This cannot be estimated directly... s 1. s 2. P(spike, stim) P(stim) P(spike stim) =

Size: px
Start display at page:

Download "This cannot be estimated directly... s 1. s 2. P(spike, stim) P(stim) P(spike stim) ="

Transcription

1 LNP cascade model Simplest successful descriptive spiking model Easily fit to (extracellular) data Descriptive, and interpretable (although not mechanistic)

2 For a Poisson model, response is captured by relationship between the distribution of red points (spiking stim) and blue points (raw stim), expressed in terms of Bayes rule: s 1 P(spike stim) = P(spike, stim) P(stim) s 2 This cannot be estimated directly...

3 ML estimation of LNP [on board]

4 ML estimation of LNP If f θ ( k x) and log is convex (in argument and theta), f θ ( k x) is concave, the likelihood of the LNP model is convex (for all observed data, {n(t), x(t)} ) [Paninski, 04]

5 ML estimation of LNP If f θ ( k x) and log is convex (in argument and theta), f θ ( k x) is concave, the likelihood of the LNP model is convex (for all observed data, {n(t), x(t)} ) Examples: e ( k x(t)) ( k x(t)) α, 1 < α < 2 [Paninski, 04]

6 Simple LNP fitting Assuming: - stochastic stimuli, spherically distributed - mean of spike-triggered ensemble is shifted from that of raw ensemble Reverse correlation gives an unbiased estimate of k (for any f). For exponential f, this is the ML estimate! - Bussgang 52; de Boer & Kuyper 68

7 Computing the STA s1 s2 raw stimuli spiking stimuli

8 STA corresponds to a direction in stimulus space

9 Projecting onto the STA P ( spike(t) ) k s(t) = P ( spike(t) & ) k s(t) /P ( s(t))

10 Solving for nonlinearity nonparametrically

11 Solving for nonlinearity nonparametrically STA response

12 Solving for nonlinearity nonparametrically STA response

13 Projecting onto an axis orthogonal to the STA

14 Projecting onto an axis orthogonal to the STA

15 Projecting onto an axis orthogonal to the STA

16 Figure 3. Characterization of light response in one ON cell (A, B) and one OFF cell (C, D) simultaneously recorded in salamander retina. A, C, The spike-triggered average L-cone contrast during random flicker stiminput strength - Chander & Chichilnisky 01

17 !"#$%&& 0 time (s) 1!"# &'( $% '()##*+#,-. /0#)#*+#,-. - Pillow etal, 2004

18 V1 simple cell Time, T [msec] T=100 ms T= 50 ms T= 50 ms T= 50 ms T=100 ms T=100 ms T=150 ms T=150 ms T= 200 ms T= 200 ms X X X X T T T T Y Y Y Space, X [deg] 300 Space, X [deg] Time, T [msec] Time, T [msec] Space, X [deg] T=150 ms X X T= 200 ms T T - Ozhawa, etal

19 A B T [ms] C X [deg] Response [spikes/sec] SF [cyc/deg] TF [Hz]

20 LNP summary LNP is the defacto standard descriptive model, and is implicit in much of the experimental literature Accounts for basic RF properties Accounts for basic spiking properties (rate code) Easily fit to data Easily interpreted BUT, non-mechanistic, and exhibits striking failures (esp. beyond early sensory/motor)...

21 STA estimation errors Convergence rate [Paninski, 03] e(ˆk) σ E( k s) d N σ = stim s.d., d = stim dim., N = nspikes Non-spherical stimuli can cause biases Model failures: - symmetric nonlinearity (causes no change in STE mean) - response not captured by 1D projection - non-poisson spiking behaviors

22 2 2 2 variance variance variance eigenvalue number eigenvalue number eigenvalue number Error Bootstrap error Asymptotic error Number spikes / stimulus dimensions

23 Example 1: sparse noise true STA

24 Example 2: uniform noise true

25 LNP limitations Symmetric nonlinearities and/or multidimensional front-end (e.g., V1 complex cells)

26 LNP limitations Symmetric nonlinearities and/or multidimensional front-end (e.g., V1 complex cells) Subspace LNP

27 Classic V1 models Simple cell Complex cell +

28 V1 simple cell time tf STA space sf 1.8 variance STC eigenvalue number [Rust, Schwartz, Movshon, Simoncelli, 05]

29 LNP limitations Symmetric nonlinearities and/or multidimensional front-end (e.g., V1 complex cells) Subspace LNP Linear front end insufficient for non-peripheral neuraons Cascades / fixed front-end nonlinearities

