Lateral organization & computation

Size: px
Start display at page:

Download "Lateral organization & computation"

Transcription

1 Lateral organization & computation review Population encoding & decoding lateral organization Efficient representations that reduce or exploit redundancy Fixation task 1rst order Retinotopic maps Log-polar model see: smallretinacortexmap.nb Other maps? Grouping what? A intensity histogram response histogram nd order, linear PCA co sparse coding theories. dictionary methods ter un ha -p but needs modified Oja rule to capture all components: se ra ke flic.66 t D E time Hz Real Illusory C Efficient representations that reduce or 18 exploit s 12 s redundancy static flickering B

2 autoencoder networks Efficient representations that reduce or exploit redundancy 2nd order PCA is a linear transform that decorrelates the coefficients: E(s i s j )=E(s i )E(S j ) L ~ L ICA finds a linear decomposition such that: p(s i,s j)=p(s i )p(s j ) [L(x, y) X s i A i (x, y)] 2 + X i i B(s i ) Hyvärinen, A. (21). Statistical Models of Natural Images and Cortical Visual Representation. Topics in Cognitive Science, 2(2), doi:1.1111/j x PCA vs. Linear Discriminant Analysis Higher-order structure? from lecture 18 responses of linear model neurons with receptive fields that are close in space, preferred orientation or spatial frequency are not statistically independent Schwartz, O., & Simoncelli, E. P. (21). Natural signal statistics and sensory gain control. Nature Neuroscience, 4(8),

3 Higher-order structure? More on decorrelation: Accounts for neurophysiological responses of neurons in V1. Schwartz, O., & Simoncelli, E. P. (21). Natural signal statistics and sensory gain control. Nature Neuroscience, 4(8), divisive normalization Linear spatial filter Outputs from other cortical cells firing rate n 2 R i = s w ij L j ì R k j=1 kœn i non-orthogonal decorrelation The middle disks have the same physical luminance variance, but the one on the right appears more contrasty, i.e. to have higher variance. orthogonal orthogonal From Heeger This may be a behavioral consequence of an underlying non-linearity in the spatial filtering properties of V1 neurons involving divisive normalization derived from measures of the activity of other nearby neurons. Contingent Adaptation McCollough, C. (1965, 3 September 1965). Color Adaptation of Edge-Detectors in the Human Visual System. Science, 149, Lateral organization & neural codes How do neural populations represent information? anti-hebbian Working assumptions: R/G hebbian R/G R/G' Lateral organization involves a population of neurons representing features at the same level of abstraction Receptive fields organized along a topographically mapped dimension with overlapping selectivities green horizontal adapting patterns B&W test gratings new gray line old gray line θ' Decoding inferring world property from spikes requires extracting information from the population H Barlow, H. B., & Foldiak, P. (1989). Adaptation and decorrelation in the cortex. In C. Miall, R. M. Durban, & G. J. Mitchison (Ed.), The Computing Neuron Addison-Wesley. V θ Decorrelation due to adaptation ContingentAdaptation.nb θ Mathematica notebook Lect_24b_VisualRepCode.nb

4 Neural Implementations of Bayesian Inference Perceptual encoding: learning to represent world properties in terms of firing patterns Lecture notes adapted from Alexandre Pouget Zemel, R. S., Dayan, P., & Pouget, A. (1998). Probabilistic interpretation of population codes Neural Computation, 1(2), Perceptual decoding: interpretation of encoded pattern by subsequent neural processes Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (26). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11), doi:1.138/nn179 Probabilistic brains: knowns and unknowns (213.) Pouget, A., Beck, J., Ma, W.J., Latham, P. Nature Neuroscience 16: Poisson noise Imagine the following process: we bin time into small intervals, δt. Then, for each interval, we toss a coin with probability, P(head) =p. If we get a head, we record a spike. This is the Bernoulli process of PS#1. For small p, the number of spikes per second follows a Poisson distribution with mean p/δt spikes/second (e.g., p=.1, δt=1ms, mean=1 spikes/sec). Properties of a Poisson process The variance should be equal to the mean A Poisson process does not care about the past, i.e., at a given time step, the outcome of the coin toss is independent of the past ( renewal process ). As a result, the inter-event intervals follow an exponential distribution (Caution: this is not a good marker of a Poisson process)

