unit Roots, Cointegration and Nonstationarity; White (999), Chapter 7) Unit root processes

More information

Markov Processes Hamid R. Rabiee

Markov Processes Hamid R. Rabiee Markov Processes Hamid R. Rabiee Overview Markov Property Markov Chains Definition Stationary Property Paths in Markov Chains Classification of States Steady States in MCs. 2 Markov Property A discrete

More information

6.231 DYNAMIC PROGRAMMING LECTURE 7 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 7 LECTURE OUTLINE 6.231 DYNAMIC PROGRAMMING LECTURE 7 LECTURE OUTLINE DP for imperfect state info Sufficient statistics Conditional state distribution as a sufficient statistic Finite-state systems Examples 1 REVIEW: IMPERFECT

More information

Economics 2010c: Lecture 2 Iterative Methods in Dynamic Programming

Economics 2010c: Lecture 2 Iterative Methods in Dynamic Programming Economics 2010c: Lecture 2 Iterative Methods in Dynamic Programming David Laibson 9/04/2014 Outline: 1. Functional operators 2. Iterative solutions for the Bellman Equation 3. Contraction Mapping Theorem

More information

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan Some slides borrowed from Peter Bodik and David Silver Course progress Learning

More information

U(w) = w + βu(w) U(w) =

U(w) = w + βu(w) U(w) = Economics 250a Lecture 11 Search Theory 2 Outline a) search intensity - a very simple model b) The Burdett-Mortensen equilibrium age-posting model (from Manning) c) Brief mention - Christensen et al (2005)

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

Notes on the Thomas and Worrall paper Econ 8801

Notes on the Thomas and Worrall paper Econ 8801 Notes on the Thomas and Worrall paper Econ 880 Larry E. Jones Introduction The basic reference for these notes is: Thomas, J. and T. Worrall (990): Income Fluctuation and Asymmetric Information: An Example

More information

1 Slutsky Matrix og Negative deniteness

1 Slutsky Matrix og Negative deniteness Slutsky Matrix og Negative deniteness This is exercise 2.F. from the book. Given the demand function x(p,) from the book page 23, here β = and =, e shall :. Calculate the Slutsky matrix S = D p x(p, )

More information

exp(v j=) k exp(v k =)

exp(v j=) k exp(v k =) Economics 250c Dynamic Discrete Choice, continued This lecture will continue the presentation of dynamic discrete choice problems with extreme value errors. We will discuss: 1. Ebenstein s model of sex

More information

Markov Decision Processes Infinite Horizon Problems

Markov Decision Processes Infinite Horizon Problems Markov Decision Processes Infinite Horizon Problems Alan Fern * * Based in part on slides by Craig Boutilier and Daniel Weld 1 What is a solution to an MDP? MDP Planning Problem: Input: an MDP (S,A,R,T)

More information

Y t = log (employment t )

Y t = log (employment t ) Advanced Macroeconomics, Christiano Econ 416 Homework #7 Due: November 21 1. Consider the linearized equilibrium conditions of the New Keynesian model, on the slide, The Equilibrium Conditions in the handout,

More information

Indivisible Labor and the Business Cycle

Indivisible Labor and the Business Cycle Indivisible Labor and the Business Cycle By Gary Hansen Zhe Li SUFE Fall 2010 Zhe Li (SUFE) Advanced Macroeconomics III Fall 2010 1 / 14 Motivation Kydland and Prescott (1982) Equilibrium theory of the

More information

Stochastic convexity in dynamic programming

Stochastic convexity in dynamic programming Economic Theory 22, 447 455 (2003) Stochastic convexity in dynamic programming Alp E. Atakan Department of Economics, Columbia University New York, NY 10027, USA (e-mail: aea15@columbia.edu) Received:

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Markov decision process & Dynamic programming Evaluative feedback, value function, Bellman equation, optimality, Markov property, Markov decision process, dynamic programming, value

More information

Sequential decision making under uncertainty. Department of Computer Science, Czech Technical University in Prague

Sequential decision making under uncertainty. Department of Computer Science, Czech Technical University in Prague Sequential decision making under uncertainty Jiří Kléma Department of Computer Science, Czech Technical University in Prague https://cw.fel.cvut.cz/wiki/courses/b4b36zui/prednasky pagenda Previous lecture:

More information

Economics of Controlling Climate Change under Uncertainty.