30 LNP limitations Symmetric nonlinearities and/or multidimensional front-end (e.g., V1 complex cells) Subspace LNP Linear front end insufficient for non-peripheral neuraons Cascades / fixed front-end nonlinearities Responses depend on spike history, other cells Recursive models (GLM)

31 Linear-Nonlinear-Poisson (LNP) stimulus filter point nonlinearity probabilistic spiking

32 Recursive LNP stimulus filter exponential nonlinearity probabilistic spiking + post-spike waveform [Truccolo et al 05; Pillow et al 05]

33 stimulus & spike train model parameters Critical: Likelihood function has no local maxima [Paninski 04]

34 stimulus & spike train model parameters maximize likelihood Critical: Likelihood function has no local maxima [Paninski 04]

35 28

36 rlnp model stimulus filter exponential nonlinearity probabilistic spiking stimulus + post-spike waveform

37 rlnp model stimulus filter exponential nonlinearity probabilistic spiking stimulus + post-spike waveform +

38 Multi-cell rlnp, with model spike coupling stimulus filter exponential nonlinearity probabilistic spiking stimulus + post-spike waveform coupling waveforms +

39 Equivalent model diagram Equivalent model diagram x(t) y 1 (t) K h 11 y n (t) h 1n 30

40 Equivalent model diagram Equivalent model diagram x(t) y 1 (t) K h 11 y n (t) h 1n 30

41 stimulus & spike trains model parameters

42 stimulus & spike trains model parameters maximize likelihood

43 stimulus & spike trains model parameters maximize likelihood Again: Likelihood function has no local maxima [Paninski 04]

44 Methods Methods spatiotemporal binary white noise (8 minutes at 120Hz) macaque retinal ganglion cell (RGC) spike responses (ON and OFF parasol) [Pillow, Shlens, Paninski, Chichilnisky, Simoncelli - unpublished]

45 Example ON cell Example OFF cell [Pillow, Shlens, Paninski, Chichilnisky, Simoncelli - unpublished]

46 ON cells OFF cells Cross-Correlations RGC rlnp GLM rate (sp/s) time (ms) time (ms)

47 ON cells OFF cells Cross-Correlations RGC GLM rlnp(no coupling) rate (sp/s) time (ms) time (ms)

48

49 Single-trial spike prediction RGC responses single-trial predictions (neighbor spikes frozen )

50 Single-trial spike prediction RGC responses single-trial predictions (neighbor spikes frozen ) Equivalent model diagram x(t) y 1 (t) K h 11 y n (t) h 1n

51 Single-trial spike prediction RGC responses single-trial predictions (neighbor spikes frozen ) Equivalent model diagram x(t) y 1 (t) K h 11 y n (t) h 1n

52 Single-trial spike prediction RGC responses single-trial predictions (neighbor spikes frozen ) spike prediction (bits/sp) LNP

53 Single-trial spike prediction RGC responses single-trial predictions (neighbor spikes frozen ) 2 spike prediction (bits/sp) full model uncoupled model LNP

54 Decoding Stimulus information (bits/s) opt. linear LNP rlnp crlnp

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Jonathan Pillow HHMI and NYU http://www.cns.nyu.edu/~pillow Oct 5, Course lecture: Computational Modeling of Neuronal Systems

More information

Statistical models for neural encoding, decoding, information estimation, and optimal on-line stimulus design

Statistical models for neural encoding, decoding, information estimation, and optimal on-line stimulus design Statistical models for neural encoding, decoding, information estimation, and optimal on-line stimulus design Liam Paninski Department of Statistics and Center for Theoretical Neuroscience Columbia University

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Spatio-temporal correlations and visual signaling in a complete neuronal population Jonathan W. Pillow 1, Jonathon Shlens 2, Liam Paninski 3, Alexander Sher 4, Alan M. Litke 4,E.J.Chichilnisky 2, Eero

More information

Neural Encoding Models

Neural Encoding Models Neural Encoding Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2011 Studying sensory systems x(t) y(t) Decoding: ˆx(t)= G[y(t)]

More information

Statistical models for neural encoding

Statistical models for neural encoding Statistical models for neural encoding Part 1: discrete-time models Liam Paninski Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/ liam liam@gatsby.ucl.ac.uk

More information

Dimensionality reduction in neural models: An information-theoretic generalization of spike-triggered average and covariance analysis

Dimensionality reduction in neural models: An information-theoretic generalization of spike-triggered average and covariance analysis Journal of Vision (2006) 6, 414 428 http://journalofvision.org/6/4/9/ 414 Dimensionality reduction in neural models: An information-theoretic generalization of spike-triggered average and covariance analysis

