Numerical Methods for Optimal Control Problems. Part I: Hamilton-Jacobi-Bellman Equations and Pontryagin Minimum Principle

Size: px
Start display at page:

Download "Numerical Methods for Optimal Control Problems. Part I: Hamilton-Jacobi-Bellman Equations and Pontryagin Minimum Principle"

Transcription

1 Numerical Methods for Optimal Control Problems. Part I: Hamilton-Jacobi-Bellman Equations and Pontryagin Minimum Principle Ph.D. course in OPTIMAL CONTROL Emiliano Cristiani (IAC CNR) March 2013 E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

2 1 References 2 Optimal control problems 3 Finite horizon problem HJB approach Find optimal trajectories from HJB PMP approach HJB PMP connection Numerical approximation Direct methods HJB PMP Exploiting HJB PMP connection 4 Minimum time problem with target HJB approach PMP approach Numerics for HJB Numerics for PMP E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

3 References Main references 1 M. Bardi, I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhäuser, Boston, J. T. Betts, Practical methods for optimal control and estimation using nonlinear programming, SIAM, E. Cristiani, P. Martinon, Initialization of the shooting method via the Hamilton-Jacobi-Bellman approach, J. Optim. Theory Appl., 146 (2010), L. C. Evans, An introduction to mathematical optimal control theory, evans/ 5 E. Trélat, Contrôle optimal: théorie et applications, trelat/ E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

4 Optimal control problems Introduction Controlled nonlinear dynamical system { ẏ(s) = f (y(s), α(s)), s > t y(t) = x R n Solution: y x,α (s) Admissible controls: α A := {α : [t, + ) A}, A R m Regularity assumptions Are they meaningful from the numerical point of view? Discussion. E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

5 Payoff Optimal control problems Infinite horizon problem J x,t [α] = Finite horizon problem Target problem J x,t [α] = J x,t [α] = τ t t T t max J x,t[α] α A ( ) r y x,α (s), α(s) e µs ds, µ > 0 ( ) r y x,α (s), α(s) ds + g(y x,α (T )) ( ) r y x,α (s), α(s) ds, τ := min{s : y x,α (s) T } E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

6 Finite horizon problem HJB approach HJB equation Value function Theorem (HJB equation) v(x, t) := max α A J x,t[α], x R n, t [0, T ] Assume that v C 1. Then v solves v t (x, t) + max a A {f (x, a) xv(x, t) + r(x, a)} = 0, x R n, t [0, T ) with the terminal condition v(x, T ) = g(x), x R n sup{j}=-inf{-j} What about cost functionals to be minimized? E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

7 Find α by means of v Finite horizon problem Find optimal trajectories from HJB Given v(x, t) for any x R n and t [0, T ], we define αfeedback (x, t) := arg max {f (x, a) xv(x, t) + r(x, a)} a A or, coming back to the original variables, αfeedback (y, s) := arg max {f (y, a) xv(y, s) + r(y, a)}. a A Then, the optimal control is α (s) = α feedback (y (s), s) where y (s) is the solution of { ẏ (s) = f (y (s), α feedback (y (s), s)), s > t y(t) = x E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

8 PMP Finite horizon problem PMP approach Theorem (Pontryagin Minimum Principle) Assume α is optimal and y is the corresponding trajectory. Then there exists a function p : [t, T ] R n (costate) such that ẏ (s) = f (y (s), α (s)) ṗ (s) = x f (y (s), α (s)) p (s) x r(y (s), α (s)) { } α (s) = arg max f (y (s), a) p (s) + r(y (s), a) a A with initial condition y (t) = x and terminal condition p (T ) = g(y (T )). PMP can fail! Along the optimal trajectory the Hamiltonian H(y, p, a ) = f p + r may not be an explicit function of the control inputs. E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

9 Finite horizon problem HJB PMP connection HJB PMP connection Theorem If v C 2, then p (s) = x v(y (s), s), s [t, T ]. The gradient of the value function gives the optimal value of the costate all along the optimal trajectory, in particular for s = t! E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

10 Finite horizon problem Numerical approximation Direct methods The control problem is entirely discretized and it is written in the form Discrete problem Find ξ such that J(ξ ) = max ξ R n J(ξ), with J : R n R. Fix a grid (s 1,..., s n,..., s N ) in [t, T ] with s n s n 1 = s. A discrete control function α is characterized by the vector (α 1,..., α N ) with α n = α(s n ). Given (α 1,..., α N ), the ODE is discretized, for example, by and so it is the payoff, for example y n+1 = y n + s f (y n, α n ). J(α) = n r(y n, α n ) s + g(y N ) + penalization for ctrl and state constr. Then, a gradient method is used to maximize J. E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

11 Finite horizon problem Numerical approximation Semi-Lagrangian discretization of HJB { v t (x, t) + max f (x, a) x v(x, t) + r(x, a) } = 0, x R n, t [0, T ) a A Fix a grid in Ω [0, T ], with Ω R n bounded. Steps: x, t. Nodes: {x 1,..., x M }, {t 1,..., t N }. Discrete solution: wi n v(x i, s n ). { wi n w n 1 i w n ( x i + t f (x i, a) ) } wi n + max + r(x i, a) = 0 t a A t w n 1 i = max a A w n( x i + t f (x i, a) ) +r(x i, a) }{{} = 0 to be interpolated CFL condition (not needed but useful) t max f (x, a) x x,a E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

12 Finite horizon problem Numerical approximation Shooting method for PMP Find the solution of S(p 0 ) = 0, where S(p 0 ) := p(t ) g(y(t )) and p(t ) and y(t ) are computed solving the ODEs α n = arg max a A {f (y n, a) p n + r(y n, a)} y n+1 = y n + s f (y n, α n ) p n+1 = p n + s ( x f (y n, α n ) p n x r(y n, α n )) with only initial conditions y 1 = x and p 1 = p 0 The solution of S(p 0 ) = 0 can be found by means of an iterative method like bisection, Newton, etc. E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

