Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses

Size: px
Start display at page:

Download "Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses"

Transcription

1 Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Jonathan Pillow HHMI and NYU Oct 5, Course lecture: Computational Modeling of Neuronal Systems Fall 2005, New York University

2 General Goal: understand the mapping from stimuli to spike responses with the use of a model y x stimulus model spike response Model criteria: flexibility (captures realistic neural properties) tractability (for fitting to data)

3 Example 1: Hodgkin-Huxley stimulus Na + activation (fast) Na + inactivation (slow) K + activation (slow) spike response + flexible, biophysically realistic - not easy to fit

4 Example 2: LNP x K f y (receptive field) + easy to fit (spike-triggered averaging) + not biologically plausible

5 LNP model stimulus filter K filter output spike rate spikes time (sec)

6 cascade models y x stimulus model spike response Linear Filtering Nonlinear Probabilistic Spiking more realistic models of spike generation

7 Generalized Integrate- and- Fire Model x(t) K y(t) h I stim I spike I noise related: Spike Response Model, Gerstner & Kistler 02

8 Generalized Integrate- and- Fire Model K h + powerful, flexible + tractable for fitting

9 Model behaviors: adaptation

10 Model behaviors: bursting

11 Model behaviors: bistability 0 0

12 The Estimation Problem Learn the model parameters: K = stimulus filter g = leak conductance σ 2 = noise variance h = response current V L = reversal potential K h From: stimulus train x(t) spike times t i Solution: Maximum Likelihood - need an algorithm to compute P θ (y x)

13 Likelihood function hidden variable: P(spike at t i ) = fraction of paths crossing threshold at t i t i

14 Likelihood function hidden variable: P(spike at t i ) = fraction of paths crossing threshold at t i t i

15 Computing Likelihood Diffusion Equation: linear dynamics additive Gaussian noise P(V,t) 1 τ P(V,t+ t) fast methods for solving linear PDE efficient procedure for computing likelihood t i

16 Computing Likelihood Diffusion Equation: (Fokker-Planck) linear dynamics additive Gaussian noise 1 τ fast methods for solving linear PDE efficient procedure for computing likelihood reset ISIs are conditionally independent likelihood is product over ISIs

17 Maximizing the likelihood parameter space is large ( 20 to 100 dimensions) parameters interact nonlinearly Main Theorem: The log likelihood is concave in the parameters {K, τ, σ, h, V L }, for any data {x(t), t i } gradient ascent guaranteed to converge to global maximum! [Paninski, Pillow & Simoncelli. Neural Comp. 04

18 Application to Macaque Retina isolated retinal ganglion cell (RGC) stimulated with full-field random stimulus (flicker) fit using 1-minute period of response t (Data: Valerie Uzzell & E.J. Chichilnisky)

19 IF model simulation Stimulus filter K I inj V time (ms)

20 IF model simulation Stimulus filter K I inj h V Noise time (ms)

21 ON cell RGC LNP IF 74% of var 92 % of var

22 Accounting for spike timing precision 0 time (ms) 200 P(spike)

23 Accounting for reliability

24 Decoding the neural response Stim 1 Stim 2 Resp 1 Resp 2?

25 Solution: use P(resp stim) Stim 1 Stim 2 a P(R1 S1)P(R2 S2) Resp 1 Resp 2? P(R1 S2)P(R2 S1)

26 Discriminate each repeat using P(Resp Stim) Stim 1 Stim 2 P(R1 S1)P(R2 S2) Resp 1 Resp 2? P(R1 S2)P(R2 S1)

27 Discriminate each repeat using P(Resp Stim) Stim 1 Stim 2 Compare to LNP model P(Resp Stim) Resp 1 Resp 2? 94 % correct LNP: 68 % correct

28 Decoding the neural response IF model % correct LNP model % correct

29 Part 2: how to characterize the responses of multiple neurons? Want to capture: the stimulus dependence of each neuron s response the response dependencies between neurons.

30 2 types of correlation: 1. stimulus-induced correlation: persists even if responses are conditionally independent, i.e. P(r 1,r 2 stim) = P(r 1 stim)p(r 2 stim) cell 1 cell 2 stimuli responses

31 2 types of correlation: 1. stimulus-induced correlation: persists even if responses are conditionally independent, i.e. P(r 1,r 2 stim) = P(r 1 stim)p(r 2 stim) 2. noise correlation: arises if responses are not conditionally independent given the stimulus, i.e. P(r 1,r 2 stim) P(r 1 stim)p(r 2 stim) cell 1 Noise cell 2 stimuli responses