5 Poisson process and spiking The inter spike interval (ISI) distribution is close to an exponential except for short intervals (refractory period) and for bursting neurons Poisson process and spiking The variance in the spike count is proportional to the mean but the the constant of proportionality can be higher than 1 and the variance can be an polynomial function of the mean. Log σ 2 = β Log a +log α Actual data Simulated Poisson Process Poisson model Is Poisson variability really noise? to illustrate population coding return to orientation selectivity Where could it come from? Neurons embedded in a recurrent network with sparse connectivity tend to fire with statistics close to Poisson (Van Vreeswick and Sompolinski, Brunel, Banerjee) Could Poisson variability be useful for probabilistic computations? I.e. where knowledge of uncertainty is represented and used? Poisson-like representations can be used for Bayesian integration of information 2

6 The decoding problem Population Code Direction (deg) s? 6 Given a stimulus with unknown orientation s, what can one say about s given a vector r representing the pattern of neural activity? -1 1 Preferred Direction (deg) Estimation theory: come up with a single value estimate from r Bayesian approach: estimate the posterior p(s r) Pattern of activity (r) Tuning Curves Advantages of a probabilistic representation Cue integration Visuo-Tactile Integration Bimodal p(s Vision,Touch)= Recall Ex 3 in PS #3: Derive the optimal rule for integrating two noisy measurements to estimate the mean μ = + μ + + Probability (Ernst and Banks, Nature, 22) p(s Vision) αp(s Vision) p(s Touch) p(s Touch) μ S (Width) 23

7 Probabilistic population codes Population codes Alternative: compute a posterior distribution, p(s r) from (Foldiak, 1993; Sanger 1996). r (spike count) (spike count) 1 Population vector 2 - Preferred stimulus P(s r1) Underlying assumption: population codes encode single values S C1 1 g Preferred S + g Preferred S P(s r2) S g=g1+g P(s r1+r2) 1 C S - Preferred S 8 6 r Preferred stimulus p(s r).4 Bayesian decoder probability Standard approach: estimating.2 - stimulus Variability in neural responses for a constant stimulus: Poisson-like

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Efficient Coding. Odelia Schwartz 2017

Efficient Coding. Odelia Schwartz 2017 Efficient Coding Odelia Schwartz 2017 1 Levels of modeling Descriptive (what) Mechanistic (how) Interpretive (why) 2 Levels of modeling Fitting a receptive field model to experimental data (e.g., using

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary discussion 1: Most excitatory and suppressive stimuli for model neurons The model allows us to determine, for each model neuron, the set of most excitatory and suppresive features. First,

More information

Natural Image Statistics

Natural Image Statistics Natural Image Statistics A probabilistic approach to modelling early visual processing in the cortex Dept of Computer Science Early visual processing LGN V1 retina From the eye to the primary visual cortex

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

The homogeneous Poisson process

The homogeneous Poisson process The homogeneous Poisson process during very short time interval Δt there is a fixed probability of an event (spike) occurring independent of what happened previously if r is the rate of the Poisson process,

More information

SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017

SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017 SPIKE TRIGGERED APPROACHES Odelia Schwartz Computational Neuroscience Course 2017 LINEAR NONLINEAR MODELS Linear Nonlinear o Often constrain to some form of Linear, Nonlinear computations, e.g. visual

More information

RESEARCH STATEMENT. Nora Youngs, University of Nebraska - Lincoln

RESEARCH STATEMENT. Nora Youngs, University of Nebraska - Lincoln RESEARCH STATEMENT Nora Youngs, University of Nebraska - Lincoln 1. Introduction Understanding how the brain encodes information is a major part of neuroscience research. In the field of neural coding,

More information

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience An Introductory Course in Computational Neuroscience Contents Series Foreword Acknowledgments Preface 1 Preliminary Material 1.1. Introduction 1.1.1 The Cell, the Circuit, and the Brain 1.1.2 Physics of

More information

Motion Perception 1. PSY305 Lecture 12 JV Stone

Motion Perception 1. PSY305 Lecture 12 JV Stone Motion Perception 1 PSY305 Lecture 12 JV Stone 1 Structure Human visual system as a band-pass filter. Neuronal motion detection, the Reichardt detector. The aperture problem. 2 The visual system is a temporal

More information

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES CHARACTERIZATION OF NONLINEAR NEURON RESPONSES Matt Whiteway whit8022@umd.edu Dr. Daniel A. Butts dab@umd.edu Neuroscience and Cognitive Science (NACS) Applied Mathematics and Scientific Computation (AMSC)

More information

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern.

