Adv. Micro Theory, ECON

Size: px
Start display at page:

Download "Adv. Micro Theory, ECON"

Transcription

1 Adv. Micro Theor, ECON 6-9 Assignment Answers, Fall Due: Monda, September 7 th Directions: Answer each question as completel as possible. You ma work in a group consisting of up to 3 members for each group please turn in onl set of answers and make sure all group member names are on that set of answers. All group members will receive the same grade.. Consider the following utilit functions: u(x ; x ) = p x x and v(x ; x ) = ln(x ) + ln(x ): Verif that u and v have the same indi erence curves and the same marginal rate of substitution. Explain wh. The marginal rate of substitution for u (x ; x ) is: When we have v (x ; x ) the MRS is: MU x = x x MU x = x x MRS = x x x x MRS = x x MU x = x MU x = x MRS = x x MRS = x x Note that since the marginal rates of substitution are the same the indi erence curves will be the same. Also note that the utilit values will be di erent for the same bundles it is NOT required that the same bundles have the same utilit values. What is required is that all the bundles that have u (x ; x ) = z have v (x ; x ) = s where s tpicall will not be equal to z. Think of it this wa if I plot the indi erence curve that runs through the points (; 4), (; ), (4; ) basicall, the indi erence curve for u (x ; x ) =, I get the following picture (based on the fact that = x = x = implies x = 4 x ) drawn in green:

2 x x If I now plot the indi erence curve that runs through the points (; 4), (; ), (4; ) basicall, the indi erence curve for v (x ; x ) = ln 4, I get the exact same picture (since ln 4 = ln x + ln x implies 4 ln x = ln x which further implies 4 x = x ) denoted b the dashed red line.. Graph an indi erence curve, and compute the marginal rate of substitution and the Marshallian demand functions for the following utilit functions: a Perfect substitutes: u(x ; x ) = x + x, where > and >. The marginal rate of substitution is simpl the slope of the indi erence curve (or the ratio of the marginal utilities). In this case: So we have: MU x = MU x = MRS = While the linear utilit function is di erentiable, if we attempt to use Lagrange s method (and assume an interior solution), we will get something that looks like: = p p Now, this ma or ma not be true. If it is true, then we have a Marshallian demand correspondence (and not a function), as an point along the budget constraint will be an optimal solution to the problem. Hence we would have the set: x R L + : px = If we were to have: p > p

3 then the marginal utilit per dollar spent on good is higher than that of good. would onl purchase good and we would be at a corner solution where: x = x = p So the consumer Finall, if p > p ; p. To sum- then the consumer would purchase onl good and the optimal bundle would be marize: if p x (p; ) = > p p if p < p x (p; ) = p if p > p if p < p x R L + : px = if p = p b Perfect complements: u(x ; x ) = minfx ; x g, where > and >. The indi erence curves for this utilit function look like: x x Since this utilit function is nondi erentiable, we cannot use Lagrange s method. However, looking at the indi erence curves shows us that an optimal consumption bundle must be at the kinked point of the L-shape. This is because at an other point the consumer will be "wasting" mone b buing too much of one good or the other. This means that x = x at the optimum. Solving for x we 3

4 have x = x. Now we can plug this into the budget constraint and nd x : To nd x we have: = p x + p x x = p + p x = p x + p x p + p = x x = x x = x = p + p p +p For the marginal rate of subsitution we can look at the gure: MRS = when x > x (the vertical portion of the indi erence curve); MRS = when x < x (the horizontal portion of the indi erence curve), and MRS is not well de ned when x = x (the kink in the indi erence curve). 3. We have noted that u(x) is invariant to positive monotonic transformations. One common transformation is the logarithmic transform, ln (x). Take the logarithmic transform of the Cobb-Douglas utilit function; then using that as the utilit function, derive the Marshallian demand functions and verif that the are identical to those derived in class. The utilit function used in class was: u (x ; x ) = x x The demand functions we found were: x (p; ) = x (p; ) = ( + ) p ( + ) p Taking the natural log leads to: Setting up the Lagrangian we have: v (x ; x ) = ln (u (x ; x )) v (x ; x ) = ln x + ln x L (x ; x ; ) = ln x + ln x + [ p x p x ] We know there will be an interior solution (since ln () is unde ned), so we can take rst order conditions and set them equal = x = x = p x p x = 4

5 Using the rst two partial derivatives we have: Now using the budget constraint we have: For x : = x p x p x p = x p = p x + p x = p x p p = x p + p x = x p + p x = x p ( + ) p ( + ) = x x = x p p x = p x = ( + ) p p (+) + p x p So these demand functions are the same as the ones we derived in class. 4. A consumer of two goods faces positive prices and has a positive income. Her utilit function is Derive the Marshallian demand functions. u (x ; x ) = max fax ; ax g + min fx ; x g, for < a < For this problem the utilit of the consumer is determined b the relationship between x and x : if x > x : u (x ; x ) = ax + x if x = x : u (x ; x ) = ax + x if x < x : u (x ; x ) = ax + x Note that this creates a piecewise linear function, although the middle "equation" is not reall a line but a point since we need x = x. Graphing this for a = 3 and u =, this leads to the vertex being at x = x = 9. For the remaining pieces of the function we have: Plotting this we have: if x > x : 3 x = x if x < x : 36 3x = x 5

