Advanced Microeconomics

Size: px
Start display at page:

Download "Advanced Microeconomics"

Transcription

1 Advanced Microeconomics Ordinal preference theory Harald Wiese University of Leipzig Harald Wiese (University of Leipzig) Advanced Microeconomics 1 / 68

2 Part A. Basic decision and preference theory 1 Decisions in strategic (static) form 2 Decisions in extensive (dynamic) form 3 Ordinal preference theory 4 Decisions under risk Harald Wiese (University of Leipzig) Advanced Microeconomics 2 / 68

3 Ordinal preference theory Overview 1 The vector space of goods and its topology 2 Preference relations 3 Axioms: convexity, monotonicity, and continuity 4 Utility functions 5 Quasi-concave utility functions and convex preferences 6 Marginal rate of substitution Harald Wiese (University of Leipzig) Advanced Microeconomics 3 / 68

4 The vector space of goods Assumptions households are the only decision makers; nite number ` of goods de ned by place time contingencies example: an apple of a certain weight and class to be delivered in Leipzig on April 1st, 2015, if it does not rain the day before Harald Wiese (University of Leipzig) Advanced Microeconomics 4 / 68

5 The vector space of goods Exercise: Linear combination of vectors Problem Consider the vectors x = (x 1, x 2 ) = (2, 4) and y = (y 1, y 2 ) = (8, 12). Find x + y, 2x and 1 4 x y! Harald Wiese (University of Leipzig) Advanced Microeconomics 5 / 68

6 The vector space of goods Notation For ` 2 N: R` := f(x 1,..., x`) : x g 2 R, g = 1,..., `g. 0 2 R` null vector (0, 0,..., 0); vectors are called points (in R`). Positive amounts of goods only: n o x 2 R` : x 0 Vector comparisons: R`+ := x y :, x g y g for all g from f1, 2,..., `g ; x > y :, x y and x 6= y; x y :, x g > y g for all g from f1, 2,..., `g. Harald Wiese (University of Leipzig) Advanced Microeconomics 6 / 68

7 Distance between x and y y euclidian distance: c c b city block distance: a+b x a infinity distance: max(a, b) Harald Wiese (University of Leipzig) Advanced Microeconomics 7 / 68

8 Distance De nition In R`: q euclidian (or 2-) norm: kx yk := kx yk 2 := `g =1 (x g y g ) 2 in nity norm: kx yk := max g =1,...,` jx g y g j city-block norm: kx yk 1 := ` g =1 jx g y g j Harald Wiese (University of Leipzig) Advanced Microeconomics 8 / 68

9 Distance Exercise Problem What is the distance (in R 2 ) between (2, 5) and (7, 1), measured by the 2-norm kk 2 and by the ini nity norm kk? Harald Wiese (University of Leipzig) Advanced Microeconomics 9 / 68

10 Distance and balls Ball De nition Let x 2 R` and ε > 0. ) n o K = x 2 R` : kx x k < ε (open) ε-ball with center x. x * x ε kx x k = ε holds for all x on the circular line; K all the points within Problem Assuming the goods space R 2 +, sketch three 1-balls with centers (2, 2), (0, 0) and (2, 0), respectively. Harald Wiese (University of Leipzig) Advanced Microeconomics 10 / 68

11 Distance and balls Boundedness De nition A set M is bounded if there exists an ε-ball K such that M K. Example The set [0, ) = fx 2 R : x 0g is not bounded. Harald Wiese (University of Leipzig) Advanced Microeconomics 11 / 68

12 Sequences and convergence Sequence De nition A sequence x j j2n in R` is a function N! R`. Examples In R: 1, 2, 3, 4,... or x j := j; In R 2 : (1, 2), (2, 3), (3, 4),... 1, 2 1, 1, 1 3, 1, 1 4, 1, 1 5,.... Harald Wiese (University of Leipzig) Advanced Microeconomics 12 / 68

13 Sequences and convergence Convergence De nition x j j2n in R` converges towards x 2 R` if for every ε > 0 there is an N 2 N such that x j x < ε for all j > N holds. Convergent a sequence that converges towards some x 2 R`. Examples 1, 2, 3, 4,... is not convergent towards any x 2 R; 1, 1, 1, 1,... converges towards 1; 1, 1 2, 1 3,... converges towards zero. Harald Wiese (University of Leipzig) Advanced Microeconomics 13 / 68

14 Sequences and convergence Lemma 1 Lemma Let x j j2n be a sequence in R`. If x j converges towards x and y ) x = y. j2n x j x j2n = j 1,..., x j` converges towards (x 1,..., x`) i xg j j2n converges towards x g for every g = 1,..., `. Problem Convergent? or (1, 2), (1, 3), (1, 4),... 1, 1, 1, 1, 1, 1, 1, 1, Harald Wiese (University of Leipzig) Advanced Microeconomics 14 / 68

15 Boundary point De nition A point x 2 R` is a boundary point of M R` i there is a sequence of points in M and another sequence of points in R`nM so that both converge towards x. M * x R 2 \ M Harald Wiese (University of Leipzig) Advanced Microeconomics 15 / 68

16 Interior point De nition A point in M that is not a boundary point is called an interior point of M. * x M R 2 \ M Note: Instead of R`, we can consider alternative sets, for example R`+. Harald Wiese (University of Leipzig) Advanced Microeconomics 16 / 68

17 Closed set De nition A set M R` is closed i every converging sequence in M with convergence point x 2 R` ful lls x 2 M. Problem Are the sets closed? f0g [ (1, 2), K = x 2 R` : kx x k < ε, K = x 2 R` : kx x k ε Harald Wiese (University of Leipzig) Advanced Microeconomics 17 / 68

18 Preference relations Overview 1 The vector space of goods and its topology 2 Preference relations 3 Axioms: convexity, monotonicity, and continuity 4 Utility functions 5 Quasi-concave utility functions and convex preferences 6 Marginal rate of substitution Harald Wiese (University of Leipzig) Advanced Microeconomics 18 / 68

19 Relations and equivalence classes De nition De nition Relations R (write xry) might be complete (xry or yrx for all x, y) transitive (xry and yrz implies xrz for all x, y, z) re exive (xrx for all x); Problem For any two inhabitants from Leipzig, we ask whether one is the father of the other. Fill in "yes" or "no": property re exive transitive complete is the father of Harald Wiese (University of Leipzig) Advanced Microeconomics 19 / 68

20 Preference relations and indi erence curves Preference relation De nition (weak) preference relation - a relation on R`+ that is complete (x - y or y - x for all x, y) transitive (x - y and y - z implies x - z for all x, y, z) and re exive (x - x for all x); indi erence relation: strict preference relation: x y :, x - y and y - x; x y :, x - y and not y - x. Harald Wiese (University of Leipzig) Advanced Microeconomics 20 / 68

21 Preference relations and indi erence curves Exercise Problem Fill in: property indi erence strict preference re exive transitive complete Harald Wiese (University of Leipzig) Advanced Microeconomics 21 / 68

22 Preference relations and indi erence curves transitivity of strict preference We want to show x y ^ y z ) x z Proof: x y implies x - y, y z implies y - z. Therefore, x y ^ y z implies x - z. Assume z - x. Together with x y, transitivity implies z - y, contradicting y z. Therefore, we do not have z - x, but x z. Harald Wiese (University of Leipzig) Advanced Microeconomics 22 / 68