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern. 1 Exercises Chapter 1 1. Generate spike sequences with a constant firing rate r 0 using a Poisson spike generator. Then, add a refractory period to the model by allowing the firing rate r(t) to depend

More information

Bayesian Computation in Recurrent Neural Circuits

Bayesian Computation in Recurrent Neural Circuits Bayesian Computation in Recurrent Neural Circuits Rajesh P. N. Rao Department of Computer Science and Engineering University of Washington Seattle, WA 98195 E-mail: rao@cs.washington.edu Appeared in: Neural

More information

Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces

Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces LETTER Communicated by Bartlett Mel Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces Aapo Hyvärinen Patrik Hoyer Helsinki University

More information

Nature Neuroscience: doi: /nn.2283

Nature Neuroscience: doi: /nn.2283 Supplemental Material for NN-A2678-T Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system by John Curtis and David Kleinfeld Figure S. Overall distribution of

More information

unit P[r x*] C decode encode unit P[x r] f(x) x D

unit P[r x*] C decode encode unit P[x r] f(x) x D Probabilistic Interpretation of Population Codes Richard S. Zemel Peter Dayan Aleandre Pouget zemel@u.arizona.edu dayan@ai.mit.edu ale@salk.edu Abstract We present a theoretical framework for population

More information

Sean Escola. Center for Theoretical Neuroscience

Sean Escola. Center for Theoretical Neuroscience Employing hidden Markov models of neural spike-trains toward the improved estimation of linear receptive fields and the decoding of multiple firing regimes Sean Escola Center for Theoretical Neuroscience

More information

Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment

Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment Jean-Pierre Nadal CNRS & EHESS Laboratoire de Physique Statistique (LPS, UMR 8550 CNRS - ENS UPMC Univ.

More information

Population Coding. Maneesh Sahani Gatsby Computational Neuroscience Unit University College London

Population Coding. Maneesh Sahani Gatsby Computational Neuroscience Unit University College London Population Coding Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2010 Coding so far... Time-series for both spikes and stimuli Empirical

More information

Neurons as Monte Carlo Samplers: Bayesian Inference and Learning in Spiking Networks

Neurons as Monte Carlo Samplers: Bayesian Inference and Learning in Spiking Networks Neurons as Monte Carlo Samplers: Bayesian Inference and Learning in Spiking Networks Yanping Huang University of Washington huangyp@cs.uw.edu Rajesh P.N. Rao University of Washington rao@cs.uw.edu Abstract

More information

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Jonathan Pillow HHMI and NYU http://www.cns.nyu.edu/~pillow Oct 5, Course lecture: Computational Modeling of Neuronal Systems

More information

The Hebb rule Neurons that fire together wire together.

The Hebb rule Neurons that fire together wire together. Unsupervised learning The Hebb rule Neurons that fire together wire together. PCA RF development with PCA Classical Conditioning and Hebbʼs rule Ear A Nose B Tongue When an axon in cell A is near enough

More information

Deep learning in the visual cortex

Deep learning in the visual cortex Deep learning in the visual cortex Thomas Serre Brown University. Fundamentals of primate vision. Computational mechanisms of rapid recognition and feedforward processing. Beyond feedforward processing:

More information

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES CHARACTERIZATION OF NONLINEAR NEURON RESPONSES Matt Whiteway whit8022@umd.edu Dr. Daniel A. Butts dab@umd.edu Neuroscience and Cognitive Science (NACS) Applied Mathematics and Scientific Computation (AMSC)

More information

Flexible Gating of Contextual Influences in Natural Vision. Odelia Schwartz University of Miami Oct 2015

Flexible Gating of Contextual Influences in Natural Vision. Odelia Schwartz University of Miami Oct 2015 Flexible Gating of Contextual Influences in Natural Vision Odelia Schwartz University of Miami Oct 05 Contextual influences Perceptual illusions: no man is an island.. Review paper on context: Schwartz,

More information

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References 24th March 2011 Update Hierarchical Model Rao and Ballard (1999) presented a hierarchical model of visual cortex to show how classical and extra-classical Receptive Field (RF) effects could be explained

More information

Fundamentals of Computational Neuroscience 2e

Fundamentals of Computational Neuroscience 2e Fundamentals of Computational Neuroscience 2e January 1, 2010 Chapter 10: The cognitive brain Hierarchical maps and attentive vision A. Ventral visual pathway B. Layered cortical maps Receptive field size

More information

Neuronal Tuning: To Sharpen or Broaden?

Neuronal Tuning: To Sharpen or Broaden? NOTE Communicated by Laurence Abbott Neuronal Tuning: To Sharpen or Broaden? Kechen Zhang Howard Hughes Medical Institute, Computational Neurobiology Laboratory, Salk Institute for Biological Studies,

More information

Phenomenological Models of Neurons!! Lecture 5!