6 x x Now, let s suppose that p = p = and that income is 8. the picture we have: Then plotting the budget constraint on x x So in this instance we will have the optimal solution at the vertex where x = x (note that we. So we can nd the Marshallian demand b substituting x for x into a general budget constraint and solving for x : Since x = x we also have x (p; ) = = p x + p x = p x + p x p + p = x p +p. It looks like we are done, but when we had the simple linear function we had a corner solution with either ; p or p ; as the optimal solution. What if we had that p = 5 and p =? The budget constraint is now (with = 36): 6

7 x x Because the budget constraint is steeper than either of the slopes of the pieces of the indi erence curve we will end up at a corner solution. The same will be true if the slope of the budget constraint is atter than either piece. If it is steeper we end up with all x, and if it is atter we end up with all x. So the actual Marshallian demand function is: if p ; p a : p if a < p < p a : x (p; ) = x (p; ) = p + p if p a : ; p p Technicall if the price ratio is equal to one of the slopes we have a demand correspondence (there are man bundles which will lie along both the indi erence curve and the budget constraint). 5. Bob consumes ice cream cones (x ) and hamburgers (x ). His utilit function is u(x ; x ) = (x ) (x ) Bob s income is $. The price of each hamburger is $. The price of ice cream depends on the quantit that Bob consumes. Speci call, he can bu the rst ten ice cream cones at the price of $ each. For each additional ice cream cone there is a discount, and Bob has to pa onl $ each. Derive Bob s budget constraint and compute his optimal consumption plan. Bob s budget constraint has a kink in it. The plot below provides his budget constraint: 7

8 hamburgers ice cream When x, Bob s budget constraint is given b: = x + x x = 5 x When x >, Bob s budget constraint is given b: ( ) = (x ) + x x = 45 x The reason is that he has alread spent $ on his ice cream cones. If we set up the Lagrangian for the original budget constraint we nd that: L (x ; x ; ) = (x ) (x ) [ p x p x ] Now, we can work through the entire problem, but if we go to problem 3 we know that when u (x ; x ) = x x, we have the following Marshallian demand functions: x = x = ( + ) p ( + ) p Using our parameters with the rst budget constraint we have that Bob would consume: x = x = = 5 + = 5 + However, x >, so now Bob s "optimal" consumption bundle of (5; 5) is inside his feasible set and not on the budget constraint. To see this look at the gure below: 8

9 hamburgers ice cream The diamond shaped green point is at (5; 5). constraint, with = 9 and p =, to nd: x = x = So we then use the parameters from the new budget 9 = = :5 + Looking at the picture below, we see that at (45; :5) the indi erence curve is tangent to the budget constraint: hamburgers ice cream 9

Recitation 2-09/01/2017 (Solution)

Recitation 2-09/01/2017 (Solution) Recitation 2-09/01/2017 (Solution) 1. Checking properties of the Cobb-Douglas utility function. Consider the utility function u(x) Y n i1 x i i ; where x denotes a vector of n di erent goods x 2 R n +,

More information

Microeconomic Theory-I Washington State University Midterm Exam #1 - Answer key. Fall 2016

Microeconomic Theory-I Washington State University Midterm Exam #1 - Answer key. Fall 2016 Microeconomic Theory-I Washington State University Midterm Exam # - Answer key Fall 06. [Checking properties of preference relations]. Consider the following preference relation de ned in the positive

More information

Lecture 3 - Axioms of Consumer Preference and the Theory of Choice

Lecture 3 - Axioms of Consumer Preference and the Theory of Choice Lecture 3 - Axioms of Consumer Preference and the Theory of Choice David Autor 14.03 Fall 2004 Agenda: 1. Consumer preference theory (a) Notion of utility function (b) Axioms of consumer preference (c)

More information

1 + x 1/2. b) For what values of k is g a quasi-concave function? For what values of k is g a concave function? Explain your answers.

1 + x 1/2. b) For what values of k is g a quasi-concave function? For what values of k is g a concave function? Explain your answers. Questions and Answers from Econ 0A Final: Fall 008 I have gone to some trouble to explain the answers to all of these questions, because I think that there is much to be learned b working through them

More information

Recitation #2 (August 31st, 2018)

Recitation #2 (August 31st, 2018) Recitation #2 (August 1st, 2018) 1. [Checking properties of the Cobb-Douglas utility function.] Consider the utility function u(x) = n i=1 xα i i, where x denotes a vector of n different goods x R n +,

More information

Partial Solutions to Homework 2

Partial Solutions to Homework 2 Partial Solutions to Homework. Carefully depict some of the indi erence curves for the following utility functions. In each case, check whether the preferences are monotonic and whether preferences are

More information

Microeconomic Theory -1- Introduction

Microeconomic Theory -1- Introduction Microeconomic Theory -- Introduction. Introduction. Profit maximizing firm with monopoly power 6 3. General results on maximizing with two variables 8 4. Model of a private ownership economy 5. Consumer

More information

; p. p y p y p y. Production Set: We have 2 constraints on production - demand for each factor of production must be less than its endowment

; p. p y p y p y. Production Set: We have 2 constraints on production - demand for each factor of production must be less than its endowment Exercise 1. Consider an economy with produced goods - x and y;and primary factors (these goods are not consumed) of production A and. There are xedcoe±cient technologies for producing x and y:to produce