23 Preference relations and indi erence curves Better and indi erence set De nition Let % be a preference relation on R`+. ) B y := x 2 R`+ : x % y better set B y of y; W y := x 2 R`+ : x - y worse set W y of y; I y := B y \ W y = x 2 R`+ : x y y s indi erence set; indi erence curve the geometric locus of an indi erence set. Harald Wiese (University of Leipzig) Advanced Microeconomics 23 / 68

24 Preference relations and indi erence curves Indi erence curve numbers to indicate preferences: x x x 1 x 1 Harald Wiese (University of Leipzig) Advanced Microeconomics 24 / 68

25 Indi erence curves must not intersect x 2 C Two di erent indi erence curves, Thus C B A B But C A ^ A B ) C B Contradiction! x 1 Harald Wiese (University of Leipzig) Advanced Microeconomics 25 / 68

26 Preference relations and indi erence curves Exercise Problem Sketch indi erence curves for a goods space with just 2 goods and, alternatively, good 2 is a bad, good 1 represents red matches and good 2 blue matches, good 1 stands for right shoes and good 2 for left shoes. Harald Wiese (University of Leipzig) Advanced Microeconomics 26 / 68

27 Preference relations and indi erence curves Lexicographic preferences In two-good case: x - lex y :, x 1 < y 1 or (x 1 = y 1 and x 2 y 2 ). Problem What do the indi erence curves for lexicographic preferences look like? Harald Wiese (University of Leipzig) Advanced Microeconomics 27 / 68

28 Axioms: convexity, monotonicity, and continuity Overview 1 The vector space of goods and its topology 2 Preference relations 3 Axioms: convexity, monotonicity, and continuity 4 Utility functions 5 Quasi-concave utility functions and convex preferences 6 Marginal rate of substitution Harald Wiese (University of Leipzig) Advanced Microeconomics 28 / 68

29 Convex preferences Convex combination De nition Let x and y be elements of R`. ) kx + (1 k) y, k 2 [0, 1] the convex combination of x and y. Harald Wiese (University of Leipzig) Advanced Microeconomics 29 / 68

30 Convex preferences Convex and strictly convex sets M not convex De nition c x M y boundary point convex, but not strictly convex x interior point y M strictly convex A set M R` is convex if for any two points x and y from M, their convex combination is also contained in M. A set M is strictly convex if for any two points x and y from M, x 6= y, kx + (1 k) y, k 2 (0, 1) is an interior point of M for any k 2 (0, 1). Harald Wiese (University of Leipzig) Advanced Microeconomics 30 / 68

31 Convex preferences Convex and concave preference relation De nition A preference relation % is convex if all its better sets B y are convex, strictly convex if all its better sets B y are strictly convex, concave if all its worse sets W y are convex, strictly concave if all its worse sets W y are strictly convex. Preferences are de ned on R`+ (!): x 2 x 2 better set interior point in R 2 + worse set interior point in R 2 + Harald Wiese (University of Leipzig) x 1 Advanced Microeconomics x 1 31 / 68

32 Convex preferences Exercise Problem Are these preferences convex or strictly convex? x 2 x 2 better set better set (a) x 1 (b) x 1 x 2 x 2 better set better set (c) x 1 (d) x 1 Harald Wiese (University of Leipzig) Advanced Microeconomics 32 / 68

33 Monotonicity of preferences Monotonicity De nition A preference relation % obeys: weak monotonicity if x > y implies x % y; strict monotonicity if x > y implies x y; local non-satiation at y if in every ε-ball with center y a bundle x exists with x y. Problem Sketch the better set of y = (y 1, y 2 ) in case of weak monotonicity! Harald Wiese (University of Leipzig) Advanced Microeconomics 33 / 68

34 Exercise: Monotonicity and convexity Which of the properties (strict) monotonicity and/or (strict) convexity do the preferences depicted by the indi erence curves in the graphs below satisfy? x 2 6 x 2 [ 1] [2] x 1 x 1 x [3] x [4] x 1 Harald Wiese (University of Leipzig) Advanced Microeconomics 34 / 68 x 1

35 Monotonicity of preferences Bliss point x x 1 Harald Wiese (University of Leipzig) Advanced Microeconomics 35 / 68

36 Continuous preferences De nition A preference relation - is continuous if for all y 2 R`+ the sets n o W y = x 2 R`+ : x - y and B y = n o x 2 R`+ : y - x are closed. Harald Wiese (University of Leipzig) Advanced Microeconomics 36 / 68

37 Lexicographic preferences are not continuous Consider the sequence x j j2n = j, 2! (2, 2) All its members belong to the better set of (2, 4). But (2, 2) does not. x x 1 Harald Wiese (University of Leipzig) Advanced Microeconomics 37 / 68

38 Utility functions Overview 1 The vector space of goods and its topology 2 Preference relations 3 Axioms: convexity, monotonicity, and continuity 4 Utility functions 5 Quasi-concave utility functions and convex preferences 6 Marginal rate of substitution Harald Wiese (University of Leipzig) Advanced Microeconomics 38 / 68

39 Utility functions De nition De nition For an agent i 2 N with preference relation % i, U i : R`+ 7! R utility function if U i (x) U i (y), x % i y, x, y 2 R`+ holds. U i represents the preferences % i ; ordinal utility theory. Harald Wiese (University of Leipzig) Advanced Microeconomics 39 / 68

40 Utility functions Examples of utility functions Examples Cobb-Douglas utility functions (weakly monotonic): U (x 1, x 2 ) = x1 a x2 1 a with 0 < a < 1; perfect substitutes: U (x 1, x 2 ) = ax 1 + bx 2 with a > 0 and b > 0; perfect complements: U (x 1, x 2 ) = min (ax 1, bx 2 ) with a > 0 and b > 0. Harald Wiese (University of Leipzig) Advanced Microeconomics 40 / 68

41 Utility functions Dixit-Stiglitz preferences for love of variety U (x 1,..., x`) = where X := ` j=1 x j implies ` j=1! ε x ε ε 1 ε 1 j with ε > 1 U X X,..., ` ` = ` X j=1 ` = ` X ε ε 1 ε 1! ε ε 1 ε 1 ` = ε 1! ε ε 1 ε ` j=1 X ε ε 1 ε 1! ε ε 1 1 ε ` = ` ε ε 1 X 1` = ` ε ε 1 1 X = ` ε 1 1 X and hence, by U ` > 0, a love of variety. Harald Wiese (University of Leipzig) Advanced Microeconomics 41 / 68

42 Utility functions Exercises Problem Draw the indi erence curve for perfect substitutes with a = 1, b = 4 and the utility level 5! Problem Draw the indi erence curve for perfect complements with a = 1, b = 4 (a car with four wheels and one engine) and the utility level for 5 cars! Does x 1 denote the number of wheels or the number of engines? Harald Wiese (University of Leipzig) Advanced Microeconomics 42 / 68