More information

Dimensionality reduction in neural models: an information-theoretic generalization of spiketriggered average and covariance analysis

Dimensionality reduction in neural models: an information-theoretic generalization of spiketriggered average and covariance analysis to appear: Journal of Vision, 26 Dimensionality reduction in neural models: an information-theoretic generalization of spiketriggered average and covariance analysis Jonathan W. Pillow 1 and Eero P. Simoncelli

More information

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES CHARACTERIZATION OF NONLINEAR NEURON RESPONSES Matt Whiteway whit8022@umd.edu Dr. Daniel A. Butts dab@umd.edu Neuroscience and Cognitive Science (NACS) Applied Mathematics and Scientific Computation (AMSC)

More information

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES CHARACTERIZATION OF NONLINEAR NEURON RESPONSES Matt Whiteway whit8022@umd.edu Dr. Daniel A. Butts dab@umd.edu Neuroscience and Cognitive Science (NACS) Applied Mathematics and Scientific Computation (AMSC)

More information

Combining biophysical and statistical methods for understanding neural codes

Combining biophysical and statistical methods for understanding neural codes Combining biophysical and statistical methods for understanding neural codes Liam Paninski Department of Statistics and Center for Theoretical Neuroscience Columbia University http://www.stat.columbia.edu/

More information

Mid Year Project Report: Statistical models of visual neurons

Mid Year Project Report: Statistical models of visual neurons Mid Year Project Report: Statistical models of visual neurons Anna Sotnikova asotniko@math.umd.edu Project Advisor: Prof. Daniel A. Butts dab@umd.edu Department of Biology Abstract Studying visual neurons

More information

1/12/2017. Computational neuroscience. Neurotechnology.

1/12/2017. Computational neuroscience. Neurotechnology. Computational neuroscience Neurotechnology https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/ 1 Neurotechnology http://www.lce.hut.fi/research/cogntech/neurophysiology Recording

More information

Inferring synaptic conductances from spike trains under a biophysically inspired point process model

Inferring synaptic conductances from spike trains under a biophysically inspired point process model Inferring synaptic conductances from spike trains under a biophysically inspired point process model Kenneth W. Latimer The Institute for Neuroscience The University of Texas at Austin latimerk@utexas.edu

More information

Characterization of Nonlinear Neuron Responses

Characterization of Nonlinear Neuron Responses Characterization of Nonlinear Neuron Responses Mid Year Report Matt Whiteway Department of Applied Mathematics and Scientific Computing whit822@umd.edu Advisor Dr. Daniel A. Butts Neuroscience and Cognitive

More information

Primer: The deconstruction of neuronal spike trains

Primer: The deconstruction of neuronal spike trains Primer: The deconstruction of neuronal spike trains JOHNATAN ALJADEFF 1,2, BENJAMIN J. LANSDELL 3, ADRIENNE L. FAIRHALL 4 AND DAVID KLEINFELD 1,5 1 Department of Physics, University of California, San

More information

Likelihood-Based Approaches to

Likelihood-Based Approaches to Likelihood-Based Approaches to 3 Modeling the Neural Code Jonathan Pillow One of the central problems in systems neuroscience is that of characterizing the functional relationship between sensory stimuli

More information

Phenomenological Models of Neurons!! Lecture 5!

Phenomenological Models of Neurons!! Lecture 5! Phenomenological Models of Neurons!! Lecture 5! 1! Some Linear Algebra First!! Notes from Eero Simoncelli 2! Vector Addition! Notes from Eero Simoncelli 3! Scalar Multiplication of a Vector! 4! Vector

More information

Time-rescaling methods for the estimation and assessment of non-poisson neural encoding models

Time-rescaling methods for the estimation and assessment of non-poisson neural encoding models Time-rescaling methods for the estimation and assessment of non-poisson neural encoding models Jonathan W. Pillow Departments of Psychology and Neurobiology University of Texas at Austin pillow@mail.utexas.edu

More information

SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017

SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017 SPIKE TRIGGERED APPROACHES Odelia Schwartz Computational Neuroscience Course 2017 LINEAR NONLINEAR MODELS Linear Nonlinear o Often constrain to some form of Linear, Nonlinear computations, e.g. visual

More information

Bayesian inference for low rank spatiotemporal neural receptive fields

Bayesian inference for low rank spatiotemporal neural receptive fields published in: Advances in Neural Information Processing Systems 6 (03), 688 696. Bayesian inference for low rank spatiotemporal neural receptive fields Mijung Park Electrical and Computer Engineering The