32 Modeling multi- neuron responses x K h 11 y 1 coupling h currents: h 12 h 21 x K h 22 y 2

33 Methods t y x spatiotemporal binary white noise (24 x 24 pixels, 120Hz frame rate) simultaneous multi-electrode recordings of macaque RGCs Model parameters fit to five RGCs using 10 minutes of response to a non-repeating binary white noise stimulus

34 cell 1 Fits OFF cells cell 2 cell 3 cell 4 ON cells cell 5

35 cell 1 Fits cell 2 ON + OFF cells cell 3 cell 4 cell 5

36 cell 1 Fits cell 2 cell 3 cell 4 cell 5

37 Compare likelihoods: Pairwise coupling analysis 1. The single-cell model for cell i: novel stim stimulus filter IF spikes vs. 2. The pairwise model for i with coupling from cell j novel stim stimulus filter IF spikes cell j spikes h ij

38 Coupling Matrix Pairwise coupling analysis likelihood ratio Functional Coupling

39 Accounting for the autocorrelation RGC simulated model post-spike current OFF cells 1 2

40 Accounting for cross-correlations ON-ON correlations raw (stimulus + noise) RGC coupled model time (ms) stimulus-induced RGC, shuffled uncoupled model time (ms) 4 to 5 5 to 4

41 OFF-OFF cell correlations raw (stimulus + noise) RGC coupled model stimulus-induced RGC, shuffled uncoupled model time (ms) 1 vs 3 2 vs vs time (ms) 3 to 2 2 to 3

42 OFF-ON cell correlations raw (stimulus + noise) RGC coupled model stimulus-induced RGC, shuffled uncoupled model time (ms) 1 vs time (ms) 1 to 4 4 to 1

43 OFF-ON cell correlations raw (stimulus + noise) 1 vs 5 stimulus-induced time (ms) 2 vs 4 2 vs 5 3 vs 4 3 vs time (ms)

44 Conclusions 1. generalized-if model: flexible, tractable tool for modeling neural responses 2. fitting with maximum likelihood 3. probabilistic framework: useful for encoding (precision, response variability) and decoding 4. easily extended to multi-neuron responses 5. likelihood test of functional connectivity between cells 6. explains auto- and cross-correlations 7. resolves cross-correlations into stimulus-induced and noise-induced

45 My collaborators: E.J. Chichilnisky Valerie Uzzell Jonathon Shlens Eero Simoncelli - The Salk Institute - HHMI & NYU Liam Paninski - Columbia U.

46 Basis used for coupling currents time after a spike (ms)

47 Extra slides:

48 5-way coupling analysis likelihood ratio Likelihood ratio for fully connected model Cell # Functional Coupling

49 5-way coupling analysis likelihood ratio Likelihood ratio for fully connected model Cell # Conclusion: the fully connected model gives an improved description of multi-cell responses to white noise stimuli.

This cannot be estimated directly... s 1. s 2. P(spike, stim) P(stim) P(spike stim) =

This cannot be estimated directly... s 1. s 2. P(spike, stim) P(stim) P(spike stim) = LNP cascade model Simplest successful descriptive spiking model Easily fit to (extracellular) data Descriptive, and interpretable (although not mechanistic) For a Poisson model, response is captured by

More information

Combining biophysical and statistical methods for understanding neural codes

Combining biophysical and statistical methods for understanding neural codes Combining biophysical and statistical methods for understanding neural codes Liam Paninski Department of Statistics and Center for Theoretical Neuroscience Columbia University http://www.stat.columbia.edu/

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Spatio-temporal correlations and visual signaling in a complete neuronal population Jonathan W. Pillow 1, Jonathon Shlens 2, Liam Paninski 3, Alexander Sher 4, Alan M. Litke 4,E.J.Chichilnisky 2, Eero

More information

Statistical models for neural encoding, decoding, information estimation, and optimal on-line stimulus design

Statistical models for neural encoding, decoding, information estimation, and optimal on-line stimulus design Statistical models for neural encoding, decoding, information estimation, and optimal on-line stimulus design Liam Paninski Department of Statistics and Center for Theoretical Neuroscience Columbia University

More information

Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Model

Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Model Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Model Jonathan W. Pillow, Liam Paninski, and Eero P. Simoncelli Howard Hughes Medical Institute Center for Neural Science New York

More information

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES CHARACTERIZATION OF NONLINEAR NEURON RESPONSES Matt Whiteway whit8022@umd.edu Dr. Daniel A. Butts dab@umd.edu Neuroscience and Cognitive Science (NACS) Applied Mathematics and Scientific Computation (AMSC)