43 Equivalent utility functions De nition (equivalent utility functions) Two utility functions U and V are called equivalent if they represent the same preferences. Lemma (equivalent utility functions) Two utility functions U and V are equivalent i there is a strictly increasing function τ : R! R such that V = τ U. Problem Which of the following utility functions represent the same preferences? a) U 1 (x 1, x 2, x 3 ) = (x 1 + 1) (x 2 + 1) (x 3 + 1) b) U 2 (x 1, x 2, x 3 ) = ln (x 1 + 1) + ln (x 2 + 1) + ln (x 3 + 1) c) U 3 (x 1, x 2, x 3 ) = (x 1 + 1) (x 2 + 1) (x 3 + 1) d) U 4 (x 1, x 2, x 3 ) = [(x 1 + 1) (x 2 + 1) (x 3 + 1)] 1 e) U 5 (x 1, x 2, x 3 ) = x 1 x 2 x 3 Harald Wiese (University of Leipzig) Advanced Microeconomics 43 / 68

44 Existence Existence is not guaranteed Assume a utility function U for lexicographic preferences: U (A 0 ) < U (B 0 ) < U (A 00 ) < U (B 00 ) < U (A 000 ) < U (B 000 ) ; x 2 within (U (A 0 ), U (B 0 )) at least one rational number (q 0 ) etc. B' B '' B'' ' q 0 < q 00 < q 000 ; injective function f : [r 0, r 000 ]! Q; not enough rational numbers; r ' A' r '' A '' r'' ' A'' ' x 1 contradiction > no utility function for lexicographic preferences Harald Wiese (University of Leipzig) Advanced Microeconomics 44 / 68

45 Existence Existence of a utility function for continuous preferences Theorem If the preference relation - i of an agent i is continuous, there is a continuous utility function U i that represents - i. Wait a second for the de nition of a continuous function, please! x 2 ( x 1, x 2 ) ( x 1,x 2 ) U ( x) : = x1 x 1 Harald Wiese (University of Leipzig) Advanced Microeconomics 45 / 68

46 Existence Exercise Problem Assume a utility function U that represents the preference relation -. Can you express weak monotonicity, strict monotonicity and local non-satiation of - through U rather than -? Harald Wiese (University of Leipzig) Advanced Microeconomics 46 / 68

47 Continuous functions De nition De nition f : R`! R is continuous at x 2 R` i for every x j in R` j2n that converges towards x, f x j j2n converges towards f (x). f( x) f( x) Fix x 2 R`. Consider sequences in the domain x j that converge towards x. j2n Convergence of sequences in the range f x j towards f (x) > f j2n continuous at x No convergence or convergence towards y 6= f (x) > no continuity Harald Wiese (University of Leipzig) Advanced Microeconomics 47 / 68 x x

48 Continuous functions Counterexample f( x) f( x) excluded x x Speci c sequence in the domain x j that converges towards x j2n but sequence in the range f x j does not converge towards f (x) j2n Harald Wiese (University of Leipzig) Advanced Microeconomics 48 / 68

49 Quasi-concave utility functions and convex preferences Overview 1 The vector space of goods and its topology 2 Preference relations 3 Axioms: convexity, monotonicity, and continuity 4 Utility functions 5 Quasi-concave utility functions and convex preferences 6 Marginal rate of substitution Harald Wiese (University of Leipzig) Advanced Microeconomics 49 / 68

50 Quasi-concavity De nition f : R`! R is quasi-concave if f (kx + (1 k) y) min (f (x), f (y)) holds for all x, y 2 R` and all k 2 [0, 1]. f is strictly quasi-concave if f (kx + (1 k) y) > min (f (x), f (y)) holds for all x, y 2 R` with x 6= y and all k 2 (0, 1). Note: quasi-concave functions need not be concave (to be introduced later). Harald Wiese (University of Leipzig) Advanced Microeconomics 50 / 68

51 Quasi-concavity Examples f( x) Also quasi concave: f ( kx+ ( 1 k) y) f( y) x kx+ ( 1 k)y y x Example Every monotonically increasing or decreasing function f : R! R is quasi-concave. Harald Wiese (University of Leipzig) Advanced Microeconomics 51 / 68

52 Quasi-concavity A counter example f( x) f f( y) ( kx+ ( 1 k) y) x kx+ ( 1 k)y y x Harald Wiese (University of Leipzig) Advanced Microeconomics 52 / 68

53 Better and worse sets, indi erence sets De nition Let U be a utility function on R`+. B U (y ) := B y = x 2 R`+ : U (x) U (y) the better set B y of y; W U (y ) := W y = x 2 R`+ : U (x) U (y) the worse set W y of y; I U (y ) := I y = B y \ W y = x 2 R`+ : U (x) = U (y) y s indi erence set (indi erence curve) I y. Harald Wiese (University of Leipzig) Advanced Microeconomics 53 / 68

54 Concave indi erence curve De nition Let U be a utility function on R`+. I y is concave if U (x) = U (y) implies U (kx + (1 k) y) U (x) for all x, y 2 R`+ and all k 2 [0, 1]. I y is strictly concave if U (x) = U (y) implies U (kx + (1 k) y) > U (x) for all x, y 2 R`+ with x 6= y and all k 2 (0, 1). Harald Wiese (University of Leipzig) Advanced Microeconomics 54 / 68

55 Concave indi erence curve Examples and counter examples x kx+ ( 1 k)y x y y (a) (b) x x y y (c) (d) Harald Wiese (University of Leipzig) Advanced Microeconomics 55 / 68

56 Lemma Lemma Let U be a continuous utility function on R`+. A preference relation % is convex i : all the indi erence curves are concave, or U is quasi-concave. Us better sets strictly convex U strictly quasi concave c U quasiconcave c Us better sets convex Us better sets strictly convex and local nonsatiation Us indifference curves strictly concave Us indifference curves concave Harald Wiese (University of Leipzig) Advanced Microeconomics 56 / 68

57 Marginal rate of substitution Overview 1 The vector space of goods and its topology 2 Preference relations 3 Axioms: convexity, monotonicity, and continuity 4 Utility functions 5 Quasi-concave utility functions and convex preferences 6 Marginal rate of substitution Harald Wiese (University of Leipzig) Advanced Microeconomics 57 / 68

58 Marginal rate of substitution Mathematics: Di erentiable functions De nition Let f : M! R be a real-valued function with open domain M R`. f is di erentiable if all the partial derivatives f i (x) := f x i (i = 1,..., `) exist and are continuous. f 0 (x) := 0 f 1 (x) f 2 (x)... f` (x) 1 C A f s derivative at x. Harald Wiese (University of Leipzig) Advanced Microeconomics 58 / 68

59 Marginal rate of substitution Mathematics: Adding rule Theorem Let f : R`! R be a di erentiable function and let g 1,..., g` be di erentiable functions R! R. Let F : R! R be de ned by F (x) = f (g 1 (x),..., g` (x)). ) ` df dx = f dg i i=1 g i dx. Harald Wiese (University of Leipzig) Advanced Microeconomics 59 / 68

60 Marginal rate of substitution Economics x 2 x 2 y 2 ( ) y 1,y 2 x 1 y 1 x 1 I y = (x 1, x 2 ) 2 R 2 + : (x 1, x 2 ) (y 1, y 2 ). I y : x 1 7! x 2. Harald Wiese (University of Leipzig) Advanced Microeconomics 60 / 68