More information

What is the neural code? Sekuler lab, Brandeis

What is the neural code? Sekuler lab, Brandeis What is the neural code? Sekuler lab, Brandeis What is the neural code? What is the neural code? Alan Litke, UCSD What is the neural code? What is the neural code? What is the neural code? Encoding: how

More information

Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Model

Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Model Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Model Jonathan W. Pillow, Liam Paninski, and Eero P. Simoncelli Howard Hughes Medical Institute Center for Neural Science New York

More information

encoding and estimation bottleneck and limits to visual fidelity

encoding and estimation bottleneck and limits to visual fidelity Retina Light Optic Nerve photoreceptors encoding and estimation bottleneck and limits to visual fidelity interneurons ganglion cells light The Neural Coding Problem s(t) {t i } Central goals for today:

More information

Learning quadratic receptive fields from neural responses to natural signals: information theoretic and likelihood methods

Learning quadratic receptive fields from neural responses to natural signals: information theoretic and likelihood methods Learning quadratic receptive fields from neural responses to natural signals: information theoretic and likelihood methods Kanaka Rajan Lewis-Sigler Institute for Integrative Genomics Princeton University

More information

Characterization of Nonlinear Neuron Responses

Characterization of Nonlinear Neuron Responses Characterization of Nonlinear Neuron Responses Final Report Matt Whiteway Department of Applied Mathematics and Scientific Computing whit822@umd.edu Advisor Dr. Daniel A. Butts Neuroscience and Cognitive

More information

Neural Encoding. Mark van Rossum. January School of Informatics, University of Edinburgh 1 / 58

Neural Encoding. Mark van Rossum. January School of Informatics, University of Edinburgh 1 / 58 1 / 58 Neural Encoding Mark van Rossum School of Informatics, University of Edinburgh January 2015 2 / 58 Overview Understanding the neural code Encoding: Prediction of neural response to a given stimulus

More information

Comparison of objective functions for estimating linear-nonlinear models

Comparison of objective functions for estimating linear-nonlinear models Comparison of objective functions for estimating linear-nonlinear models Tatyana O. Sharpee Computational Neurobiology Laboratory, the Salk Institute for Biological Studies, La Jolla, CA 937 sharpee@salk.edu

More information

Identifying Functional Bases for Multidimensional Neural Computations

Identifying Functional Bases for Multidimensional Neural Computations LETTER Communicated by Jonathan Pillow Identifying Functional Bases for Multidimensional Neural Computations Joel Kaardal jkaardal@physics.ucsd.edu Jeffrey D. Fitzgerald jfitzgerald@physics.ucsd.edu Computational

More information

Bayesian active learning with localized priors for fast receptive field characterization

Bayesian active learning with localized priors for fast receptive field characterization Published in: Advances in Neural Information Processing Systems 25 (202) Bayesian active learning with localized priors for fast receptive field characterization Mijung Park Electrical and Computer Engineering

More information

Neural characterization in partially observed populations of spiking neurons

Neural characterization in partially observed populations of spiking neurons Presented at NIPS 2007 To appear in Adv Neural Information Processing Systems 20, Jun 2008 Neural characterization in partially observed populations of spiking neurons Jonathan W. Pillow Peter Latham Gatsby

More information

Liam Paninski Department of Statistics and Center for Theoretical Neuroscience Columbia University liam.

Liam Paninski Department of Statistics and Center for Theoretical Neuroscience Columbia University  liam. Statistical analysis of neural data: Classification-based approaches: spike-triggered averaging, spike-triggered covariance, and the linear-nonlinear cascade model Liam Paninski Department of Statistics

More information

Efficient and direct estimation of a neural subunit model for sensory coding

Efficient and direct estimation of a neural subunit model for sensory coding To appear in: Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada. December 3-6, 22. Efficient and direct estimation of a neural subunit model for sensory coding Brett Vintch Andrew D. Zaharia

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary discussion 1: Most excitatory and suppressive stimuli for model neurons The model allows us to determine, for each model neuron, the set of most excitatory and suppresive features. First,

More information

Sean Escola. Center for Theoretical Neuroscience

Sean Escola. Center for Theoretical Neuroscience Employing hidden Markov models of neural spike-trains toward the improved estimation of linear receptive fields and the decoding of multiple firing regimes Sean Escola Center for Theoretical Neuroscience

More information

A Deep Learning Model of the Retina

A Deep Learning Model of the Retina A Deep Learning Model of the Retina Lane McIntosh and Niru Maheswaranathan Neurosciences Graduate Program, Stanford University Stanford, CA {lanemc, nirum}@stanford.edu Abstract The represents the first

More information

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Maximum likelihood estimation of cascade point-process neural encoding models