More information

ECON501 - Vector Di erentiation Simon Grant

ECON501 - Vector Di erentiation Simon Grant ECON01 - Vector Di erentiation Simon Grant October 00 Abstract Notes on vector di erentiation and some simple economic applications and examples 1 Functions of One Variable g : R! R derivative (slope)

More information

Problem set 2 solutions Prof. Justin Marion Econ 100M Winter 2012

Problem set 2 solutions Prof. Justin Marion Econ 100M Winter 2012 Problem set 2 solutions Prof. Justin Marion Econ 100M Winter 2012 1. I+S effects Recognize that the utility function U =min{2x 1,4x 2 } represents perfect complements, and that the goods will be consumed

More information

GS/ECON 5010 section B Answers to Assignment 1 September Q1. Are the preferences described below transitive? Strictly monotonic? Convex?

GS/ECON 5010 section B Answers to Assignment 1 September Q1. Are the preferences described below transitive? Strictly monotonic? Convex? GS/ECON 5010 section B Answers to Assignment 1 September 2011 Q1. Are the preferences described below transitive? Strictly monotonic? Convex? Explain briefly. The person consumes 2 goods, food and clothing.

More information

Microeconomics. Joana Pais. Fall Joana Pais

Microeconomics. Joana Pais. Fall Joana Pais Microeconomics Fall 2016 Primitive notions There are four building blocks in any model of consumer choice. They are the consumption set, the feasible set, the preference relation, and the behavioural assumption.

More information

Intro to Economic analysis

Intro to Economic analysis Intro to Economic analysis Alberto Bisin - NYU 1 Rational Choice The central gure of economics theory is the individual decision-maker (DM). The typical example of a DM is the consumer. We shall assume

More information

Economics 121b: Intermediate Microeconomics Midterm Suggested Solutions 2/8/ (a) The equation of the indifference curve is given by,

Economics 121b: Intermediate Microeconomics Midterm Suggested Solutions 2/8/ (a) The equation of the indifference curve is given by, Dirk Bergemann Department of Economics Yale University Economics 121b: Intermediate Microeconomics Midterm Suggested Solutions 2/8/12 1. (a) The equation of the indifference curve is given by, (x 1 + 2)

More information

September Math Course: First Order Derivative

September Math Course: First Order Derivative September Math Course: First Order Derivative Arina Nikandrova Functions Function y = f (x), where x is either be a scalar or a vector of several variables (x,..., x n ), can be thought of as a rule which

More information

Universidad Carlos III de Madrid May Microeconomics Grade

Universidad Carlos III de Madrid May Microeconomics Grade Universidad Carlos III de Madrid May 017 Microeconomics Name: Group: 1 3 5 Grade You have hours and 5 minutes to answer all the questions. 1. Multiple Choice Questions. (Mark your choice with an x. You

More information

1 Objective. 2 Constrained optimization. 2.1 Utility maximization. Dieter Balkenborg Department of Economics

1 Objective. 2 Constrained optimization. 2.1 Utility maximization. Dieter Balkenborg Department of Economics BEE020 { Basic Mathematical Economics Week 2, Lecture Thursday 2.0.0 Constrained optimization Dieter Balkenborg Department of Economics University of Exeter Objective We give the \ rst order conditions"

More information

Technologies. Chapter Eighteen. Technologies. Input Bundles. Production Functions. Production Functions. Technology

Technologies. Chapter Eighteen. Technologies. Input Bundles. Production Functions. Production Functions. Technology Technologies Chapter Eighteen Technolog A technolog is a process b which inputs are converted to an output. E.g. labor, a computer, a projector, electricit, and software are being combined to produce this

More information

x 1 1 and p 1 1 Two points if you just talk about monotonicity (u (c) > 0).

x 1 1 and p 1 1 Two points if you just talk about monotonicity (u (c) > 0). . (a) (8 points) What does it mean for observations x and p... x T and p T to be rationalized by a monotone utility function? Notice that this is a one good economy. For all t, p t x t function. p t x

More information

Microeconomic Theory: Lecture 2 Choice Theory and Consumer Demand

Microeconomic Theory: Lecture 2 Choice Theory and Consumer Demand Microeconomic Theory: Lecture 2 Choice Theory and Consumer Demand Summer Semester, 2014 De nitions and Axioms Binary Relations I Examples: taller than, friend of, loves, hates, etc. I Abstract formulation:

More information

Preferences and Utility

Preferences and Utility Preferences and Utility This Version: October 6, 2009 First Version: October, 2008. These lectures examine the preferences of a single agent. In Section 1 we analyse how the agent chooses among a number

More information

Advanced Microeconomic Analysis Solutions to Midterm Exam

Advanced Microeconomic Analysis Solutions to Midterm Exam Advanced Microeconomic Analsis Solutions to Midterm Exam Q1. (0 pts) An individual consumes two goods x 1 x and his utilit function is: u(x 1 x ) = [min(x 1 + x x 1 + x )] (a) Draw some indifference curves

More information

The Ohio State University Department of Economics. Homework Set Questions and Answers

The Ohio State University Department of Economics. Homework Set Questions and Answers The Ohio State University Department of Economics Econ. 805 Winter 00 Prof. James Peck Homework Set Questions and Answers. Consider the following pure exchange economy with two consumers and two goods.