61 Marginal rate of substitution De nition and exercises De nition If the function I y is di erentiable and if preferences are monotonic, di y (x 1 ) dx 1 the MRS between good 1 and good 2 (or of good 2 for good 1). Problem What happens if good 2 is a bad? Harald Wiese (University of Leipzig) Advanced Microeconomics 61 / 68

62 Marginal rate of substitution Perfect substitutes Problem Calculate the MRS for perfect substitutes (U (x 1, x 2 ) = ax 1 + bx 2 with a > 0 and b > 0.)! Solve ax 1 + bx 2 = k for x 2! Form the derivative of x 2 with respect to x 1! Take the absolute value! Harald Wiese (University of Leipzig) Advanced Microeconomics 62 / 68

63 Marginal rate of substitution Lemma 1 Lemma Let % be a preference relation on R`+ and let U be the corresponding utility function. If U is di erentiable, the MRS is de ned by: U x 1, U x 2 marginal utility. U MRS (x 1 ) = di y (x 1 ) dx 1 = x 1 U x 2. Harald Wiese (University of Leipzig) Advanced Microeconomics 63 / 68

64 Marginal rate of substitution Lemma: proof Proof. U (x 1, I y (x 1 )) constant along indi erence curve; di erentiating U (x 1, I y (x 1 )) with respect to x 1 (adding rule): di y (x 1 ) dx 1 0 = U x 1 + U x 2 di y (x 1 ) dx 1. can be found even if Iy were not given explicitly (implicit-function theorem). Problem Again: What is the MRS in case of perfect substitutes? Harald Wiese (University of Leipzig) Advanced Microeconomics 64 / 68

65 Marginal rate of substitution Lemma 2 Lemma Let U be a di erentiable utility function and I y an indi erence curve of U. I y is concave i the MRS is a decreasing function in x 1. x 2 x 1 < y 1 ; MRS (x 1 ) > MRS (y 1 ). x 1 y 1 x 1 Harald Wiese (University of Leipzig) Advanced Microeconomics 65 / 68

66 Marginal rate of substitution Cobb-Douglas utility function MRS = U (x 1, x 2 ) = x1 a x2 1 a, 0 < a < 1 U x 1 U a 1 1 x2 1 a = ax (1 x 2 a) x1 ax 2 a = a x 2. 1 a x 1 Cobb-Douglas preferences are monotonic so that an increase of x 1 is associated with a decrease of x 2 along an indi erence curve. Therefore, Cobb-Douglas preferences are convex (Cobb-Douglas utility functions are quasi-concave). Harald Wiese (University of Leipzig) Advanced Microeconomics 66 / 68

67 Further exercises Problem 1 De ne strict anti-monotonicity. Sketch indi erence curves for each of the four cases: strict convexity strict concavity strict monotonicity strict anti-monotonicity Problem 2 (Strictly) monotonic, (strictly) convex or continuous? (a) U(x 1, x 2 ) = x 1 x 2, (b) U(x 1, x 2 ) = min fa x 1, b x 2 g where a, b > 0 holds, (c) U(x 1, x 2 ) = a x 1 + b x 2 where a, b > 0 holds, (d) lexicographic preferences Harald Wiese (University of Leipzig) Advanced Microeconomics 67 / 68

68 Further exercises Problem 3 (di cult) Let U be a continuous utility function representing the preference relation - on R`+. Show that - is continuous as well. Also, give an example for a continuous preference relation that is represented by a discontinuous utility function. Hint: De ne a function U 0 that di ers from U for x = 0, only Harald Wiese (University of Leipzig) Advanced Microeconomics 68 / 68

Lecture 3 - Axioms of Consumer Preference and the Theory of Choice

Lecture 3 - Axioms of Consumer Preference and the Theory of Choice Lecture 3 - Axioms of Consumer Preference and the Theory of Choice David Autor 14.03 Fall 2004 Agenda: 1. Consumer preference theory (a) Notion of utility function (b) Axioms of consumer preference (c)

More information

Lecture 8: Basic convex analysis

Lecture 8: Basic convex analysis Lecture 8: Basic convex analysis 1 Convex sets Both convex sets and functions have general importance in economic theory, not only in optimization. Given two points x; y 2 R n and 2 [0; 1]; the weighted

More information

Chapter 1 - Preference and choice

Chapter 1 - Preference and choice http://selod.ensae.net/m1 Paris School of Economics (selod@ens.fr) September 27, 2007 Notations Consider an individual (agent) facing a choice set X. Definition (Choice set, "Consumption set") X is a set

More information

Definitions: A binary relation R on a set X is (a) reflexive if x X : xrx; (f) asymmetric if x, x X : [x Rx xr c x ]

Definitions: A binary relation R on a set X is (a) reflexive if x X : xrx; (f) asymmetric if x, x X : [x Rx xr c x ] Binary Relations Definition: A binary relation between two sets X and Y (or between the elements of X and Y ) is a subset of X Y i.e., is a set of ordered pairs (x, y) X Y. If R is a relation between X

More information

Microeconomic Analysis

Microeconomic Analysis Microeconomic Analysis Seminar 1 Marco Pelliccia (mp63@soas.ac.uk, Room 474) SOAS, 2014 Basics of Preference Relations Assume that our consumer chooses among L commodities and that the commodity space

More information

Nonlinear Programming (NLP)

Nonlinear Programming (NLP) Natalia Lazzati Mathematics for Economics (Part I) Note 6: Nonlinear Programming - Unconstrained Optimization Note 6 is based on de la Fuente (2000, Ch. 7), Madden (1986, Ch. 3 and 5) and Simon and Blume

More information

Microeconomics MSc. preference relations. Todd R. Kaplan. October University of Haifa. Kaplan (Haifa) micro October / 39

Microeconomics MSc. preference relations. Todd R. Kaplan. October University of Haifa. Kaplan (Haifa) micro October / 39 Microeconomics MSc preference relations Todd R. Kaplan University of Haifa October 2010 Kaplan (Haifa) micro October 2010 1 / 39 Guessing Game Guess a number 0 to 100. The guess closest to 2/3 the average

More information

1 Uncertainty. These notes correspond to chapter 2 of Jehle and Reny.

1 Uncertainty. These notes correspond to chapter 2 of Jehle and Reny. These notes correspond to chapter of Jehle and Reny. Uncertainty Until now we have considered our consumer s making decisions in a world with perfect certainty. However, we can extend the consumer theory

More information

Structural Properties of Utility Functions Walrasian Demand

Structural Properties of Utility Functions Walrasian Demand Structural Properties of Utility Functions Walrasian Demand Econ 2100 Fall 2017 Lecture 4, September 7 Outline 1 Structural Properties of Utility Functions 1 Local Non Satiation 2 Convexity 3 Quasi-linearity

More information

Microeconomic Theory: Lecture 2 Choice Theory and Consumer Demand

Microeconomic Theory: Lecture 2 Choice Theory and Consumer Demand Microeconomic Theory: Lecture 2 Choice Theory and Consumer Demand Summer Semester, 2014 De nitions and Axioms Binary Relations I Examples: taller than, friend of, loves, hates, etc. I Abstract formulation:

More information

Applied cooperative game theory:

Applied cooperative game theory: Applied cooperative game theory: The gloves game Harald Wiese University of Leipzig April 2010 Harald Wiese (Chair of Microeconomics) Applied cooperative game theory: April 2010 1 / 29 Overview part B:

More information

3/1/2016. Intermediate Microeconomics W3211. Lecture 3: Preferences and Choice. Today s Aims. The Story So Far. A Short Diversion: Proofs

3/1/2016. Intermediate Microeconomics W3211. Lecture 3: Preferences and Choice. Today s Aims. The Story So Far. A Short Diversion: Proofs 1 Intermediate Microeconomics W3211 Lecture 3: Preferences and Choice Introduction Columbia University, Spring 2016 Mark Dean: mark.dean@columbia.edu 2 The Story So Far. 3 Today s Aims 4 So far, we have

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics General equilibrium theory I: the main results Harald Wiese University of Leipzig Harald Wiese (University of Leipzig) Advanced Microeconomics 1 / 52 Part F. Perfect competition

More information

Microeconomic Theory-I Washington State University Midterm Exam #1 - Answer key. Fall 2016

Microeconomic Theory-I Washington State University Midterm Exam #1 - Answer key. Fall 2016 Microeconomic Theory-I Washington State University Midterm Exam # - Answer key Fall 06. [Checking properties of preference relations]. Consider the following preference relation de ned in the positive

More information

Microeconomics, Block I Part 1

Microeconomics, Block I Part 1 Microeconomics, Block I Part 1 Piero Gottardi EUI Sept. 26, 2016 Piero Gottardi (EUI) Microeconomics, Block I Part 1 Sept. 26, 2016 1 / 53 Choice Theory Set of alternatives: X, with generic elements x,

More information

Preferences and Utility

Preferences and Utility Preferences and Utility This Version: October 6, 2009 First Version: October, 2008. These lectures examine the preferences of a single agent. In Section 1 we analyse how the agent chooses among a number

More information

Lecture 6: Contraction mapping, inverse and implicit function theorems

Lecture 6: Contraction mapping, inverse and implicit function theorems Lecture 6: Contraction mapping, inverse and implicit function theorems 1 The contraction mapping theorem De nition 11 Let X be a metric space, with metric d If f : X! X and if there is a number 2 (0; 1)

More information

Recitation 2-09/01/2017 (Solution)

Recitation 2-09/01/2017 (Solution) Recitation 2-09/01/2017 (Solution) 1. Checking properties of the Cobb-Douglas utility function. Consider the utility function u(x) Y n i1 x i i ; where x denotes a vector of n di erent goods x 2 R n +,

More information

Partial Solutions to Homework 2

Partial Solutions to Homework 2 Partial Solutions to Homework. Carefully depict some of the indi erence curves for the following utility functions. In each case, check whether the preferences are monotonic and whether preferences are

More information

Preferences and Utility

Preferences and Utility Preferences and Utility How can we formally describe an individual s preference for different amounts of a good? How can we represent his preference for a particular list of goods (a bundle) over another?

More information

Set, functions and Euclidean space. Seungjin Han

Set, functions and Euclidean space. Seungjin Han Set, functions and Euclidean space Seungjin Han September, 2018 1 Some Basics LOGIC A is necessary for B : If B holds, then A holds. B A A B is the contraposition of B A. A is sufficient for B: If A holds,

More information

Introduction to Economic Analysis Fall 2009 Problems on Chapter 1: Rationality

Introduction to Economic Analysis Fall 2009 Problems on Chapter 1: Rationality Introduction to Economic Analysis Fall 2009 Problems on Chapter 1: Rationality Alberto Bisin October 29, 2009 1 Decision Theory After a brief review of decision theory, on preference relations, we list

More information

1 Uncertainty and Insurance

1 Uncertainty and Insurance Uncertainty and Insurance Reading: Some fundamental basics are in Varians intermediate micro textbook (Chapter 2). A good (advanced, but still rather accessible) treatment is in Kreps A Course in Microeconomic

More information

Microeconomics MSc. preference relations. Todd R. Kaplan. October University of Haifa. Kaplan (Haifa) micro October / 42

Microeconomics MSc. preference relations. Todd R. Kaplan. October University of Haifa. Kaplan (Haifa) micro October / 42 Microeconomics MSc preference relations Todd R. Kaplan University of Haifa October 2015 Kaplan (Haifa) micro October 2015 1 / 42 Guessing Game Guess a number 0 to 100. The guess closest to 2/3 the average

More information

Advanced Microeconomics I: Consumers, Firms and Markets Chapters 1+2

Advanced Microeconomics I: Consumers, Firms and Markets Chapters 1+2 Advanced Microeconomics I: Consumers, Firms and Markets Chapters 1+2 Prof. Dr. Oliver Gürtler Winter Term 2012/2013 1 Advanced Microeconomics I: Consumers, Firms and Markets Chapters 1+2 JJ N J 1. Introduction

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics Cooperative game theory Harald Wiese University of Leipzig Harald Wiese (University of Leipzig) Advanced Microeconomics 1 / 45 Part D. Bargaining theory and Pareto optimality 1

More information

Convex Analysis and Economic Theory Winter 2018

Convex Analysis and Economic Theory Winter 2018 Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Topic 7: Quasiconvex Functions I 7.1 Level sets of functions For an extended real-valued

More information

Technical Results on Regular Preferences and Demand

Technical Results on Regular Preferences and Demand Division of the Humanities and Social Sciences Technical Results on Regular Preferences and Demand KC Border Revised Fall 2011; Winter 2017 Preferences For the purposes of this note, a preference relation

More information

Solution Homework 1 - EconS 501

Solution Homework 1 - EconS 501 Solution Homework 1 - EconS 501 1. [Checking properties of preference relations-i]. For each of the following preference relations in the consumption of two goods (1 and 2): describe the upper contour

More information

Gi en Demand for Several Goods

Gi en Demand for Several Goods Gi en Demand for Several Goods Peter Norman Sørensen January 28, 2011 Abstract The utility maimizing consumer s demand function may simultaneously possess the Gi en property for any number of goods strictly

More information

B. Appendix B. Topological vector spaces

B. Appendix B. Topological vector spaces B.1 B. Appendix B. Topological vector spaces B.1. Fréchet spaces. In this appendix we go through the definition of Fréchet spaces and their inductive limits, such as they are used for definitions of function

More information

Labor Economics, Lecture 11: Partial Equilibrium Sequential Search

Labor Economics, Lecture 11: Partial Equilibrium Sequential Search Labor Economics, 14.661. Lecture 11: Partial Equilibrium Sequential Search Daron Acemoglu MIT December 6, 2011. Daron Acemoglu (MIT) Sequential Search December 6, 2011. 1 / 43 Introduction Introduction

More information

MATH 433 Applied Algebra Lecture 14: Functions. Relations.