Maximum likelihood estimation of cascade point-process neural encoding models INSTITUTE OF PHYSICS PUBLISHING Network: Comput. Neural Syst. 15 (2004) 243 262 NETWORK: COMPUTATION IN NEURAL SYSTEMS PII: S0954-898X(04)75780-2 Maximum likelihood estimation of cascade point-process

More information

The homogeneous Poisson process

The homogeneous Poisson process The homogeneous Poisson process during very short time interval Δt there is a fixed probability of an event (spike) occurring independent of what happened previously if r is the rate of the Poisson process,

More information

THE retina in general consists of three layers: photoreceptors

THE retina in general consists of three layers: photoreceptors CS229 MACHINE LEARNING, STANFORD UNIVERSITY, DECEMBER 2016 1 Models of Neuron Coding in Retinal Ganglion Cells and Clustering by Receptive Field Kevin Fegelis, SUID: 005996192, Claire Hebert, SUID: 006122438,

More information

Neural variability and Poisson statistics

Neural variability and Poisson statistics Neural variability and Poisson statistics January 15, 2014 1 Introduction We are in the process of deriving the Hodgkin-Huxley model. That model describes how an action potential is generated by ion specic

More information

Comparing integrate-and-fire models estimated using intracellular and extracellular data 1

Comparing integrate-and-fire models estimated using intracellular and extracellular data 1 Comparing integrate-and-fire models estimated using intracellular and extracellular data 1 Liam Paninski a,b,2 Jonathan Pillow b Eero Simoncelli b a Gatsby Computational Neuroscience Unit, University College

More information

Transformation of stimulus correlations by the retina

Transformation of stimulus correlations by the retina Transformation of stimulus correlations by the retina Kristina Simmons (University of Pennsylvania) and Jason Prentice, (now Princeton University) with Gasper Tkacik (IST Austria) Jan Homann (now Princeton

More information

Lateral organization & computation

Lateral organization & computation Lateral organization & computation review Population encoding & decoding lateral organization Efficient representations that reduce or exploit redundancy Fixation task 1rst order Retinotopic maps Log-polar

More information

LETTERS. Spatio-temporal correlations and visual signalling in a complete neuronal population

LETTERS. Spatio-temporal correlations and visual signalling in a complete neuronal population Vol 454 2 August 28 doi:.38/nature74 LETTERS Spatio-temporal correlations and visual signalling in a complete neuronal population Jonathan W. Pillow, Jonathon Shlens 2, Liam Paninski 3, Alexander Sher

More information

Convolutional Spike-triggered Covariance Analysis for Neural Subunit Models

Convolutional Spike-triggered Covariance Analysis for Neural Subunit Models Published in: Advances in Neural Information Processing Systems 28 (215) Convolutional Spike-triggered Covariance Analysis for Neural Subunit Models Anqi Wu 1 Il Memming Park 2 Jonathan W. Pillow 1 1 Princeton

More information

Convolutional Spike-triggered Covariance Analysis for Neural Subunit Models

Convolutional Spike-triggered Covariance Analysis for Neural Subunit Models Convolutional Spike-triggered Covariance Analysis for Neural Subunit Models Anqi Wu Il Memming Park 2 Jonathan W. Pillow Princeton Neuroscience Institute, Princeton University {anqiw, pillow}@princeton.edu

More information

Modeling and Characterization of Neural Gain Control. Odelia Schwartz. A dissertation submitted in partial fulfillment

Modeling and Characterization of Neural Gain Control. Odelia Schwartz. A dissertation submitted in partial fulfillment Modeling and Characterization of Neural Gain Control by Odelia Schwartz A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Center for Neural Science

More information

Modelling and Analysis of Retinal Ganglion Cells Through System Identification

Modelling and Analysis of Retinal Ganglion Cells Through System Identification Modelling and Analysis of Retinal Ganglion Cells Through System Identification Dermot Kerr 1, Martin McGinnity 2 and Sonya Coleman 1 1 School of Computing and Intelligent Systems, University of Ulster,

More information

Bio-Inspired Approach to Modelling Retinal Ganglion Cells using System Identification Techniques

Bio-Inspired Approach to Modelling Retinal Ganglion Cells using System Identification Techniques Bio-Inspired Approach to Modelling Retinal Ganglion Cells using System Identification Techniques P. Vance, G. P. Das, D. Kerr, S. A. Coleman and T. M. McGinnity Abstract The processing capabilities of

More information

Model-based decoding, information estimation, and change-point detection techniques for multi-neuron spike trains

Model-based decoding, information estimation, and change-point detection techniques for multi-neuron spike trains Model-based decoding, information estimation, and change-point detection techniques for multi-neuron spike trains Jonathan W. Pillow 1, Yashar Ahmadian 2 and Liam Paninski 2 1 Center for Perceptual Systems,

More information

Inferring input nonlinearities in neural encoding models

Inferring input nonlinearities in neural encoding models Inferring input nonlinearities in neural encoding models Misha B. Ahrens 1, Liam Paninski 2 and Maneesh Sahani 1 1 Gatsby Computational Neuroscience Unit, University College London, London, UK 2 Dept.