Economics of Controlling Climate Change under Uncertainty. Economics of Controlling Climate Change under Uncertainty. Alexander Golub y Environmental Defense Fund, Washington, DC. Santanu Roy z Southern Methodist University, Dallas, TX. October 18, 2010 Abstract

More information

Solow Growth Model. Michael Bar. February 28, Introduction Some facts about modern growth Questions... 4

Solow Growth Model. Michael Bar. February 28, Introduction Some facts about modern growth Questions... 4 Solow Growth Model Michael Bar February 28, 208 Contents Introduction 2. Some facts about modern growth........................ 3.2 Questions..................................... 4 2 The Solow Model 5

More information

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Winter 2014 Instructor: Victor Aguirregabiria

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Winter 2014 Instructor: Victor Aguirregabiria ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Winter 2014 Instructor: Victor guirregabiria SOLUTION TO FINL EXM Monday, pril 14, 2014. From 9:00am-12:00pm (3 hours) INSTRUCTIONS:

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016 Course 16:198:520: Introduction To Artificial Intelligence Lecture 13 Decision Making Abdeslam Boularias Wednesday, December 7, 2016 1 / 45 Overview We consider probabilistic temporal models where the

More information

Practical Dynamic Programming: An Introduction. Associated programs dpexample.m: deterministic dpexample2.m: stochastic

Practical Dynamic Programming: An Introduction. Associated programs dpexample.m: deterministic dpexample2.m: stochastic Practical Dynamic Programming: An Introduction Associated programs dpexample.m: deterministic dpexample2.m: stochastic Outline 1. Specific problem: stochastic model of accumulation from a DP perspective

More information

Birgit Rudloff Operations Research and Financial Engineering, Princeton University

Birgit Rudloff Operations Research and Financial Engineering, Princeton University TIME CONSISTENT RISK AVERSE DYNAMIC DECISION MODELS: AN ECONOMIC INTERPRETATION Birgit Rudloff Operations Research and Financial Engineering, Princeton University brudloff@princeton.edu Alexandre Street

More information

NASH BARGAINING, ON-THE-JOB SEARCH AND LABOR MARKET EQUILIBRIUM

NASH BARGAINING, ON-THE-JOB SEARCH AND LABOR MARKET EQUILIBRIUM NASH BARGAINING, ON-THE-JOB SEARCH AND LABOR MARKET EQUILIBRIUM Roberto Bonilla Department of Economics University of Newcastle Business School University of Newcastle upon Tyne Newcastle upon Tyne U.K.

More information

Macroeconomics II Dynamic macroeconomics Class 1: Introduction and rst models

Macroeconomics II Dynamic macroeconomics Class 1: Introduction and rst models Macroeconomics II Dynamic macroeconomics Class 1: Introduction and rst models Prof. George McCandless UCEMA Spring 2008 1 Class 1: introduction and rst models What we will do today 1. Organization of course

More information

The Kuhn-Tucker Problem

The Kuhn-Tucker Problem Natalia Lazzati Mathematics for Economics (Part I) Note 8: Nonlinear Programming - The Kuhn-Tucker Problem Note 8 is based on de la Fuente (2000, Ch. 7) and Simon and Blume (1994, Ch. 18 and 19). The Kuhn-Tucker

More information

18.440: Lecture 33 Markov Chains

18.440: Lecture 33 Markov Chains 18.440: Lecture 33 Markov Chains Scott Sheffield MIT 1 Outline Markov chains Examples Ergodicity and stationarity 2 Outline Markov chains Examples Ergodicity and stationarity 3 Markov chains Consider a

More information

Lecture Notes - Dynamic Moral Hazard

Lecture Notes - Dynamic Moral Hazard Lecture Notes - Dynamic Moral Hazard Simon Board and Moritz Meyer-ter-Vehn October 27, 2011 1 Marginal Cost of Providing Utility is Martingale (Rogerson 85) 1.1 Setup Two periods, no discounting Actions

More information

2. What is the fraction of aggregate savings due to the precautionary motive? (These two questions are analyzed in the paper by Ayiagari)

2. What is the fraction of aggregate savings due to the precautionary motive? (These two questions are analyzed in the paper by Ayiagari) University of Minnesota 8107 Macroeconomic Theory, Spring 2012, Mini 1 Fabrizio Perri Stationary equilibria in economies with Idiosyncratic Risk and Incomplete Markets We are now at the point in which

More information

International Trade Lecture 9: Factor Proportion Theory (II)