13 Finite horizon problem Numerical approximation HJB PMP for numerics Idea [CM10] 1 Solve HJB on a coarse grid 2 Compute x v(x, 0) = p 0 3 Use it as initial guess for the shooting method. Advantages 1 Fast in dimension 4, feasible in dimension Highly accurate 3 Reasonable guarantee to converge to the global maximum of J. E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

14 HJB equation Minimum time problem with target HJB approach Value function v(x) := min α A J x[α], x R n (t = 0) with cost functional τ ( ) J x [α] = r y x,α (s), α(s) ds + g(y x,α (τ)), τ := min{s : y x,α (s) T } 0 Theorem (HJB equation) Assume that v C 1. Then v solves the stationary equation max { f (x, a) xv(x) r(x, a)} = 0, x R n \T a A with boundary conditions v(x) = g(x), x T E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

15 Minimum time problem with target HJB approach HJB equation Eikonal equation If f (x, a) = c(x)a, A = B(0, 1), r 1, and g 0, we get or, equivalently, with boundary conditions max {c(x)a v(x)} = 1, x a B(0,1) Rn \T c(x) v(x) = 1, x R n \T v(x) = 0, x T Optimal trajectories characteristic lines gradient lines E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

16 PMP Minimum time problem with target PMP approach Theorem (Pontryagin Minimum Principle) Assume α is optimal and y is the corresponding trajectory. Then there exists a function p : [0, τ] R n (costate) such that ẏ (s) = f (y (s), α (s)) ṗ (s) = x f (y (s), α (s)) p (s) x r(y (s), α (s)) { } α (s) = arg max f (y (s), a) p (s) + r(y (s), a) a A and f (y (τ), α (s)) p (s) + r(y (s), α (s)) = 0, s [0, τ] (HJB) with initial condition y (0) = x. E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

17 Minimum time problem with target Numerics for HJB Semi-Lagrangian discretization of HJB { ( w i = min w xi + t f (x i, a) ) + t r(x i, a) } a A Iterative solution The fixed-point problem can be solved iterating the scheme until convergence, starting from any initial guess w (k+1) i w (0) i = { = min w (k) ( x i + t f (x i, a) ) + t r(x i, a) } a A { + xi R n \T g(x i ) x i T CFL condition (not needed but useful) t max f (x, a) x x,a E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

18 Minimum time problem with target Shooting method for PMP Numerics for PMP Find the solution of S(p 0, τ) = 0 where ( ) S(p 0, τ) := y(τ) T, f (y(τ), α(τ)) p(τ) + r(y(τ), α(τ)) and y(τ), p(τ) and α(τ) are computed solving the ODEs α n = arg max a A {f (y n, a) p n + r(y n, a)} y n+1 = y n + t f (y n, α n ) p n+1 = p n + t ( x f (y n, α n ) p n x r(y n, α n )) with only initial conditions y 1 = x and p 1 = p 0 E. Cristiani (IAC CNR) Numerical Methods for Optimal Control Pbs March / 18

The HJB-POD approach for infinite dimensional control problems

The HJB-POD approach for infinite dimensional control problems The HJB-POD approach for infinite dimensional control problems M. Falcone works in collaboration with A. Alla, D. Kalise and S. Volkwein Università di Roma La Sapienza OCERTO Workshop Cortona, June 22,

More information

Numerical approximation for optimal control problems via MPC and HJB. Giulia Fabrini

Numerical approximation for optimal control problems via MPC and HJB. Giulia Fabrini Numerical approximation for optimal control problems via MPC and HJB Giulia Fabrini Konstanz Women In Mathematics 15 May, 2018 G. Fabrini (University of Konstanz) Numerical approximation for OCP 1 / 33

More information

Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations

Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations Martino Bardi Italo Capuzzo-Dolcetta Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations Birkhauser Boston Basel Berlin Contents Preface Basic notations xi xv Chapter I. Outline

More information

Fast Marching Methods for Front Propagation Lecture 1/3

Fast Marching Methods for Front Propagation Lecture 1/3 Outline for Front Propagation Lecture 1/3 M. Falcone Dipartimento di Matematica SAPIENZA, Università di Roma Autumn School Introduction to Numerical Methods for Moving Boundaries ENSTA, Paris, November,

More information

pacman A classical arcade videogame powered by Hamilton-Jacobi equations Simone Cacace Universita degli Studi Roma Tre

pacman A classical arcade videogame powered by Hamilton-Jacobi equations Simone Cacace Universita degli Studi Roma Tre HJ pacman A classical arcade videogame powered by Hamilton-Jacobi equations Simone Cacace Universita degli Studi Roma Tre Control of State Constrained Dynamical Systems 25-29 September 2017, Padova Main

More information

An adaptive RBF-based Semi-Lagrangian scheme for HJB equations

An adaptive RBF-based Semi-Lagrangian scheme for HJB equations An adaptive RBF-based Semi-Lagrangian scheme for HJB equations Roberto Ferretti Università degli Studi Roma Tre Dipartimento di Matematica e Fisica Numerical methods for Hamilton Jacobi equations in optimal

More information

Numerical Optimal Control Overview. Moritz Diehl

Numerical Optimal Control Overview. Moritz Diehl Numerical Optimal Control Overview Moritz Diehl Simplified Optimal Control Problem in ODE path constraints h(x, u) 0 initial value x0 states x(t) terminal constraint r(x(t )) 0 controls u(t) 0 t T minimize

