The functional organization of the visual cortex in primates

Size: px
Start display at page:

Download "The functional organization of the visual cortex in primates"

Transcription

1 The functional organization of the visual cortex in primates Dominated by LGN M-cell input Drosal stream for motion perception & spatial localization V5 LIP/7a V2 V4 IT Ventral stream for object recognition & discrimination Dominated by LGN P- & K-cell input

2 Understanding how visual information is processed in the brain Three stages of neural processing 1. Low-level processing: First-order stimulus feature information (stimulus contrast, orientation, spatial frequency, temporal frequency, wavelength) is processed. 2. Mid-level processing: Grouping or linking of first-order stimulus information. 3. High-level processing: Decision-making mechanisms: Initiation of perceptual responses, e.g., recognition of an object in visual scenes.

3 1. Topographic organization of V1 2. Cell classification--simple vs. complex, & hypercomplex? 3. Orientation tuning-feed forward vs. long-range signals 4. Direction selectivity 5. Spatial / temporal frequency tuning 6. Ocular dominance 7. Functional organization (1) Ocular dominance columns 8. Functional organization (2) Orientation columns

4 Stimulus flashed ON Orientation Selectivity Spike trains for different stimulus orientations. Orientation tuning is one of the biggest differences between LGN & cortex. Orientation selectivity is an emergent (i.e., not present in the LGN) & invariant property (i.e. it is not qualitatively altered by other stimulus manipulations). For example, a cell will typically exhibit the same preferred orientation for a bright vs. a dark bar. From Hubel & Wiesel, 1962

5 Orientation Selectivity Examples of orientation tuning functions for three representative neurons. Orientation tuning is shown by the great majority of cortical cells and by all functional classes of cortical neurons. The preferred orientation and sharpness of orientation tuning are unaffected by stimulus contrast, when gratings were used as stimuli.

6 Orientation/Direction Selectivity Polar plots of orientation tuning for 4 representative neurons. The angle represents the stimulus orientation & the radial dimension is the response in spikes/sec. Drifting gratings From DeValois, 1982

7 Mechanisms of orientation selectivity Simple Cell LGN RFs Simple cells produced by converging inputs from a row of LGN that have the same RF polarity.

8 Simple Cell Model ON LGN centers make up the ON subregions in simple RFs. The OFF subregions reflect the centers of OFF center LGN cells (the LGN surround are not very obvious at cortex). The degree of orientation tuning will vary with the number of LGN inputs and the orderliness of their spatial retinotopy. From Wandel, 1995

9 Long-range & local connections affects orientation selectivity Local Orientation columns Long-range Bosking et al, 1997 From Senpigel & Blakemore, 1966

10 1. Topographic organization of V1 2. Cell classification--simple vs. complex, & hypercomplex? 3. Orientation tuning-feed forward vs. long-range signals 4. Direction selectivity 5. Spatial frequency tuning 6. Ocular dominance 7. Functional organization (1) Ocular dominance columns 8. Functional organization (2) Orientation columns

11 Direction Selectivity Spike trains for different stimulus orientations and different directions of movement. This cell is selective for both stimulus orientation and the direction of movement. From Hubel & Wiesel, 1962

12 Direction Selectivity Distribution of directional selectivity for a population of cortical cells. The direction ratio = the response in the non-preferred direction / response in the preferred direction. The bimodal nature of the distribution suggests that direction selective cells for a distinct subgroup. RF Preferred Non-Preferred 100 spikes/sec 10 spikes/ sec From DeValois

13 Linear summation model Bright bar

14 Directional Selectivity: Simple Cell Evidence for nonlinear contributions to directional selectivity Bicuculine blocks GABA mediated inhibition & as shown here eliminates directional selectivity in some cells. From Sillito, 1977

15 1. Topographic organization of V1 2. Cell classification--simple vs. complex, & hypercomplex? 3. Orientation tuning-feed forward vs. long-range signals 4. Direction selectivity 5. Spatial / temporal frequency tuning 6. Ocular dominance 7. Functional organization (1) Ocular dominance columns 8. Functional organization (2) Orientation columns