More information

Sean Escola. Center for Theoretical Neuroscience

Sean Escola. Center for Theoretical Neuroscience Employing hidden Markov models of neural spike-trains toward the improved estimation of linear receptive fields and the decoding of multiple firing regimes Sean Escola Center for Theoretical Neuroscience

More information

Statistical models for neural encoding

Statistical models for neural encoding Statistical models for neural encoding Part 1: discrete-time models Liam Paninski Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/ liam liam@gatsby.ucl.ac.uk

More information

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES CHARACTERIZATION OF NONLINEAR NEURON RESPONSES Matt Whiteway whit8022@umd.edu Dr. Daniel A. Butts dab@umd.edu Neuroscience and Cognitive Science (NACS) Applied Mathematics and Scientific Computation (AMSC)

More information

Comparing integrate-and-fire models estimated using intracellular and extracellular data 1

Comparing integrate-and-fire models estimated using intracellular and extracellular data 1 Comparing integrate-and-fire models estimated using intracellular and extracellular data 1 Liam Paninski a,b,2 Jonathan Pillow b Eero Simoncelli b a Gatsby Computational Neuroscience Unit, University College

More information

Neural variability and Poisson statistics

Neural variability and Poisson statistics Neural variability and Poisson statistics January 15, 2014 1 Introduction We are in the process of deriving the Hodgkin-Huxley model. That model describes how an action potential is generated by ion specic

More information

Characterization of Nonlinear Neuron Responses

Characterization of Nonlinear Neuron Responses Characterization of Nonlinear Neuron Responses Mid Year Report Matt Whiteway Department of Applied Mathematics and Scientific Computing whit822@umd.edu Advisor Dr. Daniel A. Butts Neuroscience and Cognitive

More information

Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons

Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons Yan Karklin and Eero P. Simoncelli NYU Overview Efficient coding is a well-known objective for the evaluation and

More information

Inferring synaptic conductances from spike trains under a biophysically inspired point process model

Inferring synaptic conductances from spike trains under a biophysically inspired point process model Inferring synaptic conductances from spike trains under a biophysically inspired point process model Kenneth W. Latimer The Institute for Neuroscience The University of Texas at Austin latimerk@utexas.edu

More information

Time-rescaling methods for the estimation and assessment of non-poisson neural encoding models

Time-rescaling methods for the estimation and assessment of non-poisson neural encoding models Time-rescaling methods for the estimation and assessment of non-poisson neural encoding models Jonathan W. Pillow Departments of Psychology and Neurobiology University of Texas at Austin pillow@mail.utexas.edu

More information

Mid Year Project Report: Statistical models of visual neurons

Mid Year Project Report: Statistical models of visual neurons Mid Year Project Report: Statistical models of visual neurons Anna Sotnikova asotniko@math.umd.edu Project Advisor: Prof. Daniel A. Butts dab@umd.edu Department of Biology Abstract Studying visual neurons

More information

Likelihood-Based Approaches to

Likelihood-Based Approaches to Likelihood-Based Approaches to 3 Modeling the Neural Code Jonathan Pillow One of the central problems in systems neuroscience is that of characterizing the functional relationship between sensory stimuli

More information

Decoding. How well can we learn what the stimulus is by looking at the neural responses?

Decoding. How well can we learn what the stimulus is by looking at the neural responses? Decoding How well can we learn what the stimulus is by looking at the neural responses? Two approaches: devise explicit algorithms for extracting a stimulus estimate directly quantify the relationship

More information

What is the neural code? Sekuler lab, Brandeis

What is the neural code? Sekuler lab, Brandeis What is the neural code? Sekuler lab, Brandeis What is the neural code? What is the neural code? Alan Litke, UCSD What is the neural code? What is the neural code? What is the neural code? Encoding: how

More information

Bayesian inference for low rank spatiotemporal neural receptive fields

Bayesian inference for low rank spatiotemporal neural receptive fields published in: Advances in Neural Information Processing Systems 6 (03), 688 696. Bayesian inference for low rank spatiotemporal neural receptive fields Mijung Park Electrical and Computer Engineering The

More information

Phenomenological Models of Neurons!! Lecture 5!