More information

ECON 304 MIDTERM EXAM ANSWERS

ECON 304 MIDTERM EXAM ANSWERS ECON 30 MIDTERM EXAM ANSWERS () The short questions: (a) Transitivity says that if y and y z, then z. Note the three bundles in diagram 0.. y because they are on the same indifference curve. y z because

More information

Tangent Plane. Nobuyuki TOSE. October 02, Nobuyuki TOSE. Tangent Plane

Tangent Plane. Nobuyuki TOSE. October 02, Nobuyuki TOSE. Tangent Plane October 02, 2017 The Equation of a plane Given a plane α passing through P 0 perpendicular to n( 0). For any point P on α, we have n PP 0 = 0 When P 0 has the coordinates (x 0, y 0, z 0 ), P 0 (x, y, z)

More information

Economics 101. Lecture 2 - The Walrasian Model and Consumer Choice

Economics 101. Lecture 2 - The Walrasian Model and Consumer Choice Economics 101 Lecture 2 - The Walrasian Model and Consumer Choice 1 Uncle Léon The canonical model of exchange in economics is sometimes referred to as the Walrasian Model, after the early economist Léon

More information

Rice University. Answer Key to Mid-Semester Examination Fall ECON 501: Advanced Microeconomic Theory. Part A

Rice University. Answer Key to Mid-Semester Examination Fall ECON 501: Advanced Microeconomic Theory. Part A Rice University Answer Key to Mid-Semester Examination Fall 006 ECON 50: Advanced Microeconomic Theory Part A. Consider the following expenditure function. e (p ; p ; p 3 ; u) = (p + p ) u + p 3 State

More information

Simon Fraser University, Department of Economics, Econ 201, Prof. Karaivanov FINAL EXAM Answer key

Simon Fraser University, Department of Economics, Econ 201, Prof. Karaivanov FINAL EXAM Answer key Simon Fraser University, Department of Economics, Econ 01, Prof. Karaivanov 017 FINAL EXAM Answer key I. TRUE or FALSE (5 pts each). [The answers below are just examples of correct answers, other possible

More information

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1).

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1). 1. Find the derivative of each of the following: (a) f(x) = 3 2x 1 (b) f(x) = log 4 (x 2 x) 2. Find the slope of the tangent line to f(x) = ln 2 ln x at x = e. 3. Find the slope of the tangent line to

More information

Advanced Microeconomics Problem Set 1

Advanced Microeconomics Problem Set 1 dvanced Microeconomics Problem Set László Sándor Central European University Pareto optima With Cobb-Douglas utilities u x ; x 2 ; x 3 = 0:4 log x 2 + 0:6 log x 3 and u x ; x 2 ; x 3 = log x 2 + log x

More information

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko Indirect Utility Recall: static consumer theory; J goods, p j is the price of good j (j = 1; : : : ; J), c j is consumption

More information

Preferences and Utility

Preferences and Utility Preferences and Utility How can we formally describe an individual s preference for different amounts of a good? How can we represent his preference for a particular list of goods (a bundle) over another?

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics Ordinal preference theory Harald Wiese University of Leipzig Harald Wiese (University of Leipzig) Advanced Microeconomics 1 / 68 Part A. Basic decision and preference theory 1 Decisions

More information

Microeconomics, Block I Part 1

Microeconomics, Block I Part 1 Microeconomics, Block I Part 1 Piero Gottardi EUI Sept. 26, 2016 Piero Gottardi (EUI) Microeconomics, Block I Part 1 Sept. 26, 2016 1 / 53 Choice Theory Set of alternatives: X, with generic elements x,

More information

Economics 101 Spring 2001 Section 4 - Hallam Problem Set #5

Economics 101 Spring 2001 Section 4 - Hallam Problem Set #5 Economics 101 Spring 001 Section 4 - Hallam Problem Set #5 Due date: March, 001 1. Consider the following data on quantities of q 1 and q and utility. In the table q is held fixed at 3 units. Compute marginal

More information

Gi en Demand for Several Goods

Gi en Demand for Several Goods Gi en Demand for Several Goods Peter Norman Sørensen January 28, 2011 Abstract The utility maimizing consumer s demand function may simultaneously possess the Gi en property for any number of goods strictly

More information

Universidad Carlos III de Madrid June Microeconomics Grade

Universidad Carlos III de Madrid June Microeconomics Grade Universidad Carlos III de Madrid June 2017 Microeconomics Name: Group: 1 2 3 4 5 Grade You have 2 hours and 45 minutes to answer all the questions. 1. Multiple Choice Questions. (Mark your choice with

More information

(a) To determine the returns to scale, we compare f(λk, λl) to λf(k, L) with λ > 1.