16 Spatial Frequency M M Magno vs. Parvo P P Response P Contrast Sensitivity Response (spikes/sec) M P M Contrast (%)

17 Spatial Frequency Tuning Examples of SF tuning functions for 6 cells recorded in a single penetration. The RFs were superimposed. Note the that at a given eccentricity the peak SF cover a wide range of SFs. Contrast sensitivity 1 10 Spatial Frequency (c/d) CSF is determined by the sensitivity of multiple spatial channels (V1neurons?) Contrast sensitivity 1 10 Spatial Frequency (c/d) Human Vision Cortical Neurons

18 Contrast Sensitivity Contrast Sensitivity Temporal Frequency Tuning P cells M cells Temporal frequency (Hz) Temporal frequency (Hz) Visual Latency: Integration time 55 msec 50 msec Movshon et al, 2005

19 1. Topographic organization of V1 2. Cell classification--simple vs. complex, & hypercomplex? 3. Orientation tuning-feed forward vs. long-range signals 4. Direction selectivity 5. Spatial/Temporal frequency tuning 6. Ocular dominance 7. Functional organization (1) Ocular dominance columns 8. Functional organization (2) Orientation columns

20 1. Topographic organization of V1 2. Cell classification--simple vs. complex, & hypercomplex? 3. Orientation tuning-feed forward vs. long-range signals 4. Direction selectivity 5. Spatial frequency tuning 6. Ocular dominance 7. Functional organization (1) Ocular dominance columns 8. Functional organization (2) Orientation columns

21 Ocular dominance columns in V1 R Long-range horizontal connections LGN I L Inject radioactive proline LGN VI V IVc II - III & IVAB Higher Order Visual Areas (Extrastriate visual areas)

22 Ocular Dominance Columns cross section white matter tangential section through layer IV layer IV From Hubel et al., 1978 Dark-field autoradiographs. Radioactive proline injected into one eye. The light areas represent parts of cortex that received inputs from the injected eye.

23 Response (spikes/sec) L Ocular Dominance Ocular dominance = relative ability of the 2 eyes to excite a cortical neuron. R Right V1 LGN Monkey V1 0.4 N = Proportion of Units(%) Contralateral Ipsilateral Ocular Dominance II-III IVC V-VI L R L R L

24 1. Topographic organization of V1 2. Cell classification--simple vs. complex, & hypercomplex? 3. Orientation tuning-feed forward vs. long-range signals 4. Direction selectivity 5. Spatial/Temporal frequency tuning 6. Ocular dominance 7. Functional organization (1) Ocular dominance columns 8. Functional organization (2) Orientation columns

25 Orientation Columns from Hubel et al., 1978 Preferred orientations for cells in 3 penetrations. Note that the preferred orientations are similar through the full thickness of cortex -- i.e. orientation columns extent from layer 1 to layer 6.

26 Orientation Columns layer IV orientation columns Deoxyglucose autoradiograpy of horizontal section through operculum. Staining pattern was produced by vertical moving strips presented to both eyes. The dark areas represent activated neurons. from Hubel et al., 1978

27 Orientation Columns Color coded map of the preferred orientations across the brain s surface obtained using a method to optically image brain activity. Pinwheel = area of converge of different orientation columns ( singularity ). From Blasdel, 1992

28 Relationship between CO Blobs, Orientation Columns & Ocular Dominance Columns Overlay of orientation & ocular dominance columns. The expected positions of CO blobs have been drawn. From Blasdel, 1992

29 Hypercolumn CO Blobs Hubel and Wiesel, 1982

30 Neural Basis of Visual Perception Neural Detectors & Network Dorsal Stream of the Extrastriate Visual Areas Primary Visual Cortex (Area 17, V1, Striate Cortex) Ventral Stream of the Extrastriate Visual Areas Network of Neurons Neurons Retina LGN Visual Cortex

31 Three stages of cortical processing 1. Low-level: First-order stimulus feature information (orientation, SF, TF) is processed: V1 2. Mid-level: Grouping or linking of first-order stimulus information: Low to mid-level extrastriate visual areas (V2, V3, V4, MT, & MST). 3. High-level: Initiation of perceptual responses, e.g., recognition of an object in visual scenes: Higher-centers (IT, LIP, beyond).