International Trade Lecture 9: Factor Proportion Theory (II) 14.581 International Trade Lecture 9: Factor Proportion Theory (II) 14.581 Week 5 Spring 2013 14.581 (Week 5) Factor Proportion Theory (II) Spring 2013 1 / 24 Today s Plan 1 Two-by-two-by-two Heckscher-Ohlin

More information

9 A Class of Dynamic Games of Incomplete Information:

9 A Class of Dynamic Games of Incomplete Information: A Class of Dynamic Games of Incomplete Information: Signalling Games In general, a dynamic game of incomplete information is any extensive form game in which at least one player is uninformed about some

More information

be a deterministic function that satisfies x( t) dt. Then its Fourier

be a deterministic function that satisfies x( t) dt. Then its Fourier Lecture Fourier ransforms and Applications Definition Let ( t) ; t (, ) be a deterministic function that satisfies ( t) dt hen its Fourier it ransform is defined as X ( ) ( t) e dt ( )( ) heorem he inverse

More information

ECON0702: Mathematical Methods in Economics

ECON0702: Mathematical Methods in Economics ECON0702: Mathematical Methods in Economics Yulei Luo SEF of HKU January 14, 2009 Luo, Y. (SEF of HKU) MME January 14, 2009 1 / 44 Comparative Statics and The Concept of Derivative Comparative Statics

More information

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011 Exercise 6.5: Solutions to Homework 0 6.262 Discrete Stochastic Processes MIT, Spring 20 Consider the Markov process illustrated below. The transitions are labelled by the rate q ij at which those transitions

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

Internet Monetization

Internet Monetization Internet Monetization March May, 2013 Discrete time Finite A decision process (MDP) is reward process with decisions. It models an environment in which all states are and time is divided into stages. Definition

More information

FEDERAL RESERVE BANK of ATLANTA

FEDERAL RESERVE BANK of ATLANTA FEDERAL RESERVE BANK of ATLANTA On the Solution of the Growth Model with Investment-Specific Technological Change Jesús Fernández-Villaverde and Juan Francisco Rubio-Ramírez Working Paper 2004-39 December

More information

Admission control schemes to provide class-level QoS in multiservice networks q

Admission control schemes to provide class-level QoS in multiservice networks q Computer Networks 35 (2001) 307±326 www.elsevier.com/locate/comnet Admission control schemes to provide class-level QoS in multiservice networks q Suresh Kalyanasundaram a,1, Edwin K.P. Chong b, Ness B.

More information

6.231 DYNAMIC PROGRAMMING LECTURE 17 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 17 LECTURE OUTLINE 6.231 DYNAMIC PROGRAMMING LECTURE 17 LECTURE OUTLINE Undiscounted problems Stochastic shortest path problems (SSP) Proper and improper policies Analysis and computational methods for SSP Pathologies of

More information

Sophisticated Monetary Policies

Sophisticated Monetary Policies Federal Reserve Bank of Minneapolis Research Department Sta Report 419 January 2008 Sophisticated Monetary Policies Andrew Atkeson University of California, Los Angeles, Federal Reserve Bank of Minneapolis,

More information

Economic Growth

Economic Growth MIT OpenCourseWare http://ocw.mit.edu 14.452 Economic Growth Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 14.452 Economic Growth: Lecture

More information

Partial Solutions to Homework 2

Partial Solutions to Homework 2 Partial Solutions to Homework. Carefully depict some of the indi erence curves for the following utility functions. In each case, check whether the preferences are monotonic and whether preferences are

More information

Lecture 3 - Axioms of Consumer Preference and the Theory of Choice

Lecture 3 - Axioms of Consumer Preference and the Theory of Choice Lecture 3 - Axioms of Consumer Preference and the Theory of Choice David Autor 14.03 Fall 2004 Agenda: 1. Consumer preference theory (a) Notion of utility function (b) Axioms of consumer preference (c)

More information

Neoclassical Growth Model / Cake Eating Problem

Neoclassical Growth Model / Cake Eating Problem Dynamic Optimization Institute for Advanced Studies Vienna, Austria by Gabriel S. Lee February 1-4, 2008 An Overview and Introduction to Dynamic Programming using the Neoclassical Growth Model and Cake

More information

Lecture 3, November 30: The Basic New Keynesian Model (Galí, Chapter 3)

Lecture 3, November 30: The Basic New Keynesian Model (Galí, Chapter 3) MakØk3, Fall 2 (blok 2) Business cycles and monetary stabilization policies Henrik Jensen Department of Economics University of Copenhagen Lecture 3, November 3: The Basic New Keynesian Model (Galí, Chapter