Phenomenological Models of Neurons!! Lecture 5! Phenomenological Models of Neurons!! Lecture 5! 1! Some Linear Algebra First!! Notes from Eero Simoncelli 2! Vector Addition! Notes from Eero Simoncelli 3! Scalar Multiplication of a Vector! 4! Vector

More information

Statistical models for neural encoding

Statistical models for neural encoding Statistical models for neural encoding Part 1: discrete-time models Liam Paninski Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/ liam liam@gatsby.ucl.ac.uk

More information

The Effect of Correlated Variability on the Accuracy of a Population Code

The Effect of Correlated Variability on the Accuracy of a Population Code LETTER Communicated by Michael Shadlen The Effect of Correlated Variability on the Accuracy of a Population Code L. F. Abbott Volen Center and Department of Biology, Brandeis University, Waltham, MA 02454-9110,

More information

Is early vision optimised for extracting higher order dependencies? Karklin and Lewicki, NIPS 2005

Is early vision optimised for extracting higher order dependencies? Karklin and Lewicki, NIPS 2005 Is early vision optimised for extracting higher order dependencies? Karklin and Lewicki, NIPS 2005 Richard Turner (turner@gatsby.ucl.ac.uk) Gatsby Computational Neuroscience Unit, 02/03/2006 Outline Historical

More information

Nonlinear reverse-correlation with synthesized naturalistic noise

Nonlinear reverse-correlation with synthesized naturalistic noise Cognitive Science Online, Vol1, pp1 7, 2003 http://cogsci-onlineucsdedu Nonlinear reverse-correlation with synthesized naturalistic noise Hsin-Hao Yu Department of Cognitive Science University of California

More information

Visual motion processing and perceptual decision making

Visual motion processing and perceptual decision making Visual motion processing and perceptual decision making Aziz Hurzook (ahurzook@uwaterloo.ca) Oliver Trujillo (otrujill@uwaterloo.ca) Chris Eliasmith (celiasmith@uwaterloo.ca) Centre for Theoretical Neuroscience,

More information

Bayesian probability theory and generative models

Bayesian probability theory and generative models Bayesian probability theory and generative models Bruno A. Olshausen November 8, 2006 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using

More information

A Brief Review of Probability, Bayesian Statistics, and Information Theory

A Brief Review of Probability, Bayesian Statistics, and Information Theory A Brief Review of Probability, Bayesian Statistics, and Information Theory Brendan Frey Electrical and Computer Engineering University of Toronto frey@psi.toronto.edu http://www.psi.toronto.edu A system

More information

Model neurons!!poisson neurons!

Model neurons!!poisson neurons! Model neurons!!poisson neurons! Suggested reading:! Chapter 1.4 in Dayan, P. & Abbott, L., heoretical Neuroscience, MI Press, 2001.! Model neurons: Poisson neurons! Contents: Probability of a spike sequence

More information

Adaptation in the Neural Code of the Retina

Adaptation in the Neural Code of the Retina Adaptation in the Neural Code of the Retina Lens Retina Fovea Optic Nerve Optic Nerve Bottleneck Neurons Information Receptors: 108 95% Optic Nerve 106 5% After Polyak 1941 Visual Cortex ~1010 Mean Intensity

More information

Basic Principles of Unsupervised and Unsupervised

Basic Principles of Unsupervised and Unsupervised Basic Principles of Unsupervised and Unsupervised Learning Toward Deep Learning Shun ichi Amari (RIKEN Brain Science Institute) collaborators: R. Karakida, M. Okada (U. Tokyo) Deep Learning Self Organization

More information

Modeling Surround Suppression in V1 Neurons with a Statistically-Derived Normalization Model

Modeling Surround Suppression in V1 Neurons with a Statistically-Derived Normalization Model Presented at: NIPS-98, Denver CO, 1-3 Dec 1998. Pulished in: Advances in Neural Information Processing Systems eds. M. S. Kearns, S. A. Solla, and D. A. Cohn volume 11, pages 153--159 MIT Press, Cambridge,

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

Supratim Ray

Supratim Ray Supratim Ray sray@cns.iisc.ernet.in Biophysics of Action Potentials Passive Properties neuron as an electrical circuit Passive Signaling cable theory Active properties generation of action potential Techniques

More information

Transformation of stimulus correlations by the retina

Transformation of stimulus correlations by the retina Transformation of stimulus correlations by the retina Kristina Simmons (University of Pennsylvania) and Jason Prentice, (now Princeton University) with Gasper Tkacik (IST Austria) Jan Homann (now Princeton