Phenomenological Models of Neurons!! Lecture 5! Phenomenological Models of Neurons!! Lecture 5! 1! Some Linear Algebra First!! Notes from Eero Simoncelli 2! Vector Addition! Notes from Eero Simoncelli 3! Scalar Multiplication of a Vector! 4! Vector

More information

Neural characterization in partially observed populations of spiking neurons

Neural characterization in partially observed populations of spiking neurons Presented at NIPS 2007 To appear in Adv Neural Information Processing Systems 20, Jun 2008 Neural characterization in partially observed populations of spiking neurons Jonathan W. Pillow Peter Latham Gatsby

More information

Dimensionality reduction in neural models: an information-theoretic generalization of spiketriggered average and covariance analysis

Dimensionality reduction in neural models: an information-theoretic generalization of spiketriggered average and covariance analysis to appear: Journal of Vision, 26 Dimensionality reduction in neural models: an information-theoretic generalization of spiketriggered average and covariance analysis Jonathan W. Pillow 1 and Eero P. Simoncelli

More information

The homogeneous Poisson process

The homogeneous Poisson process The homogeneous Poisson process during very short time interval Δt there is a fixed probability of an event (spike) occurring independent of what happened previously if r is the rate of the Poisson process,

More information

Neural Encoding Models

Neural Encoding Models Neural Encoding Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2011 Studying sensory systems x(t) y(t) Decoding: ˆx(t)= G[y(t)]

More information

LETTERS. Spatio-temporal correlations and visual signalling in a complete neuronal population

LETTERS. Spatio-temporal correlations and visual signalling in a complete neuronal population Vol 454 2 August 28 doi:.38/nature74 LETTERS Spatio-temporal correlations and visual signalling in a complete neuronal population Jonathan W. Pillow, Jonathon Shlens 2, Liam Paninski 3, Alexander Sher

More information

Dimensionality reduction in neural models: An information-theoretic generalization of spike-triggered average and covariance analysis

Dimensionality reduction in neural models: An information-theoretic generalization of spike-triggered average and covariance analysis Journal of Vision (2006) 6, 414 428 http://journalofvision.org/6/4/9/ 414 Dimensionality reduction in neural models: An information-theoretic generalization of spike-triggered average and covariance analysis

More information

SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017

SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017 SPIKE TRIGGERED APPROACHES Odelia Schwartz Computational Neuroscience Course 2017 LINEAR NONLINEAR MODELS Linear Nonlinear o Often constrain to some form of Linear, Nonlinear computations, e.g. visual

More information

THE retina in general consists of three layers: photoreceptors

THE retina in general consists of three layers: photoreceptors CS229 MACHINE LEARNING, STANFORD UNIVERSITY, DECEMBER 2016 1 Models of Neuron Coding in Retinal Ganglion Cells and Clustering by Receptive Field Kevin Fegelis, SUID: 005996192, Claire Hebert, SUID: 006122438,

More information

Neural Encoding. Mark van Rossum. January School of Informatics, University of Edinburgh 1 / 58

Neural Encoding. Mark van Rossum. January School of Informatics, University of Edinburgh 1 / 58 1 / 58 Neural Encoding Mark van Rossum School of Informatics, University of Edinburgh January 2015 2 / 58 Overview Understanding the neural code Encoding: Prediction of neural response to a given stimulus

More information

A Deep Learning Model of the Retina

A Deep Learning Model of the Retina A Deep Learning Model of the Retina Lane McIntosh and Niru Maheswaranathan Neurosciences Graduate Program, Stanford University Stanford, CA {lanemc, nirum}@stanford.edu Abstract The represents the first

More information

Adaptation in the Neural Code of the Retina

Adaptation in the Neural Code of the Retina Adaptation in the Neural Code of the Retina Lens Retina Fovea Optic Nerve Optic Nerve Bottleneck Neurons Information Receptors: 108 95% Optic Nerve 106 5% After Polyak 1941 Visual Cortex ~1010 Mean Intensity

More information

Modeling Convergent ON and OFF Pathways in the Early Visual System

Modeling Convergent ON and OFF Pathways in the Early Visual System Modeling Convergent ON and OFF Pathways in the Early Visual System The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gollisch,

More information

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture CSE/NB 528 Final Lecture: All Good Things Must 1 Course Summary Where have we been? Course Highlights Where do we go from here? Challenges and Open Problems Further Reading 2 What is the neural code? What

More information

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring. Elementary neuron models -- conductance based -- modelers alternatives

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring. Elementary neuron models -- conductance based -- modelers alternatives Computing in carbon Basic elements of neuroelectronics -- membranes -- ion channels -- wiring Elementary neuron models -- conductance based -- modelers alternatives Wiring neurons together -- synapses

More information

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring Computing in carbon Basic elements of neuroelectronics -- membranes -- ion channels -- wiring Elementary neuron models -- conductance based -- modelers alternatives Wires -- signal propagation -- processing

More information

encoding and estimation bottleneck and limits to visual fidelity

encoding and estimation bottleneck and limits to visual fidelity Retina Light Optic Nerve photoreceptors encoding and estimation bottleneck and limits to visual fidelity interneurons ganglion cells light The Neural Coding Problem s(t) {t i } Central goals for today:

More information

Transformation of stimulus correlations by the retina

Transformation of stimulus correlations by the retina Transformation of stimulus correlations by the retina Kristina Simmons (University of Pennsylvania) and Jason Prentice, (now Princeton University) with Gasper Tkacik (IST Austria) Jan Homann (now Princeton

More information

Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model

Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model ACCEPTED FOR NIPS: DRAFT VERSION Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model Sander M. Bohte CWI, Life Sciences Amsterdam, The Netherlands S.M.Bohte@cwi.nl September

More information

Modelling and Analysis of Retinal Ganglion Cells Through System Identification

Modelling and Analysis of Retinal Ganglion Cells Through System Identification Modelling and Analysis of Retinal Ganglion Cells Through System Identification Dermot Kerr 1, Martin McGinnity 2 and Sonya Coleman 1 1 School of Computing and Intelligent Systems, University of Ulster,

More information

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern.

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern. 1 Exercises Chapter 1 1. Generate spike sequences with a constant firing rate r 0 using a Poisson spike generator. Then, add a refractory period to the model by allowing the firing rate r(t) to depend

More information

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience An Introductory Course in Computational Neuroscience Contents Series Foreword Acknowledgments Preface 1 Preliminary Material 1.1. Introduction 1.1.1 The Cell, the Circuit, and the Brain 1.1.2 Physics of

More information

Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Encoding Model

Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Encoding Model LETTER Communicated by Anthony Burkitt Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Encoding Model Liam Paninski liam@cns.nyu.edu Howard Hughes Medical Institute, Center for

More information

Characterization of Nonlinear Neuron Responses

Characterization of Nonlinear Neuron Responses Characterization of Nonlinear Neuron Responses Final Report Matt Whiteway Department of Applied Mathematics and Scientific Computing whit822@umd.edu Advisor Dr. Daniel A. Butts Neuroscience and Cognitive

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

Bayesian active learning with localized priors for fast receptive field characterization

Bayesian active learning with localized priors for fast receptive field characterization Published in: Advances in Neural Information Processing Systems 25 (202) Bayesian active learning with localized priors for fast receptive field characterization Mijung Park Electrical and Computer Engineering

More information

Neural Spike Train Analysis 1: Introduction to Point Processes

Neural Spike Train Analysis 1: Introduction to Point Processes SAMSI Summer 2015: CCNS Computational Neuroscience Summer School Neural Spike Train Analysis 1: Introduction to Point Processes Uri Eden BU Department of Mathematics and Statistics July 27, 2015 Spikes

More information

Nonlinear reverse-correlation with synthesized naturalistic noise

Nonlinear reverse-correlation with synthesized naturalistic noise Cognitive Science Online, Vol1, pp1 7, 2003 http://cogsci-onlineucsdedu Nonlinear reverse-correlation with synthesized naturalistic noise Hsin-Hao Yu Department of Cognitive Science University of California

More information

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 4 part 5: Nonlinear Integrate-and-Fire Model 4.1 From Hodgkin-Huxley to 2D Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 4 Recing detail: Two-dimensional neuron models Wulfram

More information

1/12/2017. Computational neuroscience. Neurotechnology.

1/12/2017. Computational neuroscience. Neurotechnology. Computational neuroscience Neurotechnology https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/ 1 Neurotechnology http://www.lce.hut.fi/research/cogntech/neurophysiology Recording

More information

Learning quadratic receptive fields from neural responses to natural signals: information theoretic and likelihood methods

Learning quadratic receptive fields from neural responses to natural signals: information theoretic and likelihood methods Learning quadratic receptive fields from neural responses to natural signals: information theoretic and likelihood methods Kanaka Rajan Lewis-Sigler Institute for Integrative Genomics Princeton University

More information

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 206 Jonathan Pillow Homework 8: Logistic Regression & Information Theory Due: Tuesday, April 26, 9:59am Optimization Toolbox One

More information

Model-based decoding, information estimation, and change-point detection techniques for multi-neuron spike trains

Model-based decoding, information estimation, and change-point detection techniques for multi-neuron spike trains Model-based decoding, information estimation, and change-point detection techniques for multi-neuron spike trains Jonathan W. Pillow 1, Yashar Ahmadian 2 and Liam Paninski 2 1 Center for Perceptual Systems,

More information

Probabilistic Models in Theoretical Neuroscience

Probabilistic Models in Theoretical Neuroscience Probabilistic Models in Theoretical Neuroscience visible unit Boltzmann machine semi-restricted Boltzmann machine restricted Boltzmann machine hidden unit Neural models of probabilistic sampling: introduction