More information

Recursive Methods. Introduction to Dynamic Optimization

Recursive Methods. Introduction to Dynamic Optimization Recursive Methods Nr. 1 Outline Today s Lecture finish off: theorem of the maximum Bellman equation with bounded and continuous F differentiability of value function application: neoclassical growth model

More information

Some Notes on Costless Signaling Games

Some Notes on Costless Signaling Games Some Notes on Costless Signaling Games John Morgan University of California at Berkeley Preliminaries Our running example is that of a decision maker (DM) consulting a knowledgeable expert for advice about

More information

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011 Exercise 1 Solutions to Homework 6 6.262 Discrete Stochastic Processes MIT, Spring 2011 Let {Y n ; n 1} be a sequence of rv s and assume that lim n E[ Y n ] = 0. Show that {Y n ; n 1} converges to 0 in

More information

Econ 201: Problem Set 3 Answers

Econ 201: Problem Set 3 Answers Econ 20: Problem Set 3 Ansers Instructor: Alexandre Sollaci T.A.: Ryan Hughes Winter 208 Question a) The firm s fixed cost is F C = a and variable costs are T V Cq) = 2 bq2. b) As seen in class, the optimal

More information

Module 8: Multi-Agent Models of Moral Hazard

Module 8: Multi-Agent Models of Moral Hazard Module 8: Multi-Agent Models of Moral Hazard Information Economics (Ec 515) George Georgiadis Types of models: 1. No relation among agents. an many agents make contracting easier? 2. Agents shocks are

More information

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics Ph. D. Comprehensive Examination: Macroeconomics Fall, 202 Answer Key to Section 2 Questions Section. (Suggested Time: 45 Minutes) For 3 of

More information

UC Berkeley Department of Electrical Engineering and Computer Sciences. EECS 126: Probability and Random Processes

UC Berkeley Department of Electrical Engineering and Computer Sciences. EECS 126: Probability and Random Processes UC Berkeley Department of Electrical Engineering and Computer Sciences EECS 26: Probability and Random Processes Problem Set Spring 209 Self-Graded Scores Due:.59 PM, Monday, February 4, 209 Submit your

More information

6.254 : Game Theory with Engineering Applications Lecture 13: Extensive Form Games

6.254 : Game Theory with Engineering Applications Lecture 13: Extensive Form Games 6.254 : Game Theory with Engineering Lecture 13: Extensive Form Games Asu Ozdaglar MIT March 18, 2010 1 Introduction Outline Extensive Form Games with Perfect Information One-stage Deviation Principle

More information

Homework Set 2 Solutions

Homework Set 2 Solutions MATH 667-010 Introduction to Mathematical Finance Prof. D. A. Edards Due: Feb. 28, 2018 Homeork Set 2 Solutions 1. Consider the ruin problem. Suppose that a gambler starts ith ealth, and plays a game here

More information

Probabilistic Planning. George Konidaris

Probabilistic Planning. George Konidaris Probabilistic Planning George Konidaris gdk@cs.brown.edu Fall 2017 The Planning Problem Finding a sequence of actions to achieve some goal. Plans It s great when a plan just works but the world doesn t

More information

Economic Growth: Lecture 13, Stochastic Growth

Economic Growth: Lecture 13, Stochastic Growth 14.452 Economic Growth: Lecture 13, Stochastic Growth Daron Acemoglu MIT December 10, 2013. Daron Acemoglu (MIT) Economic Growth Lecture 13 December 10, 2013. 1 / 52 Stochastic Growth Models Stochastic

More information

CHARACTERIZATION OF ULTRASONIC IMMERSION TRANSDUCERS

CHARACTERIZATION OF ULTRASONIC IMMERSION TRANSDUCERS CHARACTERIZATION OF ULTRASONIC IMMERSION TRANSDUCERS INTRODUCTION David D. Bennink, Center for NDE Anna L. Pate, Engineering Science and Mechanics Ioa State University Ames, Ioa 50011 In any ultrasonic

More information

Solution and Estimation of Dynamic Discrete Choice Structural Models Using Euler Equations

Solution and Estimation of Dynamic Discrete Choice Structural Models Using Euler Equations Solution and Estimation of Dynamic Discrete Choice Structural Models Using Euler Equations Victor Aguirregabiria University of Toronto and CEPR Arvind Magesan University of Calgary May 1st, 2018 Abstract

More information