1 Brownian Local Time

Size: px
Start display at page:

Download "1 Brownian Local Time"

Transcription

1 1 Brownian Local Time We first begin by defining the space and variables for Brownian local time. Let W t be a standard 1-D Wiener process. We know that for the set, {t : W t = } P (µ{t : W t = } = ) = 1 with probability one. For µ the Lebesgue measure. What about the time the Wiener process spends near zero? Define 1 L t (x) = lim ɛ 4ɛ µ({ s t : W s x ɛ}). Paul Léve first proved that L exists and is finite and non-trivial (not identically equal to zero). He first referred to it as le mesure du voisinage or the measure of the vicinity (of the Wiener process). We start first with the occupation time of the Wiener process. Let F t be a filtration on (Ω, F, P ). F t may be the (usual augmentation of) σ-algebra generated by a k-dimensional Wiener process W t up to time t: F t = σ({w s : s t}). We also denote {P } as the probability measure corresponding to the Wiener process with W =. This can be generalized for W = z easily. For any B R, Γ t (B) = χ {Ws B} ds = measure{ s t : W s B} Then Γ(B) as a process of t, is adapted and continuous with respect to F t. We can write the above equation using L t, Γ t (B) = 2L t (x, ω) dx (1) In terms of the Radon-Nikodyn derivative B L t = 1 dγ t 2 dx or the rate of change of the occupation measure with respect to the Lebesgue measure. Definition of L t Let L = {L t (x, ω); (t, x) [, ) R, ω Ω} be a random field with values in [, ), s.t. for all (t, x) the RV L t (x) is F t -measurable. Suppose that there exists Ω F such that P (Ω ) = 1 and for each ω Ω (t, x) L t (x) is continuous and equation (1) holds, then L is called Brownian Local Time (BLT). 1.1 Intuition of BLT Formally we want L t (a, ω) = δ(w s a) ds

2 So let s find a way to use Itô s rule to derive an equation for L. Want to find a φ(x) such that dφ(w t ) = φ (W t )dw t φ (W t )(dw t ) 2 and φ = δ. Using the idea of distributional derivatives define { x < a φ(x) = x x a Then, distributionally, φ (x) = for x < a and φ (x) = 1 x a. Then or We write dφ(w t ) = H(W t a) dw t δ(w t a)(dw t ) 2 dφ(w t ) = H(W t a) dw t δ(w t a)dt L t (a) = (W t a) + (W a) + χ {Ws a} dw s (2) Now you can see why we chose to define 2L t before because of the factor of 1/2 that arises from the Itô formula. This discussion can be made rigorous using a regularization technique, see Proposition (3.6.8 of [2]) for full proof. The existence of Brownian Local Time is proven in the Trotter Existence Theorem [2]. Important Remark: The process (W t a) + is a continuous, non-negative submartingale (because it is a convex function of a continuous submartingale Prop of [2]). Thus it admits a Doob decomposition, (W t a) + = (W a) + + M t (a) + A t (a), t <, where M t (a) is a martingale, and A t (a) is a continuous, increasing process. Thus we know that L t is increasing. Also, by symmetry, we can take equation (2) and reflect it about the line y=a. Then adding it to equation (2) we get 2L t (a) = W t a W a sgn(w s a) dw s ; t <. where sgn(x) = 1 x < and 1 for x. However, it doesn t matter how we define sgn. The above equation gives a definition for L t and W t in terms of each other. 2 Connection of Local Time to The Running Maximum of BM Lemma: (The Skorohod equation (1961)) Let z be a given number and y( ) = {y(t); t < } a continuous function with y() =. Then there exists a unique continuous function k( ) = {k(t); t < }, such that 2

3 1. x(t) = z + y(t) + k(t), is a positive continuous function for all t < 2. k() =, k( ) is nondecreasing, and 3. k( ) is constant on the sets {t ; x(t) } which implies χ {x(s)>} dk(s) =. k(t) = max[, max{ (z + y(s))}], t < s t Proof. With the definition of k, (i),(ii) are done. For the flat off part (iii) we need to show χ {x(s)>ɛ} dk(s) = for all ɛ >. Let (t 1, t 2 ) {s ; x(s) > ɛ} and (z + y(s)) = k(s) x(s) k(t 2 ) ɛ; t 1 s t 2 because x(s) > ɛ. However, because k is non-decreasing, k(t 2 ) = max[k(t 1 ), max t 1 s t 2 { (z + y(s))}] max[k(t 1 ), k(t 2 ) ɛ] Thus k(t 2 ) = k(t 1 ). For uniqueness, let k and k be continuous with i iii and x and x be the corresponding solutions. Suppose there exists T > with x(t ) > x(t ). Then define τ = max{ t T ; x(t) x(t) = }. But k is flat on {u ; x(u) > }, thus k(τ) = k(t ) and therefore < x(t ) x(t ) = k(t ) k(t ) k(τ) k(τ) = x(τ) x(τ) because y is the same for each x. This is a contradiction because x(τ) x(τ) =. Thus x(t ) x(t ) and k k. Now repeat for k k. Back to 2L t (a) = W t a W a or for a = and W =, First note that W t = sgn(w s ) dw s +2L t () }{{} B t = E[ B t 2 ] = B t sgn(w s a) dw s ; t <. sgn(w s ) 2 ds = t. (3) Thus B t is a Brownian Motion. Also, by the Skorohod equation above, L t is nondecreasing and. χ {R\{}} dl t () = 3