(a) To determine the returns to scale, we compare f(λk, λl) to λf(k, L) with λ > 1. Problem Set : Solutions ECON 30: Intermediate Microeconomics Prof. Marek Weretka Problem (Cobb-Douglas) (a) To determine the returns to scale, we compare f(λk, λl) to λf(k, L) with λ >. For f(k, L) = K

More information

Utility Maximization Problem

Utility Maximization Problem Demand Theory Utility Maximization Problem Consumer maximizes his utility level by selecting a bundle x (where x can be a vector) subject to his budget constraint: max x 0 u(x) s. t. p x w Weierstrass

More information

Lecture 1: Ricardian Theory of Trade

Lecture 1: Ricardian Theory of Trade Lecture 1: Ricardian Theory of Trade Alfonso A. Irarrazabal University of Oslo September 25, 2007 Contents 1 Simple Ricardian Model 3 1.1 Preferences................................. 3 1.2 Technologies.................................

More information

3.4 Using the First Derivative to Test Critical Numbers (4.3)

3.4 Using the First Derivative to Test Critical Numbers (4.3) 118 CHAPTER 3. APPLICATIONS OF THE DERIVATIVE 3.4 Using the First Derivative to Test Critical Numbers (4.3) 3.4.1 Theory: The rst derivative is a very important tool when studying a function. It is important

More information

Lecture 8: Basic convex analysis

Lecture 8: Basic convex analysis Lecture 8: Basic convex analysis 1 Convex sets Both convex sets and functions have general importance in economic theory, not only in optimization. Given two points x; y 2 R n and 2 [0; 1]; the weighted

More information

Notes on Convexity. Roy Radner Stern School, NYU. September 11, 2006

Notes on Convexity. Roy Radner Stern School, NYU. September 11, 2006 Notes on Convexit Ro Radner Stern School, NYU September, 2006 Abstract These notes are intended to complement the material in an intermediate microeconomic theor course. In particular, the provide a rigorous

More information

It is convenient to introduce some notation for this type of problems. I will write this as. max u (x 1 ; x 2 ) subj. to. p 1 x 1 + p 2 x 2 m ;

It is convenient to introduce some notation for this type of problems. I will write this as. max u (x 1 ; x 2 ) subj. to. p 1 x 1 + p 2 x 2 m ; 4 Calculus Review 4.1 The Utility Maimization Problem As a motivating eample, consider the problem facing a consumer that needs to allocate a given budget over two commodities sold at (linear) prices p

More information

Econ 110: Introduction to Economic Theory. 8th Class 2/7/11

Econ 110: Introduction to Economic Theory. 8th Class 2/7/11 Econ 110: Introduction to Economic Theory 8th Class 2/7/11 go over problem answers from last time; no new problems today given you have your problem set to work on; we'll do some problems for these concepts

More information

3/1/2016. Intermediate Microeconomics W3211. Lecture 3: Preferences and Choice. Today s Aims. The Story So Far. A Short Diversion: Proofs

3/1/2016. Intermediate Microeconomics W3211. Lecture 3: Preferences and Choice. Today s Aims. The Story So Far. A Short Diversion: Proofs 1 Intermediate Microeconomics W3211 Lecture 3: Preferences and Choice Introduction Columbia University, Spring 2016 Mark Dean: mark.dean@columbia.edu 2 The Story So Far. 3 Today s Aims 4 So far, we have

More information

Part 2C. 3. Slutsky Equations Slutsky Slutsky Own-Price Effects

Part 2C. 3. Slutsky Equations Slutsky Slutsky Own-Price Effects Part 2C. Individual Demand Functions 3. Slutsk Equations Slutsk 方程式 Own-Price Effects A Slutsk Decomposition Cross-Price Effects Dualit and the Demand Concepts 2014.11.20 1 Own-Price Effects Q: What happens

More information

EconS 501 Final Exam - December 10th, 2018

EconS 501 Final Exam - December 10th, 2018 EconS 501 Final Exam - December 10th, 018 Show all your work clearly and make sure you justify all your answers. NAME 1. Consider the market for smart pencil in which only one firm (Superapiz) enjoys a

More information

個體經濟學一. Total utility of consuming (x, y), denoted as u(x, y), is the total level of total satisfaction of consuming(x, y).

個體經濟學一. Total utility of consuming (x, y), denoted as u(x, y), is the total level of total satisfaction of consuming(x, y). 個體經濟學一 M i c r o e c o n o m i c s (I) CH2 The analysis of consumer behavior *Untility function Total utility of consuming (x, y), denoted as u(x, y), is the total level of total satisfaction of consuming(x,

More information

Midterm #1 EconS 527 Wednesday, February 21st, 2018

Midterm #1 EconS 527 Wednesday, February 21st, 2018 NAME: Midterm #1 EconS 527 Wednesday, February 21st, 2018 Instructions. Show all your work clearly and make sure you justify all your answers. 1. Question 1 [10 Points]. Discuss and provide examples of

More information

The Consumer, the Firm, and an Economy

The Consumer, the Firm, and an Economy Andrew McLennan October 28, 2014 Economics 7250 Advanced Mathematical Techniques for Economics Second Semester 2014 Lecture 15 The Consumer, the Firm, and an Economy I. Introduction A. The material discussed

More information

Tvestlanka Karagyozova University of Connecticut

Tvestlanka Karagyozova University of Connecticut September, 005 CALCULUS REVIEW Tvestlanka Karagyozova University of Connecticut. FUNCTIONS.. Definition: A function f is a rule that associates each value of one variable with one and only one value of