More information

Spatiotemporal Elements of Macaque V1 Receptive Fields

Spatiotemporal Elements of Macaque V1 Receptive Fields Neuron, Vol. 46, 945 956, June 16, 2005, Copyright 2005 by Elsevier Inc. DOI 10.1016/j.neuron.2005.05.021 Spatiotemporal Elements of Macaque V1 Receptive Fields Nicole C. Rust, 1, * Odelia Schwartz, 3

More information

Modeling Convergent ON and OFF Pathways in the Early Visual System

Modeling Convergent ON and OFF Pathways in the Early Visual System Modeling Convergent ON and OFF Pathways in the Early Visual System The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gollisch,

More information

The unified maximum a posteriori (MAP) framework for neuronal system identification

The unified maximum a posteriori (MAP) framework for neuronal system identification The unified maximum a posteriori (MAP) framework for neuronal system identification Michael C.-K. Wu* 1,, Fatma Deniz* 3,4,5, Ryan J. Prenger 6 and Jack L. Gallant 4,7 1 PROS San Francisco, CA 94607, USA

More information

Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data

Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data Maneesh Sahani Gatsby Computational Neuroscience Unit University College, London Jennifer

More information

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be Supplementary Materials General case: computing log likelihood We first describe the general case of computing the log likelihood of a sensory parameter θ that is encoded by the activity of neurons. Each

More information

Model-based clustering of non-poisson, non-homogeneous, point process events, with application to neuroscience

Model-based clustering of non-poisson, non-homogeneous, point process events, with application to neuroscience Model-based clustering of non-poisson, non-homogeneous, point process events, with application to neuroscience PhD Thesis Proposal Sonia Todorova Department of Statistics, Carnegie Mellon University Thesis

More information

Two-dimensional adaptation in the auditory forebrain

Two-dimensional adaptation in the auditory forebrain Two-dimensional adaptation in the auditory forebrain Tatyana O. Sharpee, Katherine I. Nagel and Allison J. Doupe J Neurophysiol 106:1841-1861, 2011. First published 13 July 2011; doi:10.1152/jn.00905.2010

More information

Adaptation in the Neural Code of the Retina

Adaptation in the Neural Code of the Retina Adaptation in the Neural Code of the Retina Lens Retina Fovea Optic Nerve Optic Nerve Bottleneck Neurons Information Receptors: 108 95% Optic Nerve 106 5% After Polyak 1941 Visual Cortex ~1010 Mean Intensity

More information

Challenges and opportunities in statistical neuroscience

Challenges and opportunities in statistical neuroscience Challenges and opportunities in statistical neuroscience Liam Paninski Department of Statistics Center for Theoretical Neuroscience Grossman Center for the Statistics of Mind Columbia University http://www.stat.columbia.edu/

More information

Nonlinear computations shaping temporal processing of pre-cortical vision

Nonlinear computations shaping temporal processing of pre-cortical vision Articles in PresS. J Neurophysiol (June 22, 216). doi:1.1152/jn.878.215 1 2 3 4 5 6 7 8 9 1 Nonlinear computations shaping temporal processing of pre-cortical vision Authors: Daniel A. Butts 1, Yuwei Cui

More information

Statistical challenges and opportunities in neural data analysis

Statistical challenges and opportunities in neural data analysis Statistical challenges and opportunities in neural data analysis Liam Paninski Department of Statistics Center for Theoretical Neuroscience Grossman Center for the Statistics of Mind Columbia University

More information

Recurrent linear models of simultaneously-recorded neural populations

Recurrent linear models of simultaneously-recorded neural populations Recurrent linear models of simultaneously-recorded neural populations Marius Pachitariu, Biljana Petreska, Maneesh Sahani Gatsby Computational Neuroscience Unit University College London, UK {marius,biljana,maneesh}@gatsby.ucl.ac.uk

More information

Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions

Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions ARTICLE Communicated by Pamela Reinagel Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions Tatyana Sharpee sharpee@phy.ucsf.edu Sloan Swartz Center for Theoretical Neurobiology