More information

Thuong Nguyen. SADCO Internal Review Metting

Thuong Nguyen. SADCO Internal Review Metting Asymptotic behavior of singularly perturbed control system: non-periodic setting Thuong Nguyen (Joint work with A. Siconolfi) SADCO Internal Review Metting Rome, Nov 10-12, 2014 Thuong Nguyen (Roma Sapienza)

More information

Alberto Bressan. Department of Mathematics, Penn State University

Alberto Bressan. Department of Mathematics, Penn State University Non-cooperative Differential Games A Homotopy Approach Alberto Bressan Department of Mathematics, Penn State University 1 Differential Games d dt x(t) = G(x(t), u 1(t), u 2 (t)), x(0) = y, u i (t) U i

More information

On the Bellman equation for control problems with exit times and unbounded cost functionals 1

On the Bellman equation for control problems with exit times and unbounded cost functionals 1 On the Bellman equation for control problems with exit times and unbounded cost functionals 1 Michael Malisoff Department of Mathematics, Hill Center-Busch Campus Rutgers University, 11 Frelinghuysen Road

More information

Viscosity Solutions of the Bellman Equation for Perturbed Optimal Control Problems with Exit Times 0

Viscosity Solutions of the Bellman Equation for Perturbed Optimal Control Problems with Exit Times 0 Viscosity Solutions of the Bellman Equation for Perturbed Optimal Control Problems with Exit Times Michael Malisoff Department of Mathematics Louisiana State University Baton Rouge, LA 783-4918 USA malisoff@mathlsuedu

More information

Suboptimal feedback control of PDEs by solving Hamilton-Jacobi Bellman equations on sparse grids

Suboptimal feedback control of PDEs by solving Hamilton-Jacobi Bellman equations on sparse grids Suboptimal feedback control of PDEs by solving Hamilton-Jacobi Bellman equations on sparse grids Jochen Garcke joint work with Axel Kröner, INRIA Saclay and CMAP, Ecole Polytechnique Ilja Kalmykov, Universität

More information

Initialization of the Shooting Method via the Hamilton-Jacobi-Bellman Approach

Initialization of the Shooting Method via the Hamilton-Jacobi-Bellman Approach DOI 10.1007/s10957-010-9649-6 Initialization of the Shooting Method via the Hamilton-Jacobi-Bellman Approach E. Cristiani P. Martinon Springer Science+Business Media, LLC 2010 Abstract The aim of this

More information

Pontryagin s maximum principle

Pontryagin s maximum principle Pontryagin s maximum principle Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2012 Emo Todorov (UW) AMATH/CSE 579, Winter 2012 Lecture 5 1 / 9 Pontryagin

More information

Filtered scheme and error estimate for first order Hamilton-Jacobi equations

Filtered scheme and error estimate for first order Hamilton-Jacobi equations and error estimate for first order Hamilton-Jacobi equations Olivier Bokanowski 1 Maurizio Falcone 2 2 1 Laboratoire Jacques-Louis Lions, Université Paris-Diderot (Paris 7) 2 SAPIENZA - Università di Roma

More information

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011 Department of Probability and Mathematical Statistics Faculty of Mathematics and Physics, Charles University in Prague petrasek@karlin.mff.cuni.cz Seminar in Stochastic Modelling in Economics and Finance

More information

Value Function and Optimal Trajectories for some State Constrained Control Problems

Value Function and Optimal Trajectories for some State Constrained Control Problems Value Function and Optimal Trajectories for some State Constrained Control Problems Hasnaa Zidani ENSTA ParisTech, Univ. of Paris-saclay "Control of State Constrained Dynamical Systems" Università di Padova,

More information

Chapter 5. Pontryagin s Minimum Principle (Constrained OCP)

Chapter 5. Pontryagin s Minimum Principle (Constrained OCP) Chapter 5 Pontryagin s Minimum Principle (Constrained OCP) 1 Pontryagin s Minimum Principle Plant: (5-1) u () t U PI: (5-2) Boundary condition: The goal is to find Optimal Control. 2 Pontryagin s Minimum

More information

Optimal Control Theory

Optimal Control Theory Optimal Control Theory The theory Optimal control theory is a mature mathematical discipline which provides algorithms to solve various control problems The elaborate mathematical machinery behind optimal

More information

Hyperbolicity of Systems Describing Value Functions in Differential Games which Model Duopoly Problems. Joanna Zwierzchowska

Hyperbolicity of Systems Describing Value Functions in Differential Games which Model Duopoly Problems. Joanna Zwierzchowska Decision Making in Manufacturing and Services Vol. 9 05 No. pp. 89 00 Hyperbolicity of Systems Describing Value Functions in Differential Games which Model Duopoly Problems Joanna Zwierzchowska Abstract.

More information

Deterministic Dynamic Programming

Deterministic Dynamic Programming Deterministic Dynamic Programming 1 Value Function Consider the following optimal control problem in Mayer s form: V (t 0, x 0 ) = inf u U J(t 1, x(t 1 )) (1) subject to ẋ(t) = f(t, x(t), u(t)), x(t 0

More information

INFINITE TIME HORIZON OPTIMAL CONTROL OF THE SEMILINEAR HEAT EQUATION

INFINITE TIME HORIZON OPTIMAL CONTROL OF THE SEMILINEAR HEAT EQUATION Nonlinear Funct. Anal. & Appl., Vol. 7, No. (22), pp. 69 83 INFINITE TIME HORIZON OPTIMAL CONTROL OF THE SEMILINEAR HEAT EQUATION Mihai Sîrbu Abstract. We consider here the infinite horizon control problem

More information

Second Order Sufficient Conditions for Optimal Control Problems with Non-unique Minimizers

Second Order Sufficient Conditions for Optimal Control Problems with Non-unique Minimizers 2 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July 2, 2 WeA22. Second Order Sufficient Conditions for Optimal Control Problems with Non-unique Minimizers Christos Gavriel

More information

Optimal Control. Lecture 18. Hamilton-Jacobi-Bellman Equation, Cont. John T. Wen. March 29, Ref: Bryson & Ho Chapter 4.