More information

Hicksian Demand and Expenditure Function Duality, Slutsky Equation

Hicksian Demand and Expenditure Function Duality, Slutsky Equation Hicksian Demand and Expenditure Function Duality, Slutsky Equation Econ 2100 Fall 2017 Lecture 6, September 14 Outline 1 Applications of Envelope Theorem 2 Hicksian Demand 3 Duality 4 Connections between

More information

a = (a 1; :::a i )

a = (a 1; :::a  i ) 1 Pro t maximization Behavioral assumption: an optimal set of actions is characterized by the conditions: max R(a 1 ; a ; :::a n ) C(a 1 ; a ; :::a n ) a = (a 1; :::a n) @R(a ) @a i = @C(a ) @a i The rm

More information

Lecture 6: Contraction mapping, inverse and implicit function theorems

Lecture 6: Contraction mapping, inverse and implicit function theorems Lecture 6: Contraction mapping, inverse and implicit function theorems 1 The contraction mapping theorem De nition 11 Let X be a metric space, with metric d If f : X! X and if there is a number 2 (0; 1)

More information

Economics 401 Sample questions 2

Economics 401 Sample questions 2 Economics 401 Sample questions 1. What does it mean to say that preferences fit the Gorman polar form? Do quasilinear preferences fit the Gorman form? Do aggregate demands based on the Gorman form have

More information

Microeconomics CHAPTER 2. THE FIRM

Microeconomics CHAPTER 2. THE FIRM Chapter The Firm Exercise. Suppose that a unit of output can be produced by any of the following combinations of inputs z = 0: 0:5 ; z 0:3 = 0:. Construct the isouant for =. ; z 3 0:5 = 0:. Assuming constant

More information

How to Characterize Solutions to Constrained Optimization Problems

How to Characterize Solutions to Constrained Optimization Problems How to Characterize Solutions to Constrained Optimization Problems Michael Peters September 25, 2005 1 Introduction A common technique for characterizing maximum and minimum points in math is to use first

More information

OPMT 5701 Term Project 2013

OPMT 5701 Term Project 2013 OPMT 570 Term Project 03 Selected Answers. Willingness to Pa versus Equivalent Compensation Skipp and Mrtle are friends who consume the same goods: oga classes (X) and Timbits (Y ). Skipp has the utilit

More information

Econ Spring Review Set 1 - Answers ELEMENTS OF LOGIC. NECESSARY AND SUFFICIENT. SET THE-

Econ Spring Review Set 1 - Answers ELEMENTS OF LOGIC. NECESSARY AND SUFFICIENT. SET THE- Econ 4808 - Spring 2008 Review Set 1 - Answers ORY ELEMENTS OF LOGIC. NECESSARY AND SUFFICIENT. SET THE- 1. De ne a thing or action in words. Refer to this thing or action as A. Then de ne a condition

More information

Econ 121b: Intermediate Microeconomics

Econ 121b: Intermediate Microeconomics Econ 121b: Intermediate Microeconomics Dirk Bergemann, Spring 2012 Week of 1/29-2/4 1 Lecture 7: Expenditure Minimization Instead of maximizing utility subject to a given income we can also minimize expenditure

More information

Economics th April 2011

Economics th April 2011 Economics 401 8th April 2011 Instructions: Answer 7 of the following 9 questions. All questions are of equal weight. Indicate clearly on the first page which questions you want marked. 1. Answer both parts.

More information

Nonlinear Programming (NLP)

Nonlinear Programming (NLP) Natalia Lazzati Mathematics for Economics (Part I) Note 6: Nonlinear Programming - Unconstrained Optimization Note 6 is based on de la Fuente (2000, Ch. 7), Madden (1986, Ch. 3 and 5) and Simon and Blume

More information

Fall Final Examination Solutions Thursday 10 January 2012

Fall Final Examination Solutions Thursday 10 January 2012 EC 20.2 & 20. Fall 202 Deniz Selman Bo¼gaziçi University Final Examination Solutions Thursday 0 January 202. (9 pts) It is the heart of winter the isl of Ludos has been devastated by a violent snowstorm

More information

BEEM103 UNIVERSITY OF EXETER. BUSINESS School. January 2009 Mock Exam, Part A. OPTIMIZATION TECHNIQUES FOR ECONOMISTS solutions

BEEM103 UNIVERSITY OF EXETER. BUSINESS School. January 2009 Mock Exam, Part A. OPTIMIZATION TECHNIQUES FOR ECONOMISTS solutions BEEM03 UNIVERSITY OF EXETER BUSINESS School January 009 Mock Exam, Part A OPTIMIZATION TECHNIQUES FOR ECONOMISTS solutions Duration : TWO HOURS The paper has 3 parts. Your marks on the rst part will be

More information

Homework 1 Solutions

Homework 1 Solutions Homework Solutions Econ 50 - Stanford University - Winter Quarter 204/5 January 6, 205 Exercise : Constrained Optimization with One Variable (a) For each function, write the optimal value(s) of x on the

More information

Utility Maximization Problem. Advanced Microeconomic Theory 2

Utility Maximization Problem. Advanced Microeconomic Theory 2 Demand Theory Utility Maximization Problem Advanced Microeconomic Theory 2 Utility Maximization Problem Consumer maximizes his utility level by selecting a bundle x (where x can be a vector) subject to

More information

Comments on Problems. 3.1 This problem offers some practice in deriving utility functions from indifference curve specifications.