More information

Membrane equation. VCl. dv dt + V = V Na G Na + V K G K + V Cl G Cl. G total. C m. G total = G Na + G K + G Cl

Membrane equation. VCl. dv dt + V = V Na G Na + V K G K + V Cl G Cl. G total. C m. G total = G Na + G K + G Cl Spiking neurons Membrane equation V GNa GK GCl Cm VNa VK VCl dv dt + V = V Na G Na + V K G K + V Cl G Cl G total G total = G Na + G K + G Cl = C m G total Membrane with synaptic inputs V Gleak GNa GK

More information

Challenges and opportunities in statistical neuroscience

Challenges and opportunities in statistical neuroscience Challenges and opportunities in statistical neuroscience Liam Paninski Department of Statistics Center for Theoretical Neuroscience Grossman Center for the Statistics of Mind Columbia University http://www.stat.columbia.edu/

More information

Maximum likelihood estimation of cascade point-process neural encoding models

Maximum likelihood estimation of cascade point-process neural encoding models INSTITUTE OF PHYSICS PUBLISHING Network: Comput. Neural Syst. 15 (2004) 243 262 NETWORK: COMPUTATION IN NEURAL SYSTEMS PII: S0954-898X(04)75780-2 Maximum likelihood estimation of cascade point-process

More information

Biological Modeling of Neural Networks

Biological Modeling of Neural Networks Week 4 part 2: More Detail compartmental models Biological Modeling of Neural Networks Week 4 Reducing detail - Adding detail 4.2. Adding detail - apse -cable equat Wulfram Gerstner EPFL, Lausanne, Switzerland

More information

Inferring input nonlinearities in neural encoding models

Inferring input nonlinearities in neural encoding models Inferring input nonlinearities in neural encoding models Misha B. Ahrens 1, Liam Paninski 2 and Maneesh Sahani 1 1 Gatsby Computational Neuroscience Unit, University College London, London, UK 2 Dept.

More information

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References 24th March 2011 Update Hierarchical Model Rao and Ballard (1999) presented a hierarchical model of visual cortex to show how classical and extra-classical Receptive Field (RF) effects could be explained

More information

Lateral organization & computation

Lateral organization & computation Lateral organization & computation review Population encoding & decoding lateral organization Efficient representations that reduce or exploit redundancy Fixation task 1rst order Retinotopic maps Log-polar

More information

Statistical challenges and opportunities in neural data analysis

Statistical challenges and opportunities in neural data analysis Statistical challenges and opportunities in neural data analysis Liam Paninski Department of Statistics Center for Theoretical Neuroscience Grossman Center for the Statistics of Mind Columbia University

More information

Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell

Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell 1. Abstract Matthew Dunlevie Clement Lee Indrani Mikkilineni mdunlevi@ucsd.edu cll008@ucsd.edu imikkili@ucsd.edu Isolated

More information

Neural Modeling and Computational Neuroscience. Claudio Gallicchio

Neural Modeling and Computational Neuroscience. Claudio Gallicchio Neural Modeling and Computational Neuroscience Claudio Gallicchio 1 Neuroscience modeling 2 Introduction to basic aspects of brain computation Introduction to neurophysiology Neural modeling: Elements

More information

Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons

Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons To appear in: Neural Information Processing Systems (NIPS), http://nips.cc/ Granada, Spain. December 12-15, 211. Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons Yan

More information

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011 Crab cam (Barlow et al., 2001) self inhibition recurrent inhibition lateral inhibition - L16. Neural processing in Linear Systems: Temporal and Spatial Filtering C. D. Hopkins Sept. 21, 2011 The Neural

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary discussion 1: Most excitatory and suppressive stimuli for model neurons The model allows us to determine, for each model neuron, the set of most excitatory and suppresive features. First,

More information

Basic Principles of Unsupervised and Unsupervised

Basic Principles of Unsupervised and Unsupervised Basic Principles of Unsupervised and Unsupervised Learning Toward Deep Learning Shun ichi Amari (RIKEN Brain Science Institute) collaborators: R. Karakida, M. Okada (U. Tokyo) Deep Learning Self Organization

More information

The Spike Response Model: A Framework to Predict Neuronal Spike Trains

The Spike Response Model: A Framework to Predict Neuronal Spike Trains The Spike Response Model: A Framework to Predict Neuronal Spike Trains Renaud Jolivet, Timothy J. Lewis 2, and Wulfram Gerstner Laboratory of Computational Neuroscience, Swiss Federal Institute of Technology

More information

Bio-Inspired Approach to Modelling Retinal Ganglion Cells using System Identification Techniques