More information

Neural variability and Poisson statistics

Neural variability and Poisson statistics Neural variability and Poisson statistics January 15, 2014 1 Introduction We are in the process of deriving the Hodgkin-Huxley model. That model describes how an action potential is generated by ion specic

More information

Implementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics

Implementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics Implementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics arxiv:1512.07839v4 [cs.lg] 7 Jun 2017 Sacha Sokoloski Max Planck Institute for Mathematics in the Sciences Abstract

More information

Probabilistic Inference of Hand Motion from Neural Activity in Motor Cortex

Probabilistic Inference of Hand Motion from Neural Activity in Motor Cortex Probabilistic Inference of Hand Motion from Neural Activity in Motor Cortex Y Gao M J Black E Bienenstock S Shoham J P Donoghue Division of Applied Mathematics, Brown University, Providence, RI 292 Dept

More information

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be Supplementary Materials General case: computing log likelihood We first describe the general case of computing the log likelihood of a sensory parameter θ that is encoded by the activity of neurons. Each

More information

Correlations and neural information coding Shlens et al. 09

Correlations and neural information coding Shlens et al. 09 Correlations and neural information coding Shlens et al. 09 Joel Zylberberg www.jzlab.org The neural code is not one-to-one ρ = 0.52 ρ = 0.80 d 3s [Max Turner, UW] b # of trials trial 1!! trial 2!!.!.!.

More information

How to do backpropagation in a brain

How to do backpropagation in a brain How to do backpropagation in a brain Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto & Google Inc. Prelude I will start with three slides explaining a popular type of deep

More information

Congruent and Opposite Neurons: Sisters for Multisensory Integration and Segregation

Congruent and Opposite Neurons: Sisters for Multisensory Integration and Segregation Congruent and Opposite Neurons: Sisters for Multisensory Integration and Segregation Wen-Hao Zhang 1,2, He Wang 1, K. Y. Michael Wong 1, Si Wu 2 wenhaoz@ust.hk, hwangaa@connect.ust.hk, phkywong@ust.hk,

More information

5.0 References. Unsupervised Learning for Boltzmann Machines 15

5.0 References. Unsupervised Learning for Boltzmann Machines 15 5.0 References Ackley D., Hinton G. and Sejnowski, 1985, A Learning Algorithm for Boltzmann Machines, Cognitive Science, 9, 147-169. Atick J. and Redlich A., 1990, Towards a theory of early visual processing,

More information

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II Gatsby Unit University College London 27 Feb 2017 Outline Part I: Theory of ICA Definition and difference

More information

Probabilistic Models in Theoretical Neuroscience

Probabilistic Models in Theoretical Neuroscience Probabilistic Models in Theoretical Neuroscience visible unit Boltzmann machine semi-restricted Boltzmann machine restricted Boltzmann machine hidden unit Neural models of probabilistic sampling: introduction

More information

Sensory Integration and Density Estimation

Sensory Integration and Density Estimation Sensory Integration and Density Estimation Joseph G. Makin and Philip N. Sabes Center for Integrative Neuroscience/Department of Physiology University of California, San Francisco San Francisco, CA 94143-0444

More information

ADAPTIVE LATERAL INHIBITION FOR NON-NEGATIVE ICA. Mark Plumbley

ADAPTIVE LATERAL INHIBITION FOR NON-NEGATIVE ICA. Mark Plumbley Submitteed to the International Conference on Independent Component Analysis and Blind Signal Separation (ICA2) ADAPTIVE LATERAL INHIBITION FOR NON-NEGATIVE ICA Mark Plumbley Audio & Music Lab Department

More information

Modelling stochastic neural learning

Modelling stochastic neural learning Modelling stochastic neural learning Computational Neuroscience András Telcs telcs.andras@wigner.mta.hu www.cs.bme.hu/~telcs http://pattern.wigner.mta.hu/participants/andras-telcs Compiled from lectures

More information

A Monte Carlo Sequential Estimation for Point Process Optimum Filtering

A Monte Carlo Sequential Estimation for Point Process Optimum Filtering 2006 International Joint Conference on Neural Networks Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July 16-21, 2006 A Monte Carlo Sequential Estimation for Point Process Optimum Filtering

More information

The functional organization of the visual cortex in primates

The functional organization of the visual cortex in primates The functional organization of the visual cortex in primates Dominated by LGN M-cell input Drosal stream for motion perception & spatial localization V5 LIP/7a V2 V4 IT Ventral stream for object recognition