Comments on Problems. 3.1 This problem offers some practice in deriving utility functions from indifference curve specifications. CHAPTER 3 PREFERENCES AND UTILITY These problems provide some practice in eamining utilit unctions b looking at indierence curve maps and at a ew unctional orms. The primar ocus is on illustrating the

More information

Constrained optimization.

Constrained optimization. ams/econ 11b supplementary notes ucsc Constrained optimization. c 2016, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values

More information

Fundamental Theorems of Welfare Economics

Fundamental Theorems of Welfare Economics Fundamental Theorems of Welfare Economics Ram Singh Lecture 6 September 29, 2015 Ram Singh: (DSE) General Equilibrium Analysis September 29, 2015 1 / 14 First Fundamental Theorem The First Fundamental

More information

Economics 201b Spring 2010 Solutions to Problem Set 1 John Zhu

Economics 201b Spring 2010 Solutions to Problem Set 1 John Zhu Economics 201b Spring 2010 Solutions to Problem Set 1 John Zhu 1a The following is a Edgeworth box characterization of the Pareto optimal, and the individually rational Pareto optimal, along with some

More information

Functions of One Variable

Functions of One Variable Functions of One Variable Mathematical Economics Vilen Lipatov Fall 2014 Outline Functions of one real variable Graphs Linear functions Polynomials, powers and exponentials Reading: Sydsaeter and Hammond,

More information

MATH 2070 Test 3 (Sections , , & )

MATH 2070 Test 3 (Sections , , & ) Multiple Choice: Use a # pencil and completel fill in each bubble on our scantron to indicate the answer to each question. Each question has one correct answer. If ou indicate more than one answer, or

More information

Econ Review Set 2 - Answers

Econ Review Set 2 - Answers Econ 4808 Review Set 2 - Answers EQUILIBRIUM ANALYSIS 1. De ne the concept of equilibrium within the con nes of an economic model. Provide an example of an economic equilibrium. Economic models contain

More information

z = f (x; y) f (x ; y ) f (x; y) f (x; y )

z = f (x; y) f (x ; y ) f (x; y) f (x; y ) BEEM0 Optimization Techiniques for Economists Lecture Week 4 Dieter Balkenborg Departments of Economics University of Exeter Since the fabric of the universe is most perfect, and is the work of a most

More information

Advanced Microeconomic Theory. Chapter 2: Demand Theory

Advanced Microeconomic Theory. Chapter 2: Demand Theory Advanced Microeconomic Theory Chapter 2: Demand Theory Outline Utility maximization problem (UMP) Walrasian demand and indirect utility function WARP and Walrasian demand Income and substitution effects

More information

EconS Vertical Integration

EconS Vertical Integration EconS 425 - Vertical Integration Eric Dunaway Washington State University eric.dunaway@wsu.edu Industrial Organization Eric Dunaway (WSU) EconS 425 Industrial Organization 1 / 26 Introduction Let s continue

More information

1 Uncertainty and Insurance

1 Uncertainty and Insurance Uncertainty and Insurance Reading: Some fundamental basics are in Varians intermediate micro textbook (Chapter 2). A good (advanced, but still rather accessible) treatment is in Kreps A Course in Microeconomic

More information

The Fundamental Welfare Theorems

The Fundamental Welfare Theorems The Fundamental Welfare Theorems The so-called Fundamental Welfare Theorems of Economics tell us about the relation between market equilibrium and Pareto efficiency. The First Welfare Theorem: Every Walrasian

More information

Chapter 5: Preferences

Chapter 5: Preferences Chapter 5: Preferences 5.1: Introduction In chapters 3 and 4 we considered a particular type of preferences in which all the indifference curves are parallel to each other and in which each indifference

More information

Addendum to: New Trade Models, Same Old Gains?

Addendum to: New Trade Models, Same Old Gains? Addendum to: New Trade Models, Same Old Gains? Costas Arkolakis Yale and NBER Arnaud Costinot MIT and NBER September 5, 200 Andrés Rodríguez-Clare Penn State and NBER Abstract This addendum provides generalizations

More information

IE 5531 Midterm #2 Solutions

IE 5531 Midterm #2 Solutions IE 5531 Midterm #2 s Prof. John Gunnar Carlsson November 9, 2011 Before you begin: This exam has 9 pages and a total of 5 problems. Make sure that all pages are present. To obtain credit for a problem,

More information

ECON2285: Mathematical Economics

ECON2285: Mathematical Economics ECON2285: Mathematical Economics Yulei Luo Economics, HKU September 17, 2018 Luo, Y. (Economics, HKU) ME September 17, 2018 1 / 46 Static Optimization and Extreme Values In this topic, we will study goal

More information

CHAPTER 3: OPTIMIZATION

CHAPTER 3: OPTIMIZATION John Riley 8 February 7 CHAPTER 3: OPTIMIZATION 3. TWO VARIABLES 8 Second Order Conditions Implicit Function Theorem 3. UNCONSTRAINED OPTIMIZATION 4 Necessary and Sufficient Conditions 3.3 CONSTRAINED