Bio-Inspired Approach to Modelling Retinal Ganglion Cells using System Identification Techniques Bio-Inspired Approach to Modelling Retinal Ganglion Cells using System Identification Techniques P. Vance, G. P. Das, D. Kerr, S. A. Coleman and T. M. McGinnity Abstract The processing capabilities of

More information

Primer: The deconstruction of neuronal spike trains

Primer: The deconstruction of neuronal spike trains Primer: The deconstruction of neuronal spike trains JOHNATAN ALJADEFF 1,2, BENJAMIN J. LANSDELL 3, ADRIENNE L. FAIRHALL 4 AND DAVID KLEINFELD 1,5 1 Department of Physics, University of California, San

More information

State-Space Methods for Inferring Spike Trains from Calcium Imaging

State-Space Methods for Inferring Spike Trains from Calcium Imaging State-Space Methods for Inferring Spike Trains from Calcium Imaging Joshua Vogelstein Johns Hopkins April 23, 2009 Joshua Vogelstein (Johns Hopkins) State-Space Calcium Imaging April 23, 2009 1 / 78 Outline

More information

arxiv: v1 [q-bio.nc] 12 Feb 2009

arxiv: v1 [q-bio.nc] 12 Feb 2009 arxiv:0902.2037v1 [q-bio.nc] 12 Feb 2009 Stimulus-dependent correlations in threshold-crossing spiking neurons Yoram Burak 1, Sam Lewallen 2, and Haim Sompolinsky 1,3 1 Center for Brain Science, Harvard

More information

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be Supplementary Materials General case: computing log likelihood We first describe the general case of computing the log likelihood of a sensory parameter θ that is encoded by the activity of neurons. Each

More information

Lecture 11 : Simple Neuron Models. Dr Eileen Nugent

Lecture 11 : Simple Neuron Models. Dr Eileen Nugent Lecture 11 : Simple Neuron Models Dr Eileen Nugent Reading List Nelson, Biological Physics, Chapter 12 Phillips, PBoC, Chapter 17 Gerstner, Neuronal Dynamics: from single neurons to networks and models

More information

Convolutional networks. Sebastian Seung

Convolutional networks. Sebastian Seung Convolutional networks Sebastian Seung Convolutional network Neural network with spatial organization every neuron has a location usually on a grid Translation invariance synaptic strength depends on locations

More information

Encoding Natural Scenes with Neural Circuits with Random Thresholds

Encoding Natural Scenes with Neural Circuits with Random Thresholds Encoding Natural Scenes with Neural Circuits with Random Thresholds Aurel A. Lazar, Eftychios A. Pnevmatikakis and Yiyin Zhou Department of Electrical Engineering Columbia University, New York, NY 10027

More information

E.J. Chichilnisky. John R. Adler Professor, Professor of Neurosurgery and of Ophthalmology and, by courtesy, of Electrical Engineering.

E.J. Chichilnisky. John R. Adler Professor, Professor of Neurosurgery and of Ophthalmology and, by courtesy, of Electrical Engineering. John R. Adler Professor, Professor of Neurosurgery and of Ophthalmology and, by courtesy, of Electrical Engineering Bio ACADEMIC APPOINTMENTS Professor, Neurosurgery Professor, Ophthalmology Professor

More information

Scaling the Poisson GLM to massive neural datasets through polynomial approximations

Scaling the Poisson GLM to massive neural datasets through polynomial approximations Scaling the Poisson GLM to massive neural datasets through polynomial approximations David M. Zoltowski Princeton Neuroscience Institute Princeton University; Princeton, NJ 8544 zoltowski@princeton.edu

More information

Generative v. Discriminative classifiers Intuition

Generative v. Discriminative classifiers Intuition Logistic Regression Machine Learning 070/578 Carlos Guestrin Carnegie Mellon University September 24 th, 2007 Generative v. Discriminative classifiers Intuition Want to Learn: h:x a Y X features Y target

More information

When Do Microcircuits Produce Beyond-Pairwise Correlations?