More information

Design of experiments via information theory

Design of experiments via information theory Design of experiments via information theory Liam Paninski Center for Neural Science New York University New York, NY 10003 liam@cns.nyu.edu Abstract We discuss an idea for collecting data in a relatively

More information

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 206 Jonathan Pillow Homework 8: Logistic Regression & Information Theory Due: Tuesday, April 26, 9:59am Optimization Toolbox One

More information

Scaling the Poisson GLM to massive neural datasets through polynomial approximations

Scaling the Poisson GLM to massive neural datasets through polynomial approximations Scaling the Poisson GLM to massive neural datasets through polynomial approximations David M. Zoltowski Princeton Neuroscience Institute Princeton University; Princeton, NJ 8544 zoltowski@princeton.edu

More information

High-dimensional neural spike train analysis with generalized count linear dynamical systems

High-dimensional neural spike train analysis with generalized count linear dynamical systems High-dimensional neural spike train analysis with generalized count linear dynamical systems Yuanjun Gao Department of Statistics Columbia University New York, NY 7 yg3@columbia.edu Krishna V. Shenoy Department

More information

Structured hierarchical models for neurons in the early visual system

Structured hierarchical models for neurons in the early visual system Structured hierarchical models for neurons in the early visual system by Brett Vintch A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Center for

More information

When Do Microcircuits Produce Beyond-Pairwise Correlations?

When Do Microcircuits Produce Beyond-Pairwise Correlations? When Do Microcircuits Produce Beyond-Pairwise Correlations? Andrea K. Barreiro,4,, Julijana Gjorgjieva 3,5, Fred Rieke 2, and Eric Shea-Brown Department of Applied Mathematics, University of Washington

More information

Independent Component Analysis. Contents

Independent Component Analysis. Contents Contents Preface xvii 1 Introduction 1 1.1 Linear representation of multivariate data 1 1.1.1 The general statistical setting 1 1.1.2 Dimension reduction methods 2 1.1.3 Independence as a guiding principle

More information

The functional organization of the visual cortex in primates

The functional organization of the visual cortex in primates The functional organization of the visual cortex in primates Dominated by LGN M-cell input Drosal stream for motion perception & spatial localization V5 LIP/7a V2 V4 IT Ventral stream for object recognition

More information

Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model

Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model ACCEPTED FOR NIPS: DRAFT VERSION Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model Sander M. Bohte CWI, Life Sciences Amsterdam, The Netherlands S.M.Bohte@cwi.nl September

More information

Bayesian Estimation of Stimulus Responses in Poisson Spike Trains

Bayesian Estimation of Stimulus Responses in Poisson Spike Trains NOTE Communicated by Kechen Zhang Bayesian Estimation of Stimulus Responses in Poisson Spike Trains Sidney R. Lehky sidney@brain.riken.jp Cognitive Brain Mapping Laboratory, RIKEN Brain Science Institute,

More information

E.J. Chichilnisky. John R. Adler Professor, Professor of Neurosurgery and of Ophthalmology and, by courtesy, of Electrical Engineering.

E.J. Chichilnisky. John R. Adler Professor, Professor of Neurosurgery and of Ophthalmology and, by courtesy, of Electrical Engineering. John R. Adler Professor, Professor of Neurosurgery and of Ophthalmology and, by courtesy, of Electrical Engineering Bio ACADEMIC APPOINTMENTS Professor, Neurosurgery Professor, Ophthalmology Professor

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition Preface Preface to the First Edition xi xiii 1 Basic Probability Theory 1 1.1 Introduction 1 1.2 Sample Spaces and Events 3 1.3 The Axioms of Probability 7 1.4 Finite Sample Spaces and Combinatorics 15

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience An Introductory Course in Computational Neuroscience Contents Series Foreword Acknowledgments Preface 1 Preliminary Material 1.1. Introduction 1.1.1 The Cell, the Circuit, and the Brain 1.1.2 Physics of

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [CDL Journals Account] On: 2 July 2009 Access details: Access Details: [subscription number 912374999] Publisher Informa Healthcare Informa Ltd Registered in England and

More information

Membrane equation. VCl. dv dt + V = V Na G Na + V K G K + V Cl G Cl. G total. C m. G total = G Na + G K + G Cl

Membrane equation. VCl. dv dt + V = V Na G Na + V K G K + V Cl G Cl. G total. C m. G total = G Na + G K + G Cl Spiking neurons Membrane equation V GNa GK GCl Cm VNa VK VCl dv dt + V = V Na G Na + V K G K + V Cl G Cl G total G total = G Na + G K + G Cl = C m G total Membrane with synaptic inputs V Gleak GNa GK

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models

Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models Using Minimum and Maximum Mutual Information Models Jeffrey D. Fitzgerald 1,2, Ryan J. Rowekamp 1,2, Lawrence C. Sincich 3, Tatyana O. Sharpee 1,2 * 1 Computational Neurobiology Laboratory, The Salk Institute

More information

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern.