MATH 433 Applied Algebra Lecture 14: Functions. Relations. MATH 433 Applied Algebra Lecture 14: Functions. Relations. Cartesian product Definition. The Cartesian product X Y of two sets X and Y is the set of all ordered pairs (x,y) such that x X and y Y. The Cartesian

More information

Intro to Economic analysis

Intro to Economic analysis Intro to Economic analysis Alberto Bisin - NYU 1 Rational Choice The central gure of economics theory is the individual decision-maker (DM). The typical example of a DM is the consumer. We shall assume

More information

Applied cooperative game theory:

Applied cooperative game theory: Applied cooperative game theory: Dividends Harald Wiese University of Leipzig April 2 Harald Wiese (hair of Microeconomics) Applied cooperative game theory: April 2 / 22 Overview Dividends De nition and

More information

Adv. Micro Theory, ECON

Adv. Micro Theory, ECON Adv. Micro Theor, ECON 6-9 Assignment Answers, Fall Due: Monda, September 7 th Directions: Answer each question as completel as possible. You ma work in a group consisting of up to 3 members for each group

More information

Real Analysis. Joe Patten August 12, 2018

Real Analysis. Joe Patten August 12, 2018 Real Analysis Joe Patten August 12, 2018 1 Relations and Functions 1.1 Relations A (binary) relation, R, from set A to set B is a subset of A B. Since R is a subset of A B, it is a set of ordered pairs.

More information

Microeconomics. Joana Pais. Fall Joana Pais

Microeconomics. Joana Pais. Fall Joana Pais Microeconomics Fall 2016 Primitive notions There are four building blocks in any model of consumer choice. They are the consumption set, the feasible set, the preference relation, and the behavioural assumption.

More information

Problem Set 1 Welfare Economics

Problem Set 1 Welfare Economics Problem Set 1 Welfare Economics Solutions 1. Consider a pure exchange economy with two goods, h = 1,, and two consumers, i =1,, with utility functions u 1 and u respectively, and total endowment, e = (e

More information

Lecture Notes 8

Lecture Notes 8 14.451 Lecture Notes 8 Guido Lorenzoni Fall 29 1 Stochastic dynamic programming: an example We no turn to analyze problems ith uncertainty, in discrete time. We begin ith an example that illustrates the

More information

Pareto Efficiency (also called Pareto Optimality)

Pareto Efficiency (also called Pareto Optimality) Pareto Efficiency (also called Pareto Optimality) 1 Definitions and notation Recall some of our definitions and notation for preference orderings. Let X be a set (the set of alternatives); we have the

More information

The Fundamental Welfare Theorems

The Fundamental Welfare Theorems The Fundamental Welfare Theorems The so-called Fundamental Welfare Theorems of Economics tell us about the relation between market equilibrium and Pareto efficiency. The First Welfare Theorem: Every Walrasian

More information

A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions

A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions 1 Distance Reading [SB], Ch. 29.4, p. 811-816 A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions (a) Positive definiteness d(x, y) 0, d(x, y) =

More information

1 Selected Homework Solutions

1 Selected Homework Solutions Selected Homework Solutions Mathematics 4600 A. Bathi Kasturiarachi September 2006. Selected Solutions to HW # HW #: (.) 5, 7, 8, 0; (.2):, 2 ; (.4): ; (.5): 3 (.): #0 For each of the following subsets

More information

ECON 4117/5111 Mathematical Economics

ECON 4117/5111 Mathematical Economics Test 1 September 23, 2016 1. Suppose that p and q are logical statements. The exclusive or, denoted by p Y q, is true when only one of p and q is true. (a) Construct the truth table of p Y q. (b) Prove

More information

Almost Transferable Utility, Changes in Production Possibilities, and the Nash Bargaining and the Kalai-Smorodinsky Solutions

Almost Transferable Utility, Changes in Production Possibilities, and the Nash Bargaining and the Kalai-Smorodinsky Solutions Department Discussion Paper DDP0702 ISSN 1914-2838 Department of Economics Almost Transferable Utility, Changes in Production Possibilities, and the Nash Bargaining and the Kalai-Smorodinsky Solutions

More information

Mathematical Preliminaries for Microeconomics: Exercises

Mathematical Preliminaries for Microeconomics: Exercises Mathematical Preliminaries for Microeconomics: Exercises Igor Letina 1 Universität Zürich Fall 2013 1 Based on exercises by Dennis Gärtner, Andreas Hefti and Nick Netzer. How to prove A B Direct proof

More information

Problem 2: ii) Completeness of implies that for any x X we have x x and thus x x. Thus x I(x).

Problem 2: ii) Completeness of implies that for any x X we have x x and thus x x. Thus x I(x). Bocconi University PhD in Economics - Microeconomics I Prof. M. Messner Problem Set 1 - Solution Problem 1: Suppose that x y and y z but not x z. Then, z x. Together with y z this implies (by transitivity)

More information

Preference and Utility

Preference and Utility Preference and Utility Econ 2100 Fall 2017 Lecture 3, 5 September Problem Set 1 is due in Kelly s mailbox by 5pm today Outline 1 Existence of Utility Functions 2 Continuous Preferences 3 Debreu s Representation

More information

Partial Differentiation

Partial Differentiation CHAPTER 7 Partial Differentiation From the previous two chapters we know how to differentiate functions of one variable But many functions in economics depend on several variables: output depends on both

More information

Mean-Variance Utility

Mean-Variance Utility Mean-Variance Utility Yutaka Nakamura University of Tsukuba Graduate School of Systems and Information Engineering Division of Social Systems and Management -- Tennnoudai, Tsukuba, Ibaraki 305-8573, Japan

More information

Lecture Notes MATHEMATICAL ECONOMICS

Lecture Notes MATHEMATICAL ECONOMICS Lecture Notes MATHEMATICAL ECONOMICS A. Neyman Fall 2006, Jerusalem The notes may/will be updated in few days. Please revisit to check for the updated version. Please email comments to aneyman@math.huji.ac.il

More information

x 1 1 and p 1 1 Two points if you just talk about monotonicity (u (c) > 0).

x 1 1 and p 1 1 Two points if you just talk about monotonicity (u (c) > 0). . (a) (8 points) What does it mean for observations x and p... x T and p T to be rationalized by a monotone utility function? Notice that this is a one good economy. For all t, p t x t function. p t x

More information

The Kuhn-Tucker Problem

The Kuhn-Tucker Problem Natalia Lazzati Mathematics for Economics (Part I) Note 8: Nonlinear Programming - The Kuhn-Tucker Problem Note 8 is based on de la Fuente (2000, Ch. 7) and Simon and Blume (1994, Ch. 18 and 19). The Kuhn-Tucker

More information

Volume 30, Issue 3. Monotone comparative statics with separable objective functions. Christian Ewerhart University of Zurich

Volume 30, Issue 3. Monotone comparative statics with separable objective functions. Christian Ewerhart University of Zurich Volume 30, Issue 3 Monotone comparative statics with separable objective functions Christian Ewerhart University of Zurich Abstract The Milgrom-Shannon single crossing property is essential for monotone

More information

Advanced Microeconomics Fall Lecture Note 1 Choice-Based Approach: Price e ects, Wealth e ects and the WARP

Advanced Microeconomics Fall Lecture Note 1 Choice-Based Approach: Price e ects, Wealth e ects and the WARP Prof. Olivier Bochet Room A.34 Phone 3 63 476 E-mail olivier.bochet@vwi.unibe.ch Webpage http//sta.vwi.unibe.ch/bochet Advanced Microeconomics Fall 2 Lecture Note Choice-Based Approach Price e ects, Wealth

More information

z = f (x; y) = x 3 3x 2 y x 2 3

z = f (x; y) = x 3 3x 2 y x 2 3 BEE Mathematics for Economists Week, ecture Thursday..7 Functions in two variables Dieter Balkenborg Department of Economics University of Exeter Objective This lecture has the purpose to make you familiar

More information

Lecture Notes on Bargaining

Lecture Notes on Bargaining Lecture Notes on Bargaining Levent Koçkesen 1 Axiomatic Bargaining and Nash Solution 1.1 Preliminaries The axiomatic theory of bargaining originated in a fundamental paper by Nash (1950, Econometrica).