When Do Microcircuits Produce Beyond-Pairwise Correlations? When Do Microcircuits Produce Beyond-Pairwise Correlations? Andrea K. Barreiro,4,, Julijana Gjorgjieva 3,5, Fred Rieke 2, and Eric Shea-Brown Department of Applied Mathematics, University of Washington

More information

Information Theory. Mark van Rossum. January 24, School of Informatics, University of Edinburgh 1 / 35

Information Theory. Mark van Rossum. January 24, School of Informatics, University of Edinburgh 1 / 35 1 / 35 Information Theory Mark van Rossum School of Informatics, University of Edinburgh January 24, 2018 0 Version: January 24, 2018 Why information theory 2 / 35 Understanding the neural code. Encoding

More information

A new look at state-space models for neural data

A new look at state-space models for neural data A new look at state-space models for neural data Liam Paninski Department of Statistics and Center for Theoretical Neuroscience Columbia University http://www.stat.columbia.edu/ liam liam@stat.columbia.edu

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback

Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback Gautam C Sethia and Abhijit Sen Institute for Plasma Research, Bhat, Gandhinagar 382 428, INDIA Motivation Neural Excitability

More information

Recurrent linear models of simultaneously-recorded neural populations

Recurrent linear models of simultaneously-recorded neural populations Recurrent linear models of simultaneously-recorded neural populations Marius Pachitariu, Biljana Petreska, Maneesh Sahani Gatsby Computational Neuroscience Unit University College London, UK {marius,biljana,maneesh}@gatsby.ucl.ac.uk

More information

Comparison of objective functions for estimating linear-nonlinear models

Comparison of objective functions for estimating linear-nonlinear models Comparison of objective functions for estimating linear-nonlinear models Tatyana O. Sharpee Computational Neurobiology Laboratory, the Salk Institute for Biological Studies, La Jolla, CA 937 sharpee@salk.edu

More information

Nonlinear computations shaping temporal processing of pre-cortical vision

Nonlinear computations shaping temporal processing of pre-cortical vision Articles in PresS. J Neurophysiol (June 22, 216). doi:1.1152/jn.878.215 1 2 3 4 5 6 7 8 9 1 Nonlinear computations shaping temporal processing of pre-cortical vision Authors: Daniel A. Butts 1, Yuwei Cui

More information

Identifying Functional Bases for Multidimensional Neural Computations

Identifying Functional Bases for Multidimensional Neural Computations LETTER Communicated by Jonathan Pillow Identifying Functional Bases for Multidimensional Neural Computations Joel Kaardal jkaardal@physics.ucsd.edu Jeffrey D. Fitzgerald jfitzgerald@physics.ucsd.edu Computational

More information

Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment

Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment Jean-Pierre Nadal CNRS & EHESS Laboratoire de Physique Statistique (LPS, UMR 8550 CNRS - ENS UPMC Univ.

More information

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino Artificial Neural Networks Data Base and Data Mining Group of Politecnico di Torino Elena Baralis Politecnico di Torino Artificial Neural Networks Inspired to the structure of the human brain Neurons as

More information

Dynamical systems in neuroscience. Pacific Northwest Computational Neuroscience Connection October 1-2, 2010

Dynamical systems in neuroscience. Pacific Northwest Computational Neuroscience Connection October 1-2, 2010 Dynamical systems in neuroscience Pacific Northwest Computational Neuroscience Connection October 1-2, 2010 What do I mean by a dynamical system? Set of state variables Law that governs evolution of state

More information

Estimation of information-theoretic quantities

Estimation of information-theoretic quantities Estimation of information-theoretic quantities Liam Paninski Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/ liam liam@gatsby.ucl.ac.uk November 16, 2004 Some

More information

arxiv: v2 [q-bio.nc] 3 Dec 2013

arxiv: v2 [q-bio.nc] 3 Dec 2013 Spike-timing prediction with active dendrites Richard Naud 1, Brice Bathellier 2 and Wulfram Gerstner 3 1 Department of Physics, University of Ottawa, 150 Louis Pasteur, ON, K1N 6N5, Canada. 2 Unit of

More information

Integral equation methods for computing likelihoods and their derivatives in the stochastic integrate-and-fire model

Integral equation methods for computing likelihoods and their derivatives in the stochastic integrate-and-fire model J Comput Neurosci (8) 4:69 79 DOI 1.17/s187-7-4-x Integral equation methods for computing likelihoods and their derivatives in the stochastic integrate-and-fire model Liam Paninski Adrian Haith Gabor Szirtes

More information

CORRELATION TRANSFER FROM BASAL GANGLIA TO THALAMUS IN PARKINSON S DISEASE. by Pamela Reitsma. B.S., University of Maine, 2007

CORRELATION TRANSFER FROM BASAL GANGLIA TO THALAMUS IN PARKINSON S DISEASE. by Pamela Reitsma. B.S., University of Maine, 2007 CORRELATION TRANSFER FROM BASAL GANGLIA TO THALAMUS IN PARKINSON S DISEASE by Pamela Reitsma B.S., University of Maine, 27 Submitted to the Graduate Faculty of the Department of Mathematics in partial

More information

Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data

Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data Maneesh Sahani Gatsby Computational Neuroscience Unit University College, London Jennifer

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information