More information

Lecture #3. General equilibrium

Lecture #3. General equilibrium Lecture #3 General equilibrium Partial equilibrium equality of demand and supply in a single market (assumption: actions in one market do not influence, or have negligible influence on other markets) General

More information

Math 2003 Test D This part of the Exam is to be done without a calculator

Math 2003 Test D This part of the Exam is to be done without a calculator Math 00 Test D This part of the Eam is to be done without a calculator. Which of the following is the correct graph of =? b) c) d) e). Find all the intercepts of = -intercept: 0 -intercepts: 0, -, b) -intercepts:

More information

6. Graph each of the following functions. What do you notice? What happens when x = 2 on the graph of b?

6. Graph each of the following functions. What do you notice? What happens when x = 2 on the graph of b? Pre Calculus Worksheet 1. Da 1 1. The relation described b the set of points {(-,5,0,5,,8,,9 ) ( ) ( ) ( )} is NOT a function. Eplain wh. For questions - 4, use the graph at the right.. Eplain wh the graph

More information

Lecture Notes for Chapter 12

Lecture Notes for Chapter 12 Lecture Notes for Chapter 12 Kevin Wainwright April 26, 2014 1 Constrained Optimization Consider the following Utility Max problem: Max x 1, x 2 U = U(x 1, x 2 ) (1) Subject to: Re-write Eq. 2 B = P 1

More information

1810FinalReview Multiple Choice Indicate the answer choice that best completes the statement or answers the question.

1810FinalReview Multiple Choice Indicate the answer choice that best completes the statement or answers the question. Multiple Choice Indicate the answer choice that best completes the statement or answers the question. 1. Evaluate the given definite integral. 2. Find the derivative of the function. 3. Find the derivative

More information

PhD Qualifier Examination

PhD Qualifier Examination PhD Qualifier Examination Department of Agricultural Economics July 26, 2013 Instructions The exam consists of six questions. You must answer all questions. If you need an assumption to complete a question,

More information

University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes

University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes Please complete this cover page with ALL CAPITAL LETTERS. Last name......................................................................................

More information

DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION

DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION UNIVERSITY OF MARYLAND: ECON 600. Alternative Methods of Discrete Time Intertemporal Optimization We will start by solving a discrete time intertemporal

More information

ECON5110: Microeconomics

ECON5110: Microeconomics ECON5110: Microeconomics Lecture 2: Sept, 2017 Contents 1 Overview 1 2 Production Technology 2 3 Profit Maximization 5 4 Properties of Profit Maximization 7 5 Cost Minimization 10 6 Duality 12 1 Overview

More information

i) This is simply an application of Berge s Maximum Theorem, but it is actually not too difficult to prove the result directly.

i) This is simply an application of Berge s Maximum Theorem, but it is actually not too difficult to prove the result directly. Bocconi University PhD in Economics - Microeconomics I Prof. M. Messner Problem Set 3 - Solution Problem 1: i) This is simply an application of Berge s Maximum Theorem, but it is actually not too difficult

More information

Chapter 4. Maximum Theorem, Implicit Function Theorem and Envelope Theorem

Chapter 4. Maximum Theorem, Implicit Function Theorem and Envelope Theorem Chapter 4. Maximum Theorem, Implicit Function Theorem and Envelope Theorem This chapter will cover three key theorems: the maximum theorem (or the theorem of maximum), the implicit function theorem, and

More information

Structural Properties of Utility Functions Walrasian Demand

Structural Properties of Utility Functions Walrasian Demand Structural Properties of Utility Functions Walrasian Demand Econ 2100 Fall 2017 Lecture 4, September 7 Outline 1 Structural Properties of Utility Functions 1 Local Non Satiation 2 Convexity 3 Quasi-linearity

More information

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29,

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29, MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29, This review includes typical exam problems. It is not designed to be comprehensive, but to be representative of topics covered

More information

MATH 236 ELAC FALL 2017 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 236 ELAC FALL 2017 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 236 ELAC FALL 207 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) 27 p 3 27 p 3 ) 2) If 9 t 3 4t 9-2t = 3, find t. 2) Solve the equation.

More information

Advanced Microeconomic Theory. Chapter 6: Partial and General Equilibrium

Advanced Microeconomic Theory. Chapter 6: Partial and General Equilibrium Advanced Microeconomic Theory Chapter 6: Partial and General Equilibrium Outline Partial Equilibrium Analysis General Equilibrium Analysis Comparative Statics Welfare Analysis Advanced Microeconomic Theory

More information

2.9. V = u(x,y) + a(x-f(l x,t x )) + b(y-g(l y,t y )) + c(l o -L x -L y ) + d(t o -T x -T y ) (1) (a) Suggested Answer: V u a 0 (2) u x = -a b 0 (3)

2.9. V = u(x,y) + a(x-f(l x,t x )) + b(y-g(l y,t y )) + c(l o -L x -L y ) + d(t o -T x -T y ) (1) (a) Suggested Answer: V u a 0 (2) u x = -a b 0 (3) 2.9 V = u(,) + a(-f(, )) + b(-g(, )) + c( o - - ) + d( o - - ) (1) (a) Suggested Answer: V u a 0 (2) u = -a V u b 0 (3) u = -b V f a d 0 (4) V V V b g d 0 (5) a f c 0 (6) b g c 0 (7) g c/ b c c/a f (b)

More information