More information

MICROECONOMIC THEORY I PROBLEM SET 1

MICROECONOMIC THEORY I PROBLEM SET 1 MICROECONOMIC THEORY I PROBLEM SET 1 MARCIN PĘSKI Properties of rational preferences. MWG 1.B1 and 1.B.2. Solutions: Tutorial Utility and preferences. MWG 1.B.4. Solutions: Tutorial Choice structure. MWG

More information

CHAPTER 4: HIGHER ORDER DERIVATIVES. Likewise, we may define the higher order derivatives. f(x, y, z) = xy 2 + e zx. y = 2xy.

CHAPTER 4: HIGHER ORDER DERIVATIVES. Likewise, we may define the higher order derivatives. f(x, y, z) = xy 2 + e zx. y = 2xy. April 15, 2009 CHAPTER 4: HIGHER ORDER DERIVATIVES In this chapter D denotes an open subset of R n. 1. Introduction Definition 1.1. Given a function f : D R we define the second partial derivatives as

More information

a = (a 1; :::a i )

a = (a 1; :::a  i ) 1 Pro t maximization Behavioral assumption: an optimal set of actions is characterized by the conditions: max R(a 1 ; a ; :::a n ) C(a 1 ; a ; :::a n ) a = (a 1; :::a n) @R(a ) @a i = @C(a ) @a i The rm

More information

EconS 501 Final Exam - December 10th, 2018

EconS 501 Final Exam - December 10th, 2018 EconS 501 Final Exam - December 10th, 018 Show all your work clearly and make sure you justify all your answers. NAME 1. Consider the market for smart pencil in which only one firm (Superapiz) enjoys a

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE

FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE CHRISTOPHER HEIL 1. Weak and Weak* Convergence of Vectors Definition 1.1. Let X be a normed linear space, and let x n, x X. a. We say that

More information

It is convenient to introduce some notation for this type of problems. I will write this as. max u (x 1 ; x 2 ) subj. to. p 1 x 1 + p 2 x 2 m ;

It is convenient to introduce some notation for this type of problems. I will write this as. max u (x 1 ; x 2 ) subj. to. p 1 x 1 + p 2 x 2 m ; 4 Calculus Review 4.1 The Utility Maimization Problem As a motivating eample, consider the problem facing a consumer that needs to allocate a given budget over two commodities sold at (linear) prices p

More information

Game Theory. Bargaining Theory. ordi Massó. International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB)

Game Theory. Bargaining Theory. ordi Massó. International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB) Game Theory Bargaining Theory J International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB) (International Game Theory: Doctorate Bargainingin Theory Economic Analysis (IDEA)

More information

The B.E. Journal of Theoretical Economics

The B.E. Journal of Theoretical Economics The B.E. Journal of Theoretical Economics Topics Volume 7, Issue 1 2007 Article 29 Asymmetric Nash Bargaining with Surprised Players Eran Hanany Rotem Gal Tel Aviv University, hananye@post.tau.ac.il Tel

More information

1 Which sets have volume 0?

1 Which sets have volume 0? Math 540 Spring 0 Notes #0 More on integration Which sets have volume 0? The theorem at the end of the last section makes this an important question. (Measure theory would supersede it, however.) Theorem

More information

Mathematical Economics: Lecture 16

Mathematical Economics: Lecture 16 Mathematical Economics: Lecture 16 Yu Ren WISE, Xiamen University November 26, 2012 Outline 1 Chapter 21: Concave and Quasiconcave Functions New Section Chapter 21: Concave and Quasiconcave Functions Concave

More information

Unlinked Allocations in an Exchange Economy with One Good and One Bad

Unlinked Allocations in an Exchange Economy with One Good and One Bad Unlinked llocations in an Exchange Economy with One Good and One ad Chiaki Hara Faculty of Economics and Politics, University of Cambridge Institute of Economic Research, Hitotsubashi University pril 16,

More information

Topology, Math 581, Fall 2017 last updated: November 24, Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski

Topology, Math 581, Fall 2017 last updated: November 24, Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski Topology, Math 581, Fall 2017 last updated: November 24, 2017 1 Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski Class of August 17: Course and syllabus overview. Topology

More information

1 The Well Ordering Principle, Induction, and Equivalence Relations

1 The Well Ordering Principle, Induction, and Equivalence Relations 1 The Well Ordering Principle, Induction, and Equivalence Relations The set of natural numbers is the set N = f1; 2; 3; : : :g. (Some authors also include the number 0 in the natural numbers, but number

More information

Tangent Plane. Nobuyuki TOSE. October 02, Nobuyuki TOSE. Tangent Plane

Tangent Plane. Nobuyuki TOSE. October 02, Nobuyuki TOSE. Tangent Plane October 02, 2017 The Equation of a plane Given a plane α passing through P 0 perpendicular to n( 0). For any point P on α, we have n PP 0 = 0 When P 0 has the coordinates (x 0, y 0, z 0 ), P 0 (x, y, z)

More information

EC /11. Math for Microeconomics September Course, Part II Lecture Notes. Course Outline

EC /11. Math for Microeconomics September Course, Part II Lecture Notes. Course Outline LONDON SCHOOL OF ECONOMICS Professor Leonardo Felli Department of Economics S.478; x7525 EC400 20010/11 Math for Microeconomics September Course, Part II Lecture Notes Course Outline Lecture 1: Tools for

More information

BEE1024 Mathematics for Economists

BEE1024 Mathematics for Economists BEE1024 Mathematics for Economists Dieter and Jack Rogers and Juliette Stephenson Department of Economics, University of Exeter February 1st 2007 1 Objective 2 Isoquants 3 Objective. The lecture should

More information

The Consumer, the Firm, and an Economy

The Consumer, the Firm, and an Economy Andrew McLennan October 28, 2014 Economics 7250 Advanced Mathematical Techniques for Economics Second Semester 2014 Lecture 15 The Consumer, the Firm, and an Economy I. Introduction A. The material discussed

More information

Microeconomic Theory: Lecture 2 Choice Theory and Consumer Demand

Microeconomic Theory: Lecture 2 Choice Theory and Consumer Demand Microeconomic Theory: Lecture 2 Choice Theory and Consumer Demand Summer Semester, 2014 De nitions and Axioms Binary Relations I Examples: taller than, friend of, loves, hates, etc. I Abstract formulation:

More information

ECON2285: Mathematical Economics

ECON2285: Mathematical Economics ECON2285: Mathematical Economics Yulei Luo Economics, HKU September 17, 2018 Luo, Y. (Economics, HKU) ME September 17, 2018 1 / 46 Static Optimization and Extreme Values In this topic, we will study goal