More information

Neural Encoding: Firing Rates and Spike Statistics

Neural Encoding: Firing Rates and Spike Statistics Neural Encoding: Firing Rates and Spike Statistics Dayan and Abbott (21) Chapter 1 Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks Background: Dirac δ Function Dirac δ function has the following

More information

Outline. NIP: Hebbian Learning. Overview. Types of Learning. Neural Information Processing. Amos Storkey

Outline. NIP: Hebbian Learning. Overview. Types of Learning. Neural Information Processing. Amos Storkey Outline NIP: Hebbian Learning Neural Information Processing Amos Storkey 1/36 Overview 2/36 Types of Learning Types of learning, learning strategies Neurophysiology, LTP/LTD Basic Hebb rule, covariance

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

AT2 Neuromodeling: Problem set #3 SPIKE TRAINS

AT2 Neuromodeling: Problem set #3 SPIKE TRAINS AT2 Neuromodeling: Problem set #3 SPIKE TRAINS Younesse Kaddar PROBLEM 1: Poisson spike trains Link of the ipython notebook for the code Brain neuron emit spikes seemingly randomly: we will aim to model

More information

EXTENSIONS OF ICA AS MODELS OF NATURAL IMAGES AND VISUAL PROCESSING. Aapo Hyvärinen, Patrik O. Hoyer and Jarmo Hurri

EXTENSIONS OF ICA AS MODELS OF NATURAL IMAGES AND VISUAL PROCESSING. Aapo Hyvärinen, Patrik O. Hoyer and Jarmo Hurri EXTENSIONS OF ICA AS MODELS OF NATURAL IMAGES AND VISUAL PROCESSING Aapo Hyvärinen, Patrik O. Hoyer and Jarmo Hurri Neural Networks Research Centre Helsinki University of Technology P.O. Box 5400, FIN-02015

More information

Complex Inference in Neural Circuits with Probabilistic Population Codes and Topic Models

Complex Inference in Neural Circuits with Probabilistic Population Codes and Topic Models Complex Inference in Neural Circuits with Probabilistic Population Codes and Topic Models Jeff Beck Department of Brain and Cognitive Sciences University of Rochester jbeck@bcs.rochester.edu Katherine

More information

This cannot be estimated directly... s 1. s 2. P(spike, stim) P(stim) P(spike stim) =

This cannot be estimated directly... s 1. s 2. P(spike, stim) P(stim) P(spike stim) = LNP cascade model Simplest successful descriptive spiking model Easily fit to (extracellular) data Descriptive, and interpretable (although not mechanistic) For a Poisson model, response is captured by

More information

Probabilistic Modeling of Dependencies Among Visual Short-Term Memory Representations

Probabilistic Modeling of Dependencies Among Visual Short-Term Memory Representations Probabilistic Modeling of Dependencies Among Visual Short-Term Memory Representations A. Emin Orhan Robert A. Jacobs Department of Brain & Cognitive Sciences University of Rochester Rochester, NY 4627

More information

Shotgun. Auditory. Visual. p(a S) p(v S) p(x) p(x) s j

Shotgun. Auditory. Visual. p(a S) p(v S) p(x) p(x) s j To appear in: International Joint Conference on Articial Intelligence 1997. Denver, CO: Morgan Kaufmann. Combining Probabilistic Population Codes Richard S. emel University of Arizona Tucson, A 85721 USA

More information

Predicting response time and error rates in visual search

Predicting response time and error rates in visual search Predicting response time and error rates in visual search Bo Chen Caltech bchen3@caltech.edu Vidhya Navalpakkam Yahoo! Research nvidhya@yahoo-inc.com Pietro Perona Caltech perona@caltech.edu Abstract A

More information

encoding and estimation bottleneck and limits to visual fidelity

encoding and estimation bottleneck and limits to visual fidelity Retina Light Optic Nerve photoreceptors encoding and estimation bottleneck and limits to visual fidelity interneurons ganglion cells light The Neural Coding Problem s(t) {t i } Central goals for today:

More information

Describing Spike-Trains

Describing Spike-Trains Describing Spike-Trains Maneesh Sahani Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2012 Neural Coding The brain manipulates information by combining and generating action

More information

Position Variance, Recurrence and Perceptual Learning

Position Variance, Recurrence and Perceptual Learning Position Variance, Recurrence and Perceptual Learning Zhaoping Li Peter Dayan Gatsby Computational Neuroscience Unit 7 Queen Square, London, England, WCN 3AR. zhaoping@gatsby.ucl.ac.uk dayan@gatsby.ucl.ac.uk