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern. 1 Exercises Chapter 1 1. Generate spike sequences with a constant firing rate r 0 using a Poisson spike generator. Then, add a refractory period to the model by allowing the firing rate r(t) to depend

More information

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 Page 1 of 43 Information maximization as a principle for contrast gain control Journal: Manuscript ID: Manuscript Type: Manuscript Section: Conflict of Interest: Date Submitted by the Author: Keywords:

More information

State-Space Methods for Inferring Spike Trains from Calcium Imaging

State-Space Methods for Inferring Spike Trains from Calcium Imaging State-Space Methods for Inferring Spike Trains from Calcium Imaging Joshua Vogelstein Johns Hopkins April 23, 2009 Joshua Vogelstein (Johns Hopkins) State-Space Calcium Imaging April 23, 2009 1 / 78 Outline

More information

arxiv:q-bio/ v1 [q-bio.nc] 2 May 2005

arxiv:q-bio/ v1 [q-bio.nc] 2 May 2005 Features and dimensions: Motion estimation in fly vision William Bialek a and Rob R. de Ruyter van Steveninck b a Joseph Henry Laboratories of Physics, b Department of Molecular Biology, and the Lewis

More information

Design principles for contrast gain control from an information theoretic perspective

Design principles for contrast gain control from an information theoretic perspective Design principles for contrast gain control from an information theoretic perspective Yuguo Yu Brian Potetz Tai Sing Lee Center for the Neural Computer Science Computer Science Basis of Cognition Department

More information

Comparison of receptive fields to polar and Cartesian stimuli computed with two kinds of models

Comparison of receptive fields to polar and Cartesian stimuli computed with two kinds of models Supplemental Material Comparison of receptive fields to polar and Cartesian stimuli computed with two kinds of models Motivation The purpose of this analysis is to verify that context dependent changes

More information

Entropy and information estimation: An overview

Entropy and information estimation: An overview Entropy and information estimation: An overview Ilya Nemenman December 12, 2003 Ilya Nemenman, NIPS 03 Entropy Estimation Workshop, December 12, 2003 1 Workshop schedule: Morning 7:30 7:55 Ilya Nemenman,

More information

Features and dimensions: Motion estimation in fly vision

Features and dimensions: Motion estimation in fly vision Features and dimensions: Motion estimation in fly vision William Bialek a and Rob R. de Ruyter van Steveninck b a Joseph Henry Laboratories of Physics, and Lewis Sigler Institute for Integrative Genomics

More information

Improved characterization of neural and behavioral response. state-space framework

Improved characterization of neural and behavioral response. state-space framework Improved characterization of neural and behavioral response properties using point-process state-space framework Anna Alexandra Dreyer Harvard-MIT Division of Health Sciences and Technology Speech and

More information

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation)

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation) Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation) PCA transforms the original input space into a lower dimensional space, by constructing dimensions that are linear combinations

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

A new look at state-space models for neural data

A new look at state-space models for neural data A new look at state-space models for neural data Liam Paninski Department of Statistics and Center for Theoretical Neuroscience Columbia University http://www.stat.columbia.edu/ liam liam@stat.columbia.edu

More information

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011 Crab cam (Barlow et al., 2001) self inhibition recurrent inhibition lateral inhibition - L16. Neural processing in Linear Systems: Temporal and Spatial Filtering C. D. Hopkins Sept. 21, 2011 The Neural

More information

Ising models for neural activity inferred via Selective Cluster Expansion: structural and coding properties

Ising models for neural activity inferred via Selective Cluster Expansion: structural and coding properties Ising models for neural activity inferred via Selective Cluster Expansion: structural and coding properties John Barton,, and Simona Cocco Department of Physics, Rutgers University, Piscataway, NJ 8854

More information

Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons

Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons Yan Karklin and Eero P. Simoncelli NYU Overview Efficient coding is a well-known objective for the evaluation and

More information

Bayesian latent structure discovery from multi-neuron recordings

Bayesian latent structure discovery from multi-neuron recordings Bayesian latent structure discovery from multi-neuron recordings Scott W. Linderman Columbia University swl2133@columbia.edu Ryan P. Adams Harvard University and Twitter rpa@seas.harvard.edu Jonathan W.

More information