4 At the same time, note that where y = B, z = and k = 2L. or k(t) = max[, max{ (z + y(s))}] s t 2L t = max[, max s t {(B t)}] in the sense of distribution. Theorem(P. Lévy 1948). The pairs of processes {(M W t W t, M W t ); t < } and {( W t, 2L t (); t < } where M W t = max s t W s, have the same laws under P. Proof. Because of uniqueness of the Skorohod equations, k = 2L t and k = M B t. Also, W t = M W t B t for P almost every ω Ω. Because we have shown that B t is a Brownian motion [Eq. (3)], both B and W are Brownian motions starting at the origin under P. 3 Existence and Uniqueness for SDE with one discontinuity 3.1 Weak Solution Consider the one dimensional SDE dx t = b(x t ) dt + σ(x t ) dw t, (4) where b and σ are bounded measurable functions. Definition: A weak solution of equation (4) is a triple (X, W ), (Ω, F, P ), {F t }, where (Ω, F, P ) is a probability space, and {F t } is a filtration satisfying the usual conditions. X = {X t, F t ; t < } is a continuous, adapted R valued process. and W = {W t, F t ; t < } is a 1-D Brownian motion. For every t <, P ( [ b(x s ) + σ 2 (X s ) ds < ) = 1 The integral version of equation (4) holds almost surely for t <. Ex: Tanaka Consider, X t = sgn(x t ) dw t, t < (5) Note that if (X, W ), (Ω, F, P ), {F t } is a weak solution then ( X, W ), (Ω, F, P ), {F t } is also a weak solution. First note that X t is a 1-D Brownian motion (i.e. X t = t), and thus given X = {X t, Ft X ; t < }, where Ft X is the augmented filtration under P, then W t = sgn(x s ) dx s, 4

5 is a BM adapted to {Ft X }. It can be shown that (X, W ), (Ω, F, P ), {Ft X } is a weak solution to equation (5) where {Ft X } (see Corollary [2]). Assume that X t is a strong solution with Ft X Ft W for all t. Then from equation (5), X is a BM and from the Tanaka Formula, W t = sgn(x s ) dx s = X t 2L X t (). Consequently Ft W F X t, and thus Ft X F X t by assumption, for all t. This is a contradiction; the information generated by X can not contain information about the original process. 3.2 Existence and Uniqueness Proof Consider SDE (4) where σ(x) = D 1 for X > and D for X, b is some piecewise continuous function with possibly one jump at X =, and X =. I.e. { b1 (X dx t = t ) dt + D 1 dw t X t > b (X t ) dt + D dw t X t. A system similar to the one above is studied in [5, 6] and referred to as sliding dynamics. First intuition would be to build a solution of X, then at the random time that X t hits X =, use the definitions of σ and b to build the solution again. However, we know that given W = and any time interval t [, ɛ] ɛ >, W t will hit zero infinitely often in that time interval. We would expect X to do the same. By Theorem [2], σ > ɛ for some ɛ > implies there exists a weak solution. We will use this fact to prove the existence and uniqueness of a strong solution. To do so we use a theorem that, given a weak solution and pathwise uniqueness, the weak solution is actually a strong one. First we define pathwise uniqueness as: Definition: Suppose that whenever (X, W ), (Ω, F, P ), {F t } and ( X, W ), (Ω, F, P ), { F t } are weak solutions to SDE (4), with a common BM W on a common probability space, and P (X = X ) = 1, then pathwise uniqueness hold for equation (4) if P (X t = X t, t < ) = 1. Then a theorem by Yamada and Watanabe imply there exists a unique solution of SDE (4) with a given initial value on any filtered probability space carrying a BM W t. Moreover, this solution is a strong one. Theorem 1 (Yamada and Watanabe (1971) Corr 3.23 [2]). Weak existence and pathwise uniqueness imply strong existence. Before proving pathwise uniquness, we must construct a probability space and measure which we can measure two weak solutions of SDE (4). We will not discuss this step here, but refer to Theorem [1], Theorem [4], for examples of how to do so. Theorem 2 (Le Gall 1985, [3]). Suppose that there exists ɛ > such that σ(t, x) > ɛ, and there exists a strictly increasing function f : R R such that (σ(t, x) σ(t, y)) 2 f(x) f(y) for all (t, x, y). Then pathwise uniqueness holds for SDE (4). 5