More information

Neural Spike Train Analysis 1: Introduction to Point Processes

Neural Spike Train Analysis 1: Introduction to Point Processes SAMSI Summer 2015: CCNS Computational Neuroscience Summer School Neural Spike Train Analysis 1: Introduction to Point Processes Uri Eden BU Department of Mathematics and Statistics July 27, 2015 Spikes

More information

Neuroscience Introduction

Neuroscience Introduction Neuroscience Introduction The brain As humans, we can identify galaxies light years away, we can study particles smaller than an atom. But we still haven t unlocked the mystery of the three pounds of matter

More information

How to read a burst duration code

How to read a burst duration code Neurocomputing 58 60 (2004) 1 6 www.elsevier.com/locate/neucom How to read a burst duration code Adam Kepecs a;, John Lisman b a Cold Spring Harbor Laboratory, Marks Building, 1 Bungtown Road, Cold Spring

More information

Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model

Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model ACCEPTED FOR NIPS: DRAFT VERSION Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model Sander M. Bohte CWI, Life Sciences Amsterdam, The Netherlands S.M.Bohte@cwi.nl September

More information

Adaptive Velocity Tuning for Visual Motion Estimation

Adaptive Velocity Tuning for Visual Motion Estimation Adaptive Velocity Tuning for Visual Motion Estimation Volker Willert 1 and Julian Eggert 2 1- Darmstadt University of Technology Institute of Automatic Control, Control Theory and Robotics Lab Landgraf-Georg-Str.

More information

Neural information often passes through many different

Neural information often passes through many different Transmission of population coded information Alfonso Renart, and Mark C. W. van Rossum Instituto de Neurociencias de Alicante. Universidad Miguel Hernndez - CSIC 03550 Sant Joan d Alacant, Spain, Center

More information

Time-rescaling methods for the estimation and assessment of non-poisson neural encoding models

Time-rescaling methods for the estimation and assessment of non-poisson neural encoding models Time-rescaling methods for the estimation and assessment of non-poisson neural encoding models Jonathan W. Pillow Departments of Psychology and Neurobiology University of Texas at Austin pillow@mail.utexas.edu

More information

Dynamical Constraints on Computing with Spike Timing in the Cortex

Dynamical Constraints on Computing with Spike Timing in the Cortex Appears in Advances in Neural Information Processing Systems, 15 (NIPS 00) Dynamical Constraints on Computing with Spike Timing in the Cortex Arunava Banerjee and Alexandre Pouget Department of Brain and

More information

Estimation of information-theoretic quantities

Estimation of information-theoretic quantities Estimation of information-theoretic quantities Liam Paninski Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/ liam liam@gatsby.ucl.ac.uk November 16, 2004 Some

More information

Spike Count Correlation Increases with Length of Time Interval in the Presence of Trial-to-Trial Variation

Spike Count Correlation Increases with Length of Time Interval in the Presence of Trial-to-Trial Variation NOTE Communicated by Jonathan Victor Spike Count Correlation Increases with Length of Time Interval in the Presence of Trial-to-Trial Variation Robert E. Kass kass@stat.cmu.edu Valérie Ventura vventura@stat.cmu.edu

More information

THE functional role of simple and complex cells has

THE functional role of simple and complex cells has 37 A Novel Temporal Generative Model of Natural Video as an Internal Model in Early Vision Jarmo Hurri and Aapo Hyvärinen Neural Networks Research Centre Helsinki University of Technology P.O.Box 9800,

More information

CIFAR Lectures: Non-Gaussian statistics and natural images

CIFAR Lectures: Non-Gaussian statistics and natural images CIFAR Lectures: Non-Gaussian statistics and natural images Dept of Computer Science University of Helsinki, Finland Outline Part I: Theory of ICA Definition and difference to PCA Importance of non-gaussianity

More information

Jan 16: The Visual System

Jan 16: The Visual System Geometry of Neuroscience Matilde Marcolli & Doris Tsao Jan 16: The Visual System References for this lecture 1977 Hubel, D. H., Wiesel, T. N., Ferrier lecture 2010 Freiwald, W., Tsao, DY. Functional compartmentalization

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Spatio-temporal correlations and visual signaling in a complete neuronal population Jonathan W. Pillow 1, Jonathon Shlens 2, Liam Paninski 3, Alexander Sher 4, Alan M. Litke 4,E.J.Chichilnisky 2, Eero

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Independent Component Analysis Barnabás Póczos Independent Component Analysis 2 Independent Component Analysis Model original signals Observations (Mixtures)