32 Ability to integrate local information over a large area RF of V1 neurons are too small to see the circle. V4 neurons can integrate (link) preferred orientations of Gabor patches (Curvature detectors). IT neurons can decode information from V > Seeing a circle (shape). 7 deg 1.6 deg

33 The size of RF increases with retinal eccentricities and cortical areas in the streams /V4 /V3 (V5) Bullier et al, 2003

34 Hierarchical Organization The large number of interconnections probably are important for coordinating processing between parallel streams and dynamic regulation of information flow. from Van Essen et al., 1992

35 Functional Streams Visual system separates different types of information in to parallel, anatomically segregated processing streams. Generally primate and human brains are considered to have 2 dominant streams 1) the occipitotemporal pathway, the ventral stream, which is thought to be crucial for object identification (the what pathway) & 2) the occipitoparietal pathway, the dorsal stream, which is thought to be crucial for spatial relationships & visual guidance of movements (the where pathway).

36 Major input to Where stream is dominated by M-signals, whereas What stream is dominated by P- and K-signals Kaplan, 2003 V5 Where What Extrastriate visual areas V5 V2 V4

37 Early evidence for two functional streams from a PET study Dorsal (Parietal) Ventral (Temporal) Haxby et al, 1994 Face & location matching > Control Face Matching > Control Location Matching > Control

38 Inferior Temporal lobe ( several TE areas) was named as object or image identification areas because IT cells respond well to visual images of natural object (e.g., faces, hands etc.) Temporal lobe

39 Inferior Temporal (TE) neurons respond well to simplified but critical features of object image Temporal lobe

40 Inferior temporal neurons are specifically activated by faces. Convergence and integration of key feature information is necessary for identification of a face. From Tanifuji, 2003

41 Functional MRI activation in human brain Moving stimuli Stationary stimuli V1 (The primary visual cortex) MT/V5 (Extrastriate Area)

42 Human Functional MRI illustrating Motion Sensitive Areas Tootell et al, 1997 Vandufell et al, 2003 Orban et al, 2003

43 The functional organization of the visual cortex in primates Dominated by LGN M-cell input Drosal stream for motion perception & spatial localization V5 LIP/7a V2 V4 IT Ventral stream for object recognition & discrimination Dominated by LGN P- & K-cell input

44 Information processing by neurons of our visual brain 1. Encoding of stimulus contrast and spatial-temporal frequency information (RGC & LGN) 2. Detection and encoding of orientation and spatial frequency of lines and contours (V1) 3. Encoding of angles or curvatures (V2, V4) 4. Encoding the spatial relationships of orientated lines, textures or contours (Linking)(V2, V4) 5. Decoding of linked features Perception of face )(IT, beyond) V5 LIP/7a V2 V4 IT

9.01 Introduction to Neuroscience Fall 2007

9.01 Introduction to Neuroscience Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 9.01 Introduction to Neuroscience Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Complex cell receptive

More information

Jan 16: The Visual System

Jan 16: The Visual System Geometry of Neuroscience Matilde Marcolli & Doris Tsao Jan 16: The Visual System References for this lecture 1977 Hubel, D. H., Wiesel, T. N., Ferrier lecture 2010 Freiwald, W., Tsao, DY. Functional compartmentalization

More information

Higher Processing of Visual Information: Lecture II --- April 4, 2007 by Mu-ming Poo

Higher Processing of Visual Information: Lecture II --- April 4, 2007 by Mu-ming Poo Higher Processing of Visual Information: Lecture II April 4, 2007 by Muming Poo 1. Organization of Mammalian Visual Cortices 2. Structure of the Primary Visual Cortex layering, inputs, outputs, cell types

More information

How Complex Cells Are Made in a Simple Cell Network

How Complex Cells Are Made in a Simple