More information

3. Neoclassical Demand Theory. 3.1 Preferences

3. Neoclassical Demand Theory. 3.1 Preferences EC 701, Fall 2005, Microeconomic Theory September 28, 2005 page 81 3. Neoclassical Demand Theory 3.1 Preferences Not all preferences can be described by utility functions. This is inconvenient. We make

More information

Public Goods and Private Goods

Public Goods and Private Goods Chapter 2 Public Goods and Private Goods One Public Good, One Private Good Claude and Dorothy are roommates, also. 1 They are not interested in card games or the temperature of their room. Each of them

More information

Positive Theory of Equilibrium: Existence, Uniqueness, and Stability

Positive Theory of Equilibrium: Existence, Uniqueness, and Stability Chapter 7 Nathan Smooha Positive Theory of Equilibrium: Existence, Uniqueness, and Stability 7.1 Introduction Brouwer s Fixed Point Theorem. Let X be a non-empty, compact, and convex subset of R m. If

More information

Engineering Decisions

Engineering Decisions GSOE9210 vicj@cse.unsw.edu.au www.cse.unsw.edu.au/~gs9210 1 Preferences to values Outline 1 Preferences to values Evaluating outcomes and actions Example (Bus or train?) Would Alice prefer to catch the

More information

Economics 101. Lecture 2 - The Walrasian Model and Consumer Choice

Economics 101. Lecture 2 - The Walrasian Model and Consumer Choice Economics 101 Lecture 2 - The Walrasian Model and Consumer Choice 1 Uncle Léon The canonical model of exchange in economics is sometimes referred to as the Walrasian Model, after the early economist Léon

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics Ivan Etzo University of Cagliari ietzo@unica.it Dottorato in Scienze Economiche e Aziendali, XXXIII ciclo Ivan Etzo (UNICA) Lecture 1: Technolgy 1 / 61 Overview 1 Firms behavior

More information

Individual decision-making under certainty

Individual decision-making under certainty Individual decision-making under certainty Objects of inquiry Our study begins with individual decision-making under certainty Items of interest include: Feasible set Objective function (Feasible set R)

More information

Overview part F: Non-transferable utility

Overview part F: Non-transferable utility Overview part F: Non-transferable utility Exchange economies The Nash solution Harald Wiese (Chair of Microeconomics) Applied cooperative game theory: Junel 2010 1 / 80 Overview The Solow growth model

More information

Microeconomics CHAPTER 2. THE FIRM

Microeconomics CHAPTER 2. THE FIRM Chapter The Firm Exercise. Suppose that a unit of output can be produced by any of the following combinations of inputs z = 0: 0:5 ; z 0:3 = 0:. Construct the isouant for =. ; z 3 0:5 = 0:. Assuming constant

More information

ARE211, Fall 2005 CONTENTS. 5. Characteristics of Functions Surjective, Injective and Bijective functions. 5.2.

ARE211, Fall 2005 CONTENTS. 5. Characteristics of Functions Surjective, Injective and Bijective functions. 5.2. ARE211, Fall 2005 LECTURE #18: THU, NOV 3, 2005 PRINT DATE: NOVEMBER 22, 2005 (COMPSTAT2) CONTENTS 5. Characteristics of Functions. 1 5.1. Surjective, Injective and Bijective functions 1 5.2. Homotheticity

More information

Microeconomics, Block I Part 2

Microeconomics, Block I Part 2 Microeconomics, Block I Part 2 Piero Gottardi EUI Sept. 20, 2015 Piero Gottardi (EUI) Microeconomics, Block I Part 2 Sept. 20, 2015 1 / 48 Pure Exchange Economy H consumers with: preferences described

More information

Week 6: Consumer Theory Part 1 (Jehle and Reny, Chapter 1)

Week 6: Consumer Theory Part 1 (Jehle and Reny, Chapter 1) Week 6: Consumer Theory Part 1 (Jehle and Reny, Chapter 1) Tsun-Feng Chiang* *School of Economics, Henan University, Kaifeng, China November 2, 2014 1 / 28 Primitive Notions 1.1 Primitive Notions Consumer

More information

Applications I: consumer theory

Applications I: consumer theory Applications I: consumer theory Lecture note 8 Outline 1. Preferences to utility 2. Utility to demand 3. Fully worked example 1 From preferences to utility The preference ordering We start by assuming

More information

Generalized Convexity in Economics

Generalized Convexity in Economics Generalized Convexity in Economics J.E. Martínez-Legaz Universitat Autònoma de Barcelona, Spain 2nd Summer School: Generalized Convexity Analysis Introduction to Theory and Applications JULY 19, 2008 KAOHSIUNG

More information

GARP and Afriat s Theorem Production

GARP and Afriat s Theorem Production GARP and Afriat s Theorem Production Econ 2100 Fall 2017 Lecture 8, September 21 Outline 1 Generalized Axiom of Revealed Preferences 2 Afriat s Theorem 3 Production Sets and Production Functions 4 Profits

More information

Microeconomics MSc. preference relations. Todd R. Kaplan. October University of Haifa. Kaplan (Haifa) micro October / 43

Microeconomics MSc. preference relations. Todd R. Kaplan. October University of Haifa. Kaplan (Haifa) micro October / 43 Microeconomics MSc preference relations Todd R. Kaplan University of Haifa October 2016 Kaplan (Haifa) micro October 2016 1 / 43 Guessing Game Guess a number 0 to 100. The guess closest to 2/3 the average

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

Econ Spring Review Set 1 - Answers ELEMENTS OF LOGIC. NECESSARY AND SUFFICIENT. SET THE-

Econ Spring Review Set 1 - Answers ELEMENTS OF LOGIC. NECESSARY AND SUFFICIENT. SET THE- Econ 4808 - Spring 2008 Review Set 1 - Answers ORY ELEMENTS OF LOGIC. NECESSARY AND SUFFICIENT. SET THE- 1. De ne a thing or action in words. Refer to this thing or action as A. Then de ne a condition

More information

Chapter 1 Preliminaries

Chapter 1 Preliminaries Chapter 1 Preliminaries 1.1 Conventions and Notations Throughout the book we use the following notations for standard sets of numbers: N the set {1, 2,...} of natural numbers Z the set of integers Q the

More information

z = f (x; y) f (x ; y ) f (x; y) f (x; y )

z = f (x; y) f (x ; y ) f (x; y) f (x; y ) BEEM0 Optimization Techiniques for Economists Lecture Week 4 Dieter Balkenborg Departments of Economics University of Exeter Since the fabric of the universe is most perfect, and is the work of a most

More information

Math 1270 Honors Fall, 2008 Background Material on Uniform Convergence

Math 1270 Honors Fall, 2008 Background Material on Uniform Convergence Math 27 Honors Fall, 28 Background Material on Uniform Convergence Uniform convergence is discussed in Bartle and Sherbert s book Introduction to Real Analysis, which was the tet last year for 42 and 45.

More information

Recitation #2 (August 31st, 2018)

Recitation #2 (August 31st, 2018) Recitation #2 (August 1st, 2018) 1. [Checking properties of the Cobb-Douglas utility function.] Consider the utility function u(x) = n i=1 xα i i, where x denotes a vector of n different goods x R n +,

More information

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes These notes form a brief summary of what has been covered during the lectures. All the definitions must be memorized and understood. Statements

More information