More information

SUPPLEMENTARY MATERIAL. Authors: Alan A. Stocker (1) and Eero P. Simoncelli (2)

SUPPLEMENTARY MATERIAL. Authors: Alan A. Stocker (1) and Eero P. Simoncelli (2) SUPPLEMENTARY MATERIAL Authors: Alan A. Stocker () and Eero P. Simoncelli () Affiliations: () Dept. of Psychology, Uniersity of Pennsylania 34 Walnut Street 33C Philadelphia, PA 94-68 U.S.A. () Howard

More information

3 Neural Decoding. 3.1 Encoding and Decoding. (r 1, r 2,..., r N ) for N neurons is a list of spike-count firing rates, although,

3 Neural Decoding. 3.1 Encoding and Decoding. (r 1, r 2,..., r N ) for N neurons is a list of spike-count firing rates, although, 3 Neural Decoding 3.1 Encoding and Decoding In chapters 1 and 2, we considered the problem of predicting neural responses to known stimuli. The nervous system faces the reverse problem, determining what

More information

Finding a Basis for the Neural State

Finding a Basis for the Neural State Finding a Basis for the Neural State Chris Cueva ccueva@stanford.edu I. INTRODUCTION How is information represented in the brain? For example, consider arm movement. Neurons in dorsal premotor cortex (PMd)

More information

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture CSE/NB 528 Final Lecture: All Good Things Must 1 Course Summary Where have we been? Course Highlights Where do we go from here? Challenges and Open Problems Further Reading 2 What is the neural code? What

More information

TWO METHODS FOR ESTIMATING OVERCOMPLETE INDEPENDENT COMPONENT BASES. Mika Inki and Aapo Hyvärinen

TWO METHODS FOR ESTIMATING OVERCOMPLETE INDEPENDENT COMPONENT BASES. Mika Inki and Aapo Hyvärinen TWO METHODS FOR ESTIMATING OVERCOMPLETE INDEPENDENT COMPONENT BASES Mika Inki and Aapo Hyvärinen Neural Networks Research Centre Helsinki University of Technology P.O. Box 54, FIN-215 HUT, Finland ABSTRACT

More information

Experimental design of fmri studies & Resting-State fmri

Experimental design of fmri studies & Resting-State fmri Methods & Models for fmri Analysis 2016 Experimental design of fmri studies & Resting-State fmri Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Mid Year Project Report: Statistical models of visual neurons

Mid Year Project Report: Statistical models of visual neurons Mid Year Project Report: Statistical models of visual neurons Anna Sotnikova asotniko@math.umd.edu Project Advisor: Prof. Daniel A. Butts dab@umd.edu Department of Biology Abstract Studying visual neurons

More information

High-dimensional geometry of cortical population activity. Marius Pachitariu University College London

High-dimensional geometry of cortical population activity. Marius Pachitariu University College London High-dimensional geometry of cortical population activity Marius Pachitariu University College London Part I: introduction to the brave new world of large-scale neuroscience Part II: large-scale data preprocessing

More information

Implementing Bayes Rule with Neural Fields

Implementing Bayes Rule with Neural Fields Implementing Bayes Rule with Neural Fields Raymond H. Cuijpers, and Wolfram Erlhagen 2 Nijmegen Institute for Cognition and Information, Radboud University, 65 HE Nijmegen, P.O. Box 94, The Netherlands

More information

Encoding and Decoding Spikes for Dynamic Stimuli

Encoding and Decoding Spikes for Dynamic Stimuli LETTER Communicated by Uri Eden Encoding and Decoding Spikes for Dynamic Stimuli Rama Natarajan rama@cs.toronto.edu Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 3G4

More information

Bayesian Inference. Will Penny. 24th February Bayesian Inference. Will Penny. Bayesian Inference. References

Bayesian Inference. Will Penny. 24th February Bayesian Inference. Will Penny. Bayesian Inference. References 24th February 2011 Given probabilities p(a), p(b), and the joint probability p(a, B), we can write the conditional probabilities p(b A) = p(a B) = p(a, B) p(a) p(a, B) p(b) Eliminating p(a, B) gives p(b

More information

Modeling and Characterization of Neural Gain Control. Odelia Schwartz. A dissertation submitted in partial fulfillment

Modeling and Characterization of Neural Gain Control. Odelia Schwartz. A dissertation submitted in partial fulfillment Modeling and Characterization of Neural Gain Control by Odelia Schwartz A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Center for Neural Science

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/331/6013/83/dc1 Supporting Online Material for Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment Pietro Berkes,* Gergő

More information