6 Note: For the example of σ(x) = D 1 for X > and D for X, we consider the function { (D1 D f(x) = ) 2 + X, X X, X <. Proof. We begin by assuming there exists two solutions X 1 and X 2 on the same probability space (Ω, F, P ), with the same Wiener process W t, and initial condition X 1 = X 2 = X. Then for Y = X 1 X 2, we have χ {Ys>} Y s d Y s = (σ(xs 1 ) σ(xs 2 )) 2 χ Xs 1 Xs 2 {X 1 s Xs 2 } ds (f(xs 1 ) f(xs 2 )) 2 χ Xs 1 Xs 2 {X 1 s Xs 2 } ds < Taking C 1 approximations of f, then the integral above is finite (still needs work, what is the assumption needed for f? And using C 1 approximations in what norm?). Similarly, by the occupation time formula, χ {Ys>} Y s d Y s = 1 y LY t (y) dy, and since it is finite, and becuase 1/y dy = for an ɛ-neighborhood on the positive n + ɛ () side of (n + ɛ ()), then L X1 X 2 t () = for all t, almost surely. We now show that min{x 1, X 2 } = X 1 X 2 and max{x 1, X 2 } = X 1 X 2 are solutions to SDE (4). Note that By the Tanaka formula X 1 t X 2 t = X 1 X 2 = 1 2 (X1 + X 2 ) 1 2 X1 X 2. However, L X1 X 2 t () = a.s. for all t. Thus sgn(x 1 t X 2 t ) d(x 1 t X 2 t ) + 2L X1 X 2 t (). d(x 1 X 2 ) t = 1 2 [b(x1 t ) + b(x 1 t )] ds (σ(x1 t ) + σ(x 1 t )) dw t 1 2 [sgn(x1 t X 2 t )[b(x 1 t ) b(x 2 t )] dt + (σ(x 1 t ) σ(x 2 t )) dw t ]. You can check above, that when X 1 > X 2, only the X 2 terms remain. Thus d(x 1 X 2 ) = b((x 1 X 2 ) t ) dt + σ((x 1 X 2 ) t ) dw t, and X 1 X 2 is a solution to SDE (4). Similarly for X 1 X 2, therefore, by weak uniqueness X 1 X 2 = X 1 X 2 and thus X 1 = X 2 which gives pathwise uniqueness. 6

7 References [1] Nobuyuki Ikeda and Shinzo Watanabe. Stochastic differential equations and diffusion processes, volume 24 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, second edition, [2] Ioannis Karatzas and Steven E. Shreve. Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, [3] J.-F. Le Gall. One-dimensional stochastic differential equations involving the local times of the unknown process. In Stochastic analysis and applications (Swansea, 1983), volume 195 of Lecture Notes in Math., pages Springer, Berlin, [4] Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition, [5] D. J. W. Simpson and R. Kuske. Stochastically Perturbed Sliding Motion in Piecewise- Smooth Systems. ArXiv e-prints, April 212. [6] D. J. W. Simpson and R. Kuske. The Positive Occupation Time of Brownian Motion with Two-Valued Drift and Asymptotic Dynamics of Sliding Motion with Noise. ArXiv e-prints, April 212. [7] G. George Yin and Chao Zhu. Hybrid switching diffusions, volume 63 of Stochastic Modelling and Applied Probability. Springer, New York, 21. Properties and applications. 7

On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem

On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem Koichiro TAKAOKA Dept of Applied Physics, Tokyo Institute of Technology Abstract M Yor constructed a family

More information

The Pedestrian s Guide to Local Time

The Pedestrian s Guide to Local Time The Pedestrian s Guide to Local Time Tomas Björk, Department of Finance, Stockholm School of Economics, Box 651, SE-113 83 Stockholm, SWEDEN tomas.bjork@hhs.se November 19, 213 Preliminary version Comments

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

The Cameron-Martin-Girsanov (CMG) Theorem

The Cameron-Martin-Girsanov (CMG) Theorem The Cameron-Martin-Girsanov (CMG) Theorem There are many versions of the CMG Theorem. In some sense, there are many CMG Theorems. The first version appeared in ] in 944. Here we present a standard version,

More information

EULER MARUYAMA APPROXIMATION FOR SDES WITH JUMPS AND NON-LIPSCHITZ COEFFICIENTS

EULER MARUYAMA APPROXIMATION FOR SDES WITH JUMPS AND NON-LIPSCHITZ COEFFICIENTS Qiao, H. Osaka J. Math. 51 (14), 47 66 EULER MARUYAMA APPROXIMATION FOR SDES WITH JUMPS AND NON-LIPSCHITZ COEFFICIENTS HUIJIE QIAO (Received May 6, 11, revised May 1, 1) Abstract In this paper we show

More information

STAT 331. Martingale Central Limit Theorem and Related Results

STAT 331. Martingale Central Limit Theorem and Related Results STAT 331 Martingale Central Limit Theorem and Related Results In this unit we discuss a version of the martingale central limit theorem, which states that under certain conditions, a sum of orthogonal

More information

Stochastic integral. Introduction. Ito integral. References. Appendices Stochastic Calculus I. Geneviève Gauthier.

Stochastic integral. Introduction. Ito integral. References. Appendices Stochastic Calculus I. Geneviève Gauthier. Ito 8-646-8 Calculus I Geneviève Gauthier HEC Montréal Riemann Ito The Ito The theories of stochastic and stochastic di erential equations have initially been developed by Kiyosi Ito around 194 (one of

More information

Reflected Brownian Motion

Reflected Brownian Motion Chapter 6 Reflected Brownian Motion Often we encounter Diffusions in regions with boundary. If the process can reach the boundary from the interior in finite time with positive probability we need to decide

More information

On the submartingale / supermartingale property of diffusions in natural scale

On the submartingale / supermartingale property of diffusions in natural scale On the submartingale / supermartingale property of diffusions in natural scale Alexander Gushchin Mikhail Urusov Mihail Zervos November 13, 214 Abstract Kotani 5 has characterised the martingale property

More information

Squared Bessel Process with Delay

Squared Bessel Process with Delay Southern Illinois University Carbondale OpenSIUC Articles and Preprints Department of Mathematics 216 Squared Bessel Process with Delay Harry Randolph Hughes Southern Illinois University Carbondale, hrhughes@siu.edu