Optimal Control. Lecture 18. Hamilton-Jacobi-Bellman Equation, Cont. John T. Wen. March 29, Ref: Bryson & Ho Chapter 4. Optimal Control Lecture 18 Hamilton-Jacobi-Bellman Equation, Cont. John T. Wen Ref: Bryson & Ho Chapter 4. March 29, 2004 Outline Hamilton-Jacobi-Bellman (HJB) Equation Iterative solution of HJB Equation

More information

AN OVERVIEW OF STATIC HAMILTON-JACOBI EQUATIONS. 1. Introduction

AN OVERVIEW OF STATIC HAMILTON-JACOBI EQUATIONS. 1. Introduction AN OVERVIEW OF STATIC HAMILTON-JACOBI EQUATIONS JAMES C HATELEY Abstract. There is a voluminous amount of literature on Hamilton-Jacobi equations. This paper reviews some of the existence and uniqueness

More information

A Remark on IVP and TVP Non-Smooth Viscosity Solutions to Hamilton-Jacobi Equations

A Remark on IVP and TVP Non-Smooth Viscosity Solutions to Hamilton-Jacobi Equations 2005 American Control Conference June 8-10, 2005. Portland, OR, USA WeB10.3 A Remark on IVP and TVP Non-Smooth Viscosity Solutions to Hamilton-Jacobi Equations Arik Melikyan, Andrei Akhmetzhanov and Naira

More information

Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids

Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids Wegelerstraße 6 53115 Bonn Germany phone +49 228 73-3427 fax +49 228 73-7527 www.ins.uni-bonn.de Jochen Garcke and Axel Kröner Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse

More information

The Hopf - Lax solution for state dependent Hamilton - Jacobi equations

The Hopf - Lax solution for state dependent Hamilton - Jacobi equations The Hopf - Lax solution for state dependent Hamilton - Jacobi equations Italo Capuzzo Dolcetta Dipartimento di Matematica, Università di Roma - La Sapienza 1 Introduction Consider the Hamilton - Jacobi

More information

EN Applied Optimal Control Lecture 8: Dynamic Programming October 10, 2018

EN Applied Optimal Control Lecture 8: Dynamic Programming October 10, 2018 EN530.603 Applied Optimal Control Lecture 8: Dynamic Programming October 0, 08 Lecturer: Marin Kobilarov Dynamic Programming (DP) is conerned with the computation of an optimal policy, i.e. an optimal

More information

Optimal Control. Macroeconomics II SMU. Ömer Özak (SMU) Economic Growth Macroeconomics II 1 / 112

Optimal Control. Macroeconomics II SMU. Ömer Özak (SMU) Economic Growth Macroeconomics II 1 / 112 Optimal Control Ömer Özak SMU Macroeconomics II Ömer Özak (SMU) Economic Growth Macroeconomics II 1 / 112 Review of the Theory of Optimal Control Section 1 Review of the Theory of Optimal Control Ömer

More information

Deterministic Minimax Impulse Control

Deterministic Minimax Impulse Control Deterministic Minimax Impulse Control N. El Farouq, Guy Barles, and P. Bernhard March 02, 2009, revised september, 15, and october, 21, 2009 Abstract We prove the uniqueness of the viscosity solution of

More information

HJ equations. Reachability analysis. Optimal control problems

HJ equations. Reachability analysis. Optimal control problems HJ equations. Reachability analysis. Optimal control problems Hasnaa Zidani 1 1 ENSTA Paris-Tech & INRIA-Saclay Graz, 8-11 September 2014 H. Zidani (ENSTA & Inria) HJ equations. Reachability analysis -

More information

The principle of least action and two-point boundary value problems in orbital mechanics

The principle of least action and two-point boundary value problems in orbital mechanics The principle of least action and two-point boundary value problems in orbital mechanics Seung Hak Han and William M McEneaney Abstract We consider a two-point boundary value problem (TPBVP) in orbital

More information

arxiv: v1 [math.na] 29 Jul 2018

arxiv: v1 [math.na] 29 Jul 2018 AN EFFICIENT DP ALGORITHM ON A TREE-STRUCTURE FOR FINITE HORIZON OPTIMAL CONTROL PROBLEMS ALESSANDRO ALLA, MAURIZIO FALCONE, LUCA SALUZZI arxiv:87.8v [math.na] 29 Jul 28 Abstract. The classical Dynamic

More information

Numerical methods for nonlinear optimal control problems

Numerical methods for nonlinear optimal control problems Title: Name: Affil./Addr.: Numerical metods for nonlinear optimal control problems Lars Grüne Matematical Institute, University of Bayreut, 95440 Bayreut, Germany (e-mail: lars.gruene@uni-bayreut.de) Numerical

More information

A Semi-Lagrangian scheme for a regularized version of the Hughes model for pedestrian flow

A Semi-Lagrangian scheme for a regularized version of the Hughes model for pedestrian flow A Semi-Lagrangian scheme for a regularized version of the Hughes model for pedestrian flow Adriano FESTA Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences

More information

Computational Issues in Nonlinear Dynamics and Control

Computational Issues in Nonlinear Dynamics and Control Computational Issues in Nonlinear Dynamics and Control Arthur J. Krener ajkrener@ucdavis.edu Supported by AFOSR and NSF Typical Problems Numerical Computation of Invariant Manifolds Typical Problems Numerical

More information

HOMOGENIZATION OF METRIC HAMILTON-JACOBI EQUATIONS

HOMOGENIZATION OF METRIC HAMILTON-JACOBI EQUATIONS HOMOGENIZATION OF METRIC HAMILTON-JACOBI EQUATIONS ADAM M. OBERMAN, RYO TAKEI, AND ALEXANDER VLADIMIRSKY Abstract. In this work we provide a novel approach to homogenization for a class of static Hamilton-Jacobi

More information

Exam February h

Exam February h Master 2 Mathématiques et Applications PUF Ho Chi Minh Ville 2009/10 Viscosity solutions, HJ Equations and Control O.Ley (INSA de Rennes) Exam February 2010 3h Written-by-hands documents are allowed. Printed

More information

Mean field games and related models

Mean field games and related models Mean field games and related models Fabio Camilli SBAI-Dipartimento di Scienze di Base e Applicate per l Ingegneria Facoltà di Ingegneria Civile ed Industriale Email: Camilli@dmmm.uniroma1.it Web page:

More information

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28 OPTIMAL CONTROL Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 28 (Example from Optimal Control Theory, Kirk) Objective: To get from

More information

Direct Methods. Moritz Diehl. Optimization in Engineering Center (OPTEC) and Electrical Engineering Department (ESAT) K.U.

Direct Methods. Moritz Diehl. Optimization in Engineering Center (OPTEC) and Electrical Engineering Department (ESAT) K.U. Direct Methods Moritz Diehl Optimization in Engineering Center (OPTEC) and Electrical Engineering Department (ESAT) K.U. Leuven Belgium Overview Direct Single Shooting Direct Collocation Direct Multiple

More information

Solution of Stochastic Optimal Control Problems and Financial Applications

Solution of Stochastic Optimal Control Problems and Financial Applications Journal of Mathematical Extension Vol. 11, No. 4, (2017), 27-44 ISSN: 1735-8299 URL: http://www.ijmex.com Solution of Stochastic Optimal Control Problems and Financial Applications 2 Mat B. Kafash 1 Faculty

More information

Lecture 3: Hamilton-Jacobi-Bellman Equations. Distributional Macroeconomics. Benjamin Moll. Part II of ECON Harvard University, Spring

Lecture 3: Hamilton-Jacobi-Bellman Equations. Distributional Macroeconomics. Benjamin Moll. Part II of ECON Harvard University, Spring Lecture 3: Hamilton-Jacobi-Bellman Equations Distributional Macroeconomics Part II of ECON 2149 Benjamin Moll Harvard University, Spring 2018 1 Outline 1. Hamilton-Jacobi-Bellman equations in deterministic

More information

Singular Perturbations of Stochastic Control Problems with Unbounded Fast Variables

Singular Perturbations of Stochastic Control Problems with Unbounded Fast Variables Singular Perturbations of Stochastic Control Problems with Unbounded Fast Variables Joao Meireles joint work with Martino Bardi and Guy Barles University of Padua, Italy Workshop "New Perspectives in Optimal

More information

AN INTRODUCTION TO VISCOSITY SOLUTION THEORY. In this note, we study the general second-order fully nonlinear equations arising in various fields:

AN INTRODUCTION TO VISCOSITY SOLUTION THEORY. In this note, we study the general second-order fully nonlinear equations arising in various fields: AN INTRODUCTION TO VISCOSITY SOLUTION THEORY QING LIU AND XIAODAN ZHOU 1. Introduction to Fully Nonlinear Equations In this note, we study the general second-order fully nonlinear equations arising in

More information

Hausdorff Continuous Viscosity Solutions of Hamilton-Jacobi Equations

Hausdorff Continuous Viscosity Solutions of Hamilton-Jacobi Equations Hausdorff Continuous Viscosity Solutions of Hamilton-Jacobi Equations R Anguelov 1,2, S Markov 2,, F Minani 3 1 Department of Mathematics and Applied Mathematics, University of Pretoria 2 Institute of

More information

Duality and dynamics in Hamilton-Jacobi theory for fully convex problems of control

Duality and dynamics in Hamilton-Jacobi theory for fully convex problems of control Duality and dynamics in Hamilton-Jacobi theory for fully convex problems of control RTyrrell Rockafellar and Peter R Wolenski Abstract This paper describes some recent results in Hamilton- Jacobi theory

More information

Lipschitz continuity for solutions of Hamilton-Jacobi equation with Ornstein-Uhlenbeck operator

Lipschitz continuity for solutions of Hamilton-Jacobi equation with Ornstein-Uhlenbeck operator Lipschitz continuity for solutions of Hamilton-Jacobi equation with Ornstein-Uhlenbeck operator Thi Tuyen Nguyen Ph.D student of University of Rennes 1 Joint work with: Prof. E. Chasseigne(University of

More information

Theoretical Tutorial Session 2

Theoretical Tutorial Session 2 1 / 36 Theoretical Tutorial Session 2 Xiaoming Song Department of Mathematics Drexel University July 27, 216 Outline 2 / 36 Itô s formula Martingale representation theorem Stochastic differential equations

More information

SOLVING NONLINEAR OPTIMAL CONTROL PROBLEMS WITH STATE AND CONTROL DELAYS BY SHOOTING METHODS COMBINED WITH NUMERICAL CONTINUATION ON THE DELAYS

SOLVING NONLINEAR OPTIMAL CONTROL PROBLEMS WITH STATE AND CONTROL DELAYS BY SHOOTING METHODS COMBINED WITH NUMERICAL CONTINUATION ON THE DELAYS 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 34 35 36 SOLVING NONLINEAR OPTIMAL CONTROL PROBLEMS WITH STATE AND CONTROL DELAYS BY SHOOTING METHODS COMBINED WITH

More information

ECON 582: An Introduction to the Theory of Optimal Control (Chapter 7, Acemoglu) Instructor: Dmytro Hryshko

ECON 582: An Introduction to the Theory of Optimal Control (Chapter 7, Acemoglu) Instructor: Dmytro Hryshko ECON 582: An Introduction to the Theory of Optimal Control (Chapter 7, Acemoglu) Instructor: Dmytro Hryshko Continuous-time optimization involves maximization wrt to an innite dimensional object, an entire

More information

Computation of an Over-Approximation of the Backward Reachable Set using Subsystem Level Set Functions. Stanford University, Stanford, CA 94305

Computation of an Over-Approximation of the Backward Reachable Set using Subsystem Level Set Functions. Stanford University, Stanford, CA 94305 To appear in Dynamics of Continuous, Discrete and Impulsive Systems http:monotone.uwaterloo.ca/ journal Computation of an Over-Approximation of the Backward Reachable Set using Subsystem Level Set Functions

More information

On differential games with long-time-average cost

On differential games with long-time-average cost On differential games with long-time-average cost Martino Bardi Dipartimento di Matematica Pura ed Applicata Università di Padova via Belzoni 7, 35131 Padova, Italy bardi@math.unipd.it Abstract The paper

More information

THE PONTRYAGIN MAXIMUM PRINCIPLE FROM DYNAMIC PROGRAMMING AND VISCOSITY SOLUTIONS TO FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS

THE PONTRYAGIN MAXIMUM PRINCIPLE FROM DYNAMIC PROGRAMMING AND VISCOSITY SOLUTIONS TO FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS transactions of the american mathematical society Volume 298, Number 2, December 1986 THE PONTRYAGIN MAXIMUM PRINCIPLE FROM DYNAMIC PROGRAMMING AND VISCOSITY SOLUTIONS TO FIRST-ORDER PARTIAL DIFFERENTIAL

More information

Optimal Control. McGill COMP 765 Oct 3 rd, 2017

Optimal Control. McGill COMP 765 Oct 3 rd, 2017 Optimal Control McGill COMP 765 Oct 3 rd, 2017 Classical Control Quiz Question 1: Can a PID controller be used to balance an inverted pendulum: A) That starts upright? B) That must be swung-up (perhaps

More information

Linear conic optimization for nonlinear optimal control

Linear conic optimization for nonlinear optimal control Linear conic optimization for nonlinear optimal control Didier Henrion 1,2,3, Edouard Pauwels 1,2 Draft of July 15, 2014 Abstract Infinite-dimensional linear conic formulations are described for nonlinear

More information

Regularity and approximations of generalized equations; applications in optimal control

Regularity and approximations of generalized equations; applications in optimal control SWM ORCOS Operations Research and Control Systems Regularity and approximations of generalized equations; applications in optimal control Vladimir M. Veliov (Based on joint works with A. Dontchev, M. Krastanov,

More information

Introduction to Optimal Control Theory and Hamilton-Jacobi equations. Seung Yeal Ha Department of Mathematical Sciences Seoul National University

Introduction to Optimal Control Theory and Hamilton-Jacobi equations. Seung Yeal Ha Department of Mathematical Sciences Seoul National University Introduction to Optimal Control Theory and Hamilton-Jacobi equations Seung Yeal Ha Department of Mathematical Sciences Seoul National University 1 A priori message from SYHA The main purpose of these series

More information

A Survey of Computational High Frequency Wave Propagation II. Olof Runborg NADA, KTH

A Survey of Computational High Frequency Wave Propagation II. Olof Runborg NADA, KTH A Survey of Computational High Frequency Wave Propagation II Olof Runborg NADA, KTH High Frequency Wave Propagation CSCAMM, September 19-22, 2005 Numerical methods Direct methods Wave equation (time domain)

More information

Measures and LMIs for optimal control of piecewise-affine systems

Measures and LMIs for optimal control of piecewise-affine systems Measures and LMIs for optimal control of piecewise-affine systems M. Rasheed Abdalmoaty 1, Didier Henrion 2, Luis Rodrigues 3 November 14, 2012 Abstract This paper considers the class of deterministic

More information

arxiv: v1 [math.na] 28 Dec 2018

arxiv: v1 [math.na] 28 Dec 2018 ERROR ESTIMATES FOR A TREE STRUCTURE ALGORITHM SOLVING FINITE HORIZON CONTROL PROBLEMS LUCA SALUZZI, ALESSANDRO ALLA, MAURIZIO FALCONE, arxiv:1812.11194v1 [math.na] 28 Dec 2018 Abstract. In the Dynamic

More information

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Controlled Diffusions and Hamilton-Jacobi Bellman Equations Controlled Diffusions and Hamilton-Jacobi Bellman Equations Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

HAMILTON-JACOBI THEORY AND PARAMETRIC ANALYSIS IN FULLY CONVEX PROBLEMS OF OPTIMAL CONTROL. R. T. Rockafellar 1

HAMILTON-JACOBI THEORY AND PARAMETRIC ANALYSIS IN FULLY CONVEX PROBLEMS OF OPTIMAL CONTROL. R. T. Rockafellar 1 HAMILTON-JACOBI THEORY AND PARAMETRIC ANALYSIS IN FULLY CONVEX PROBLEMS OF OPTIMAL CONTROL R. T. Rockafellar 1 Department of Mathematics, Box 354350 University of Washington, Seattle, WA 98195-4350 rtr@math.washington.edu

More information

New improvements in the optimization of the launcher ascent trajectory through the HJB approach

New improvements in the optimization of the launcher ascent trajectory through the HJB approach 7 TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) New improvements in the optimization of the launcher ascent trajectory through the HJB approach Eric Bourgeois*, Olivier Bokanowski

More information

Second-order optimality conditions for state-constrained optimal control problems

Second-order optimality conditions for state-constrained optimal control problems Second-order optimality conditions for state-constrained optimal control problems J. Frédéric Bonnans INRIA-Saclay & CMAP, Ecole Polytechnique, France Joint work with Audrey Hermant, INRIA-Saclay & CMAP

More information

Viscosity Solutions for Dummies (including Economists)

Viscosity Solutions for Dummies (including Economists) Viscosity Solutions for Dummies (including Economists) Online Appendix to Income and Wealth Distribution in Macroeconomics: A Continuous-Time Approach written by Benjamin Moll August 13, 2017 1 Viscosity

More information

IEOR 265 Lecture 14 (Robust) Linear Tube MPC

IEOR 265 Lecture 14 (Robust) Linear Tube MPC IEOR 265 Lecture 14 (Robust) Linear Tube MPC 1 LTI System with Uncertainty Suppose we have an LTI system in discrete time with disturbance: x n+1 = Ax n + Bu n + d n, where d n W for a bounded polytope

More information

Introduction to optimal control theory in continuos time (with economic applications) Salvatore Federico

Introduction to optimal control theory in continuos time (with economic applications) Salvatore Federico Introduction to optimal control theory in continuos time (with economic applications) Salvatore Federico June 26, 2017 2 Contents 1 Introduction to optimal control problems in continuous time 5 1.1 From

More information

A Dijkstra-type algorithm for dynamic games

A Dijkstra-type algorithm for dynamic games Journal Name manuscript No. (will be inserted by the editor) A Dijkstra-type algorithm for dynamic games Martino Bardi Juan Pablo Maldonado López Received: date / Accepted: date Abstract We study zero-sum

More information

LINEAR-CONVEX CONTROL AND DUALITY

LINEAR-CONVEX CONTROL AND DUALITY 1 LINEAR-CONVEX CONTROL AND DUALITY R.T. Rockafellar Department of Mathematics, University of Washington Seattle, WA 98195-4350, USA Email: rtr@math.washington.edu R. Goebel 3518 NE 42 St., Seattle, WA

More information

A problem of portfolio/consumption choice in a. liquidity risk model with random trading times

A problem of portfolio/consumption choice in a. liquidity risk model with random trading times A problem of portfolio/consumption choice in a liquidity risk model with random trading times Huyên PHAM Special Semester on Stochastics with Emphasis on Finance, Kick-off workshop, Linz, September 8-12,

More information

A Semi-Lagrangian Scheme for the Open Table Problem in Granular Matter Theory

A Semi-Lagrangian Scheme for the Open Table Problem in Granular Matter Theory A Semi-Lagrangian Scheme for the Open Table Problem in Granular Matter Theory M. Falcone and S. Finzi Vita Abstract We introduce and analyze a new scheme for the approximation of the two-layer model proposed

More information

Remarks on Quadratic Hamiltonians in Spaceflight Mechanics

Remarks on Quadratic Hamiltonians in Spaceflight Mechanics Remarks on Quadratic Hamiltonians in Spaceflight Mechanics Bernard Bonnard 1, Jean-Baptiste Caillau 2, and Romain Dujol 2 1 Institut de mathématiques de Bourgogne, CNRS, Dijon, France, bernard.bonnard@u-bourgogne.fr

More information

An Integral-type Constraint Qualification for Optimal Control Problems with State Constraints

An Integral-type Constraint Qualification for Optimal Control Problems with State Constraints An Integral-type Constraint Qualification for Optimal Control Problems with State Constraints S. Lopes, F. A. C. C. Fontes and M. d. R. de Pinho Officina Mathematica report, April 4, 27 Abstract Standard

More information

Further Results on the Bellman Equation for Optimal Control Problems with Exit Times and Nonnegative Instantaneous Costs

Further Results on the Bellman Equation for Optimal Control Problems with Exit Times and Nonnegative Instantaneous Costs Further Results on the Bellman Equation for Optimal Control Problems with Exit Times and Nonnegative Instantaneous Costs Michael Malisoff Systems Science and Mathematics Dept. Washington University in

More information

Stochastic optimal control with rough paths

Stochastic optimal control with rough paths Stochastic optimal control with rough paths Paul Gassiat TU Berlin Stochastic processes and their statistics in Finance, Okinawa, October 28, 2013 Joint work with Joscha Diehl and Peter Friz Introduction

More information

Neighboring feasible trajectories in infinite dimension

Neighboring feasible trajectories in infinite dimension Neighboring feasible trajectories in infinite dimension Marco Mazzola Université Pierre et Marie Curie (Paris 6) H. Frankowska and E. M. Marchini Control of State Constrained Dynamical Systems Padova,

More information

Convergence of a first order scheme for a non local eikonal equation

Convergence of a first order scheme for a non local eikonal equation Convergence of a first order scheme for a non local eikonal equation O. Alvarez, E. Carlini, R. Monneau, E. Rouy March 22, 2005 Abstract We prove the convergence of a first order finite difference scheme

More information

On the stability of receding horizon control with a general terminal cost

On the stability of receding horizon control with a general terminal cost On the stability of receding horizon control with a general terminal cost Ali Jadbabaie and John Hauser Abstract We study the stability and region of attraction properties of a family of receding horizon

More information

arxiv: v1 [math.oc] 9 Oct 2018

arxiv: v1 [math.oc] 9 Oct 2018 A Convex Optimization Approach to Dynamic Programming in Continuous State and Action Spaces Insoon Yang arxiv:1810.03847v1 [math.oc] 9 Oct 2018 Abstract A convex optimization-based method is proposed to

More information

On the Stability of the Best Reply Map for Noncooperative Differential Games

On the Stability of the Best Reply Map for Noncooperative Differential Games On the Stability of the Best Reply Map for Noncooperative Differential Games Alberto Bressan and Zipeng Wang Department of Mathematics, Penn State University, University Park, PA, 68, USA DPMMS, University

More information

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations S. Y. Ha and J. Park Department of Mathematical Sciences Seoul National University Sep 23, 2013 Contents 1 Logistic Map 2 Euler and

More information

Problem 1 Cost of an Infinite Horizon LQR

Problem 1 Cost of an Infinite Horizon LQR THE UNIVERSITY OF TEXAS AT SAN ANTONIO EE 5243 INTRODUCTION TO CYBER-PHYSICAL SYSTEMS H O M E W O R K # 5 Ahmad F. Taha October 12, 215 Homework Instructions: 1. Type your solutions in the LATEX homework

More information

Optimal Control Using Bisimulations: Implementation

Optimal Control Using Bisimulations: Implementation Optimal Control Using Bisimulations: Implementation Mireille Broucke, Maria Domenica Di Benedetto, Stefano Di Gennaro, and Alberto Sangiovanni-Vincentelli Dept. of Electrical Engineering and Computer Sciences,

More information

Weak Convergence of Numerical Methods for Dynamical Systems and Optimal Control, and a relation with Large Deviations for Stochastic Equations

Weak Convergence of Numerical Methods for Dynamical Systems and Optimal Control, and a relation with Large Deviations for Stochastic Equations Weak Convergence of Numerical Methods for Dynamical Systems and, and a relation with Large Deviations for Stochastic Equations Mattias Sandberg KTH CSC 2010-10-21 Outline The error representation for weak

More information

An Introduction to Noncooperative Games

An Introduction to Noncooperative Games An Introduction to Noncooperative Games Alberto Bressan Department of Mathematics, Penn State University Alberto Bressan (Penn State) Noncooperative Games 1 / 29 introduction to non-cooperative games:

More information

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Alberto Bressan ) and Khai T. Nguyen ) *) Department of Mathematics, Penn State University **) Department of Mathematics,

More information

University Of Calgary Department of Mathematics and Statistics

University Of Calgary Department of Mathematics and Statistics University Of Calgary Department of Mathematics and Statistics Hawkes Seminar May 23, 2018 1 / 46 Some Problems in Insurance and Reinsurance Mohamed Badaoui Department of Electrical Engineering National

More information

A Dijkstra-type algorithm for dynamic games

A Dijkstra-type algorithm for dynamic games A Dijkstra-type algorithm for dynamic games Martino Bardi, Juan Pablo Maldonado Lopez To cite this version: Martino Bardi, Juan Pablo Maldonado Lopez. A Dijkstra-type algorithm for dynamic games. 2015.

More information

Numerical Algorithm for Optimal Control of Continuity Equations

Numerical Algorithm for Optimal Control of Continuity Equations Numerical Algorithm for Optimal Control of Continuity Equations Nikolay Pogodaev Matrosov Institute for System Dynamics and Control Theory Lermontov str., 134 664033 Irkutsk, Russia Krasovskii Institute

More information

Penalty and Barrier Methods General classical constrained minimization problem minimize f(x) subject to g(x) 0 h(x) =0 Penalty methods are motivated by the desire to use unconstrained optimization techniques

More information

Iterative methods to compute center and center-stable manifolds with application to the optimal output regulation problem

Iterative methods to compute center and center-stable manifolds with application to the optimal output regulation problem Iterative methods to compute center and center-stable manifolds with application to the optimal output regulation problem Noboru Sakamoto, Branislav Rehak N.S.: Nagoya University, Department of Aerospace

More information

Continuation from a flat to a round Earth model in the coplanar orbit transfer problem

Continuation from a flat to a round Earth model in the coplanar orbit transfer problem Continuation from a flat to a round Earth model in the coplanar orbit transfer problem M. Cerf 1, T. Haberkorn, Emmanuel Trélat 1 1 EADS Astrium, les Mureaux 2 MAPMO, Université d Orléans First Industrial

More information

A Variational Approach to Trajectory Planning for Persistent Monitoring of Spatiotemporal Fields

A Variational Approach to Trajectory Planning for Persistent Monitoring of Spatiotemporal Fields A Variational Approach to Trajectory Planning for Persistent Monitoring of Spatiotemporal Fields Xiaodong Lan and Mac Schwager Abstract This paper considers the problem of planning a trajectory for a sensing

More information

ANALYTIC SOLUTIONS FOR HAMILTON-JACOBI-BELLMAN EQUATIONS

ANALYTIC SOLUTIONS FOR HAMILTON-JACOBI-BELLMAN EQUATIONS Electronic Journal of Differential Equations, Vol. 2016 2016), No. 08, pp. 1 11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ANALYTIC SOLUTIONS FOR HAMILTON-JACOBI-BELLMAN

More information

A Monotone Scheme for Hamilton-Jacobi Equations via the Nonstandard Finite Difference Method

A Monotone Scheme for Hamilton-Jacobi Equations via the Nonstandard Finite Difference Method A Monotone Scheme for Hamilton-Jacobi Equations via the Nonstandard Finite Difference Method Roumen Anguelov, Jean M-S Lubuma and Froduald Minani Department of Mathematics and Applied Mathematics University

More information

A Gauss Lobatto quadrature method for solving optimal control problems

A Gauss Lobatto quadrature method for solving optimal control problems ANZIAM J. 47 (EMAC2005) pp.c101 C115, 2006 C101 A Gauss Lobatto quadrature method for solving optimal control problems P. Williams (Received 29 August 2005; revised 13 July 2006) Abstract This paper proposes

More information

UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory

UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory Constrained Innite-Time Nonlinear Quadratic Optimal Control V. Manousiouthakis D. Chmielewski Chemical Engineering Department UCLA 1998 AIChE Annual Meeting Outline Unconstrained Innite-Time Nonlinear

More information

Continuous dependence estimates for the ergodic problem with an application to homogenization

Continuous dependence estimates for the ergodic problem with an application to homogenization Continuous dependence estimates for the ergodic problem with an application to homogenization Claudio Marchi Bayreuth, September 12 th, 2013 C. Marchi (Università di Padova) Continuous dependence Bayreuth,

More information