More information

LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION

LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION We will define local time for one-dimensional Brownian motion, and deduce some of its properties. We will then use the generalized Ray-Knight theorem proved in

More information

Pathwise uniqueness for stochastic differential equations driven by pure jump processes

Pathwise uniqueness for stochastic differential equations driven by pure jump processes Pathwise uniqueness for stochastic differential equations driven by pure jump processes arxiv:73.995v [math.pr] 9 Mar 7 Jiayu Zheng and Jie Xiong Abstract Based on the weak existence and weak uniqueness,

More information

ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER

ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER GERARDO HERNANDEZ-DEL-VALLE arxiv:1209.2411v1 [math.pr] 10 Sep 2012 Abstract. This work deals with first hitting time densities of Ito processes whose

More information

Applications of Ito s Formula

Applications of Ito s Formula CHAPTER 4 Applications of Ito s Formula In this chapter, we discuss several basic theorems in stochastic analysis. Their proofs are good examples of applications of Itô s formula. 1. Lévy s martingale

More information

Verona Course April Lecture 1. Review of probability

Verona Course April Lecture 1. Review of probability Verona Course April 215. Lecture 1. Review of probability Viorel Barbu Al.I. Cuza University of Iaşi and the Romanian Academy A probability space is a triple (Ω, F, P) where Ω is an abstract set, F is

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

Tools of stochastic calculus

Tools of stochastic calculus slides for the course Interest rate theory, University of Ljubljana, 212-13/I, part III József Gáll University of Debrecen Nov. 212 Jan. 213, Ljubljana Itô integral, summary of main facts Notations, basic

More information

arxiv: v2 [math.pr] 22 Aug 2009

arxiv: v2 [math.pr] 22 Aug 2009 On the structure of Gaussian random variables arxiv:97.25v2 [math.pr] 22 Aug 29 Ciprian A. Tudor SAMOS/MATISSE, Centre d Economie de La Sorbonne, Université de Panthéon-Sorbonne Paris, 9, rue de Tolbiac,

More information

A NOTE ON STOCHASTIC INTEGRALS AS L 2 -CURVES

A NOTE ON STOCHASTIC INTEGRALS AS L 2 -CURVES A NOTE ON STOCHASTIC INTEGRALS AS L 2 -CURVES STEFAN TAPPE Abstract. In a work of van Gaans (25a) stochastic integrals are regarded as L 2 -curves. In Filipović and Tappe (28) we have shown the connection

More information

On Reflecting Brownian Motion with Drift

On Reflecting Brownian Motion with Drift Proc. Symp. Stoch. Syst. Osaka, 25), ISCIE Kyoto, 26, 1-5) On Reflecting Brownian Motion with Drift Goran Peskir This version: 12 June 26 First version: 1 September 25 Research Report No. 3, 25, Probability

More information

COVARIANCE IDENTITIES AND MIXING OF RANDOM TRANSFORMATIONS ON THE WIENER SPACE

COVARIANCE IDENTITIES AND MIXING OF RANDOM TRANSFORMATIONS ON THE WIENER SPACE Communications on Stochastic Analysis Vol. 4, No. 3 (21) 299-39 Serials Publications www.serialspublications.com COVARIANCE IDENTITIES AND MIXING OF RANDOM TRANSFORMATIONS ON THE WIENER SPACE NICOLAS PRIVAULT

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

The Azéma-Yor Embedding in Non-Singular Diffusions

The Azéma-Yor Embedding in Non-Singular Diffusions Stochastic Process. Appl. Vol. 96, No. 2, 2001, 305-312 Research Report No. 406, 1999, Dept. Theoret. Statist. Aarhus The Azéma-Yor Embedding in Non-Singular Diffusions J. L. Pedersen and G. Peskir Let

More information

Unfolding the Skorohod reflection of a semimartingale

Unfolding the Skorohod reflection of a semimartingale Unfolding the Skorohod reflection of a semimartingale Vilmos Prokaj To cite this version: Vilmos Prokaj. Unfolding the Skorohod reflection of a semimartingale. Statistics and Probability Letters, Elsevier,

More information

n E(X t T n = lim X s Tn = X s

n E(X t T n = lim X s Tn = X s Stochastic Calculus Example sheet - Lent 15 Michael Tehranchi Problem 1. Let X be a local martingale. Prove that X is a uniformly integrable martingale if and only X is of class D. Solution 1. If If direction:

More information

Convergence at first and second order of some approximations of stochastic integrals

Convergence at first and second order of some approximations of stochastic integrals Convergence at first and second order of some approximations of stochastic integrals Bérard Bergery Blandine, Vallois Pierre IECN, Nancy-Université, CNRS, INRIA, Boulevard des Aiguillettes B.P. 239 F-5456

More information

arxiv: v2 [math.pr] 7 Mar 2014

arxiv: v2 [math.pr] 7 Mar 2014 A new proof of an Engelbert-Schmidt type zero-one law for time-homogeneous diffusions arxiv:1312.2149v2 [math.pr] 7 Mar 214 Zhenyu Cui Draft: March 1, 214 Abstract In this paper we give a new proof to

More information

Introduction to Random Diffusions

Introduction to Random Diffusions Introduction to Random Diffusions The main reason to study random diffusions is that this class of processes combines two key features of modern probability theory. On the one hand they are semi-martingales

More information

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications The multidimensional Ito Integral and the multidimensional Ito Formula Eric Mu ller June 1, 215 Seminar on Stochastic Geometry and its applications page 2 Seminar on Stochastic Geometry and its applications

More information

Math 6810 (Probability) Fall Lecture notes

Math 6810 (Probability) Fall Lecture notes Math 6810 (Probability) Fall 2012 Lecture notes Pieter Allaart University of North Texas September 23, 2012 2 Text: Introduction to Stochastic Calculus with Applications, by Fima C. Klebaner (3rd edition),

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 197

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 197 MATH 56A SPRING 8 STOCHASTIC PROCESSES 197 9.3. Itô s formula. First I stated the theorem. Then I did a simple example to make sure we understand what it says. Then I proved it. The key point is Lévy s

More information

ON THE STRUCTURE OF GAUSSIAN RANDOM VARIABLES

ON THE STRUCTURE OF GAUSSIAN RANDOM VARIABLES ON THE STRUCTURE OF GAUSSIAN RANDOM VARIABLES CIPRIAN A. TUDOR We study when a given Gaussian random variable on a given probability space Ω, F,P) is equal almost surely to β 1 where β is a Brownian motion

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

Weak solutions of mean-field stochastic differential equations

Weak solutions of mean-field stochastic differential equations Weak solutions of mean-field stochastic differential equations Juan Li School of Mathematics and Statistics, Shandong University (Weihai), Weihai 26429, China. Email: juanli@sdu.edu.cn Based on joint works

More information

Harmonic Functions and Brownian motion

Harmonic Functions and Brownian motion Harmonic Functions and Brownian motion Steven P. Lalley April 25, 211 1 Dynkin s Formula Denote by W t = (W 1 t, W 2 t,..., W d t ) a standard d dimensional Wiener process on (Ω, F, P ), and let F = (F

More information

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have 362 Problem Hints and Solutions sup g n (ω, t) g(ω, t) sup g(ω, s) g(ω, t) µ n (ω). t T s,t: s t 1/n By the uniform continuity of t g(ω, t) on [, T], one has for each ω that µ n (ω) as n. Two applications

More information

Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim ***

Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim *** JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 19, No. 4, December 26 GIRSANOV THEOREM FOR GAUSSIAN PROCESS WITH INDEPENDENT INCREMENTS Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim *** Abstract.

More information

Some Properties of NSFDEs

Some Properties of NSFDEs Chenggui Yuan (Swansea University) Some Properties of NSFDEs 1 / 41 Some Properties of NSFDEs Chenggui Yuan Swansea University Chenggui Yuan (Swansea University) Some Properties of NSFDEs 2 / 41 Outline

More information

Introduction to Diffusion Processes.

Introduction to Diffusion Processes. Introduction to Diffusion Processes. Arka P. Ghosh Department of Statistics Iowa State University Ames, IA 511-121 apghosh@iastate.edu (515) 294-7851. February 1, 21 Abstract In this section we describe

More information

Numerical methods for solving stochastic differential equations

Numerical methods for solving stochastic differential equations Mathematical Communications 4(1999), 251-256 251 Numerical methods for solving stochastic differential equations Rózsa Horváth Bokor Abstract. This paper provides an introduction to stochastic calculus

More information

Some Tools From Stochastic Analysis

Some Tools From Stochastic Analysis W H I T E Some Tools From Stochastic Analysis J. Potthoff Lehrstuhl für Mathematik V Universität Mannheim email: potthoff@math.uni-mannheim.de url: http://ls5.math.uni-mannheim.de To close the file, click

More information

Exercises in stochastic analysis

Exercises in stochastic analysis Exercises in stochastic analysis Franco Flandoli, Mario Maurelli, Dario Trevisan The exercises with a P are those which have been done totally or partially) in the previous lectures; the exercises with

More information

Malliavin Calculus in Finance

Malliavin Calculus in Finance Malliavin Calculus in Finance Peter K. Friz 1 Greeks and the logarithmic derivative trick Model an underlying assent by a Markov process with values in R m with dynamics described by the SDE dx t = b(x

More information

Stochastic Processes III/ Wahrscheinlichkeitstheorie IV. Lecture Notes

Stochastic Processes III/ Wahrscheinlichkeitstheorie IV. Lecture Notes BMS Advanced Course Stochastic Processes III/ Wahrscheinlichkeitstheorie IV Michael Scheutzow Lecture Notes Technische Universität Berlin Wintersemester 218/19 preliminary version November 28th 218 Contents

More information

ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME

ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME SAUL D. JACKA AND ALEKSANDAR MIJATOVIĆ Abstract. We develop a general approach to the Policy Improvement Algorithm (PIA) for stochastic control problems

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion Brownian Motion An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Background We have already seen that the limiting behavior of a discrete random walk yields a derivation of

More information

A Short Introduction to Diffusion Processes and Ito Calculus

A Short Introduction to Diffusion Processes and Ito Calculus A Short Introduction to Diffusion Processes and Ito Calculus Cédric Archambeau University College, London Center for Computational Statistics and Machine Learning c.archambeau@cs.ucl.ac.uk January 24,

More information

On a class of optimal stopping problems for diffusions with discontinuous coefficients

On a class of optimal stopping problems for diffusions with discontinuous coefficients On a class of optimal stopping problems for diffusions with discontinuous coefficients Ludger Rüschendorf and Mikhail A. Urusov Abstract In this paper we introduce a modification of the free boundary problem

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

1. Stochastic Process

1. Stochastic Process HETERGENEITY IN QUANTITATIVE MACROECONOMICS @ TSE OCTOBER 17, 216 STOCHASTIC CALCULUS BASICS SANG YOON (TIM) LEE Very simple notes (need to add references). It is NOT meant to be a substitute for a real

More information

Richard F. Bass Krzysztof Burdzy University of Washington

Richard F. Bass Krzysztof Burdzy University of Washington ON DOMAIN MONOTONICITY OF THE NEUMANN HEAT KERNEL Richard F. Bass Krzysztof Burdzy University of Washington Abstract. Some examples are given of convex domains for which domain monotonicity of the Neumann

More information

On continuous time contract theory

On continuous time contract theory Ecole Polytechnique, France Journée de rentrée du CMAP, 3 octobre, 218 Outline 1 2 Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs (Static) Principal-Agent Problem

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Optimal stopping of integral functionals and a no-loss free boundary formulation

Optimal stopping of integral functionals and a no-loss free boundary formulation Optimal stopping of integral functionals and a no-loss free boundary formulation Denis Belomestny Ludger Rüschendorf Mikhail Urusov January 1, 8 Abstract This paper is concerned with a modification of

More information

Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term

Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term 1 Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term Enrico Priola Torino (Italy) Joint work with G. Da Prato, F. Flandoli and M. Röckner Stochastic Processes

More information

Some SDEs with distributional drift Part I : General calculus. Flandoli, Franco; Russo, Francesco; Wolf, Jochen

Some SDEs with distributional drift Part I : General calculus. Flandoli, Franco; Russo, Francesco; Wolf, Jochen Title Author(s) Some SDEs with distributional drift Part I : General calculus Flandoli, Franco; Russo, Francesco; Wolf, Jochen Citation Osaka Journal of Mathematics. 4() P.493-P.54 Issue Date 3-6 Text

More information

Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus ETHZ, Spring 17 D-MATH Prof Dr Martin Larsson Coordinator A Sepúlveda Brownian Motion and Stochastic Calculus Exercise sheet 6 Please hand in your solutions during exercise class or in your assistant s

More information

On the quantiles of the Brownian motion and their hitting times.

On the quantiles of the Brownian motion and their hitting times. On the quantiles of the Brownian motion and their hitting times. Angelos Dassios London School of Economics May 23 Abstract The distribution of the α-quantile of a Brownian motion on an interval [, t]

More information

Branching Processes II: Convergence of critical branching to Feller s CSB

Branching Processes II: Convergence of critical branching to Feller s CSB Chapter 4 Branching Processes II: Convergence of critical branching to Feller s CSB Figure 4.1: Feller 4.1 Birth and Death Processes 4.1.1 Linear birth and death processes Branching processes can be studied

More information

Feller Processes and Semigroups

Feller Processes and Semigroups Stat25B: Probability Theory (Spring 23) Lecture: 27 Feller Processes and Semigroups Lecturer: Rui Dong Scribe: Rui Dong ruidong@stat.berkeley.edu For convenience, we can have a look at the list of materials

More information

Poisson random measure: motivation

Poisson random measure: motivation : motivation The Lévy measure provides the expected number of jumps by time unit, i.e. in a time interval of the form: [t, t + 1], and of a certain size Example: ν([1, )) is the expected number of jumps

More information

Stochastic Differential Equations

Stochastic Differential Equations CHAPTER 1 Stochastic Differential Equations Consider a stochastic process X t satisfying dx t = bt, X t,w t dt + σt, X t,w t dw t. 1.1 Question. 1 Can we obtain the existence and uniqueness theorem for

More information

Question 1. The correct answers are: (a) (2) (b) (1) (c) (2) (d) (3) (e) (2) (f) (1) (g) (2) (h) (1)

Question 1. The correct answers are: (a) (2) (b) (1) (c) (2) (d) (3) (e) (2) (f) (1) (g) (2) (h) (1) Question 1 The correct answers are: a 2 b 1 c 2 d 3 e 2 f 1 g 2 h 1 Question 2 a Any probability measure Q equivalent to P on F 2 can be described by Q[{x 1, x 2 }] := q x1 q x1,x 2, 1 where q x1, q x1,x

More information

Lecture 17 Brownian motion as a Markov process

Lecture 17 Brownian motion as a Markov process Lecture 17: Brownian motion as a Markov process 1 of 14 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 17 Brownian motion as a Markov process Brownian motion is

More information

Lecture 12. F o s, (1.1) F t := s>t

Lecture 12. F o s, (1.1) F t := s>t Lecture 12 1 Brownian motion: the Markov property Let C := C(0, ), R) be the space of continuous functions mapping from 0, ) to R, in which a Brownian motion (B t ) t 0 almost surely takes its value. Let

More information

Generalized Gaussian Bridges of Prediction-Invertible Processes

Generalized Gaussian Bridges of Prediction-Invertible Processes Generalized Gaussian Bridges of Prediction-Invertible Processes Tommi Sottinen 1 and Adil Yazigi University of Vaasa, Finland Modern Stochastics: Theory and Applications III September 1, 212, Kyiv, Ukraine

More information

A class of globally solvable systems of BSDE and applications

A class of globally solvable systems of BSDE and applications A class of globally solvable systems of BSDE and applications Gordan Žitković Department of Mathematics The University of Texas at Austin Thera Stochastics - Wednesday, May 31st, 2017 joint work with Hao

More information

Lecture 4: Introduction to stochastic processes and stochastic calculus

Lecture 4: Introduction to stochastic processes and stochastic calculus Lecture 4: Introduction to stochastic processes and stochastic calculus Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London

More information

Fast-slow systems with chaotic noise

Fast-slow systems with chaotic noise Fast-slow systems with chaotic noise David Kelly Ian Melbourne Courant Institute New York University New York NY www.dtbkelly.com May 1, 216 Statistical properties of dynamical systems, ESI Vienna. David

More information

Optimal Sojourn Time Control within an Interval 1

Optimal Sojourn Time Control within an Interval 1 Optimal Sojourn Time Control within an Interval Jianghai Hu and Shankar Sastry Department of Electrical Engineering and Computer Sciences University of California at Berkeley Berkeley, CA 97-77 {jianghai,sastry}@eecs.berkeley.edu

More information

Lecture 12: Diffusion Processes and Stochastic Differential Equations

Lecture 12: Diffusion Processes and Stochastic Differential Equations Lecture 12: Diffusion Processes and Stochastic Differential Equations 1. Diffusion Processes 1.1 Definition of a diffusion process 1.2 Examples 2. Stochastic Differential Equations SDE) 2.1 Stochastic

More information

Weakly interacting particle systems on graphs: from dense to sparse

Weakly interacting particle systems on graphs: from dense to sparse Weakly interacting particle systems on graphs: from dense to sparse Ruoyu Wu University of Michigan (Based on joint works with Daniel Lacker and Kavita Ramanan) USC Math Finance Colloquium October 29,

More information

Walsh Diffusions. Andrey Sarantsev. March 27, University of California, Santa Barbara. Andrey Sarantsev University of Washington, Seattle 1 / 1

Walsh Diffusions. Andrey Sarantsev. March 27, University of California, Santa Barbara. Andrey Sarantsev University of Washington, Seattle 1 / 1 Walsh Diffusions Andrey Sarantsev University of California, Santa Barbara March 27, 2017 Andrey Sarantsev University of Washington, Seattle 1 / 1 Walsh Brownian Motion on R d Spinning measure µ: probability

More information

Geometric projection of stochastic differential equations

Geometric projection of stochastic differential equations Geometric projection of stochastic differential equations John Armstrong (King s College London) Damiano Brigo (Imperial) August 9, 2018 Idea: Projection Idea: Projection Projection gives a method of systematically

More information

arxiv: v2 [math.pr] 14 Nov 2018

arxiv: v2 [math.pr] 14 Nov 2018 arxiv:1702.03573v2 [math.pr] 14 Nov 2018 Stochastic Exponentials and Logarithms on Stochastic Intervals A Survey Martin Larsson Johannes Ruf November 16, 2018 Abstract Stochastic exponentials are defined

More information

Randomization in the First Hitting Time Problem

Randomization in the First Hitting Time Problem Randomization in the First Hitting Time Problem Ken Jacson Alexander Kreinin Wanhe Zhang February 1, 29 Abstract In this paper we consider the following inverse problem for the first hitting time distribution:

More information

OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS

OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS APPLICATIONES MATHEMATICAE 29,4 (22), pp. 387 398 Mariusz Michta (Zielona Góra) OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS Abstract. A martingale problem approach is used first to analyze

More information

Bessel-like SPDEs. Lorenzo Zambotti, Sorbonne Université (joint work with Henri Elad-Altman) 15th May 2018, Luminy

Bessel-like SPDEs. Lorenzo Zambotti, Sorbonne Université (joint work with Henri Elad-Altman) 15th May 2018, Luminy Bessel-like SPDEs, Sorbonne Université (joint work with Henri Elad-Altman) Squared Bessel processes Let δ, y, and (B t ) t a BM. By Yamada-Watanabe s Theorem, there exists a unique (strong) solution (Y

More information

Jointly measurable and progressively measurable stochastic processes

Jointly measurable and progressively measurable stochastic processes Jointly measurable and progressively measurable stochastic processes Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto June 18, 2015 1 Jointly measurable stochastic processes

More information

ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS

ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS PORTUGALIAE MATHEMATICA Vol. 55 Fasc. 4 1998 ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS C. Sonoc Abstract: A sufficient condition for uniqueness of solutions of ordinary

More information

Mean-square Stability Analysis of an Extended Euler-Maruyama Method for a System of Stochastic Differential Equations

Mean-square Stability Analysis of an Extended Euler-Maruyama Method for a System of Stochastic Differential Equations Mean-square Stability Analysis of an Extended Euler-Maruyama Method for a System of Stochastic Differential Equations Ram Sharan Adhikari Assistant Professor Of Mathematics Rogers State University Mathematical

More information

White noise generalization of the Clark-Ocone formula under change of measure

White noise generalization of the Clark-Ocone formula under change of measure White noise generalization of the Clark-Ocone formula under change of measure Yeliz Yolcu Okur Supervisor: Prof. Bernt Øksendal Co-Advisor: Ass. Prof. Giulia Di Nunno Centre of Mathematics for Applications

More information

The Wiener Itô Chaos Expansion

The Wiener Itô Chaos Expansion 1 The Wiener Itô Chaos Expansion The celebrated Wiener Itô chaos expansion is fundamental in stochastic analysis. In particular, it plays a crucial role in the Malliavin calculus as it is presented in

More information

A Barrier Version of the Russian Option

A Barrier Version of the Russian Option A Barrier Version of the Russian Option L. A. Shepp, A. N. Shiryaev, A. Sulem Rutgers University; shepp@stat.rutgers.edu Steklov Mathematical Institute; shiryaev@mi.ras.ru INRIA- Rocquencourt; agnes.sulem@inria.fr

More information

An Analytic Method for Solving Uncertain Differential Equations

An Analytic Method for Solving Uncertain Differential Equations Journal of Uncertain Systems Vol.6, No.4, pp.244-249, 212 Online at: www.jus.org.uk An Analytic Method for Solving Uncertain Differential Equations Yuhan Liu Department of Industrial Engineering, Tsinghua

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Nonlinear representation, backward SDEs, and application to the Principal-Agent problem

Nonlinear representation, backward SDEs, and application to the Principal-Agent problem Nonlinear representation, backward SDEs, and application to the Principal-Agent problem Ecole Polytechnique, France April 4, 218 Outline The Principal-Agent problem Formulation 1 The Principal-Agent problem

More information

ITÔ FORMULA FOR SUBORDINATED LANGEVIN EQUATION. A CASE OF TIME DEPENDENT FORCE

ITÔ FORMULA FOR SUBORDINATED LANGEVIN EQUATION. A CASE OF TIME DEPENDENT FORCE Vol. 4 (29) ACTA PHYSICA POLONICA B No 5 ITÔ FORMULA FOR SUBORDINATED LANGEVIN EQUATION. A CASE OF TIME DEPENDENT FORCE Alesander Weron Hugo Steinhaus Center, Institute of Mathematics and Computer Science

More information

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p Doob s inequality Let X(t) be a right continuous submartingale with respect to F(t), t 1 P(sup s t X(s) λ) 1 λ {sup s t X(s) λ} X + (t)dp 2 For 1 < p

More information

(2014) A 51 (1) ISSN

(2014) A 51 (1) ISSN Mao, Xuerong and Song, Qingshuo and Yang, Dichuan (204) A note on exponential almost sure stability of stochastic differential equation. Bulletin of the Korean Mathematical Society, 5 (). pp. 22-227. ISSN

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Theory of Stochastic Differential Equations - An Overview and Examples - Shinzo Watanabe

Theory of Stochastic Differential Equations - An Overview and Examples - Shinzo Watanabe Theory of Stochastic Differential Equations - An Overview and Examples - Shinzo Watanabe 0 Introduction. We consider Itô s stochastic differential equation (SDE). First, we would review a standard theory

More information

Harnack Inequalities and Applications for Stochastic Equations

Harnack Inequalities and Applications for Stochastic Equations p. 1/32 Harnack Inequalities and Applications for Stochastic Equations PhD Thesis Defense Shun-Xiang Ouyang Under the Supervision of Prof. Michael Röckner & Prof. Feng-Yu Wang March 6, 29 p. 2/32 Outline

More information

Simulation Method for Solving Stochastic Differential Equations with Constant Diffusion Coefficients

Simulation Method for Solving Stochastic Differential Equations with Constant Diffusion Coefficients Journal of mathematics and computer Science 8 (2014) 28-32 Simulation Method for Solving Stochastic Differential Equations with Constant Diffusion Coefficients Behrouz Fathi Vajargah Department of statistics,

More information

The Uniform Integrability of Martingales. On a Question by Alexander Cherny

The Uniform Integrability of Martingales. On a Question by Alexander Cherny The Uniform Integrability of Martingales. On a Question by Alexander Cherny Johannes Ruf Department of Mathematics University College London May 1, 2015 Abstract Let X be a progressively measurable, almost

More information

Citation Osaka Journal of Mathematics. 41(4)

Citation Osaka Journal of Mathematics. 41(4) TitleA non quasi-invariance of the Brown Authors Sadasue, Gaku Citation Osaka Journal of Mathematics. 414 Issue 4-1 Date Text Version publisher URL http://hdl.handle.net/1194/1174 DOI Rights Osaka University

More information

Itô s formula. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Itô s formula. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Itô s formula Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Itô s formula Probability Theory

More information

A MODEL FOR THE LONG-TERM OPTIMAL CAPACITY LEVEL OF AN INVESTMENT PROJECT

A MODEL FOR THE LONG-TERM OPTIMAL CAPACITY LEVEL OF AN INVESTMENT PROJECT A MODEL FOR HE LONG-ERM OPIMAL CAPACIY LEVEL OF AN INVESMEN PROJEC ARNE LØKKA AND MIHAIL ZERVOS Abstract. We consider an investment project that produces a single commodity. he project s operation yields

More information

Application of stochastic flows to the sticky Brownian motion equation

Application of stochastic flows to the sticky Brownian motion equation Electron. Commun. Probab. 22 (217), no. 3, 1 1. DOI: 1.1214/16-ECP37 ISSN: 183-589X ELECTRONIC COMMUNICATIONS in PROBABILITY Application of stochastic flows to the sticky Brownian motion equation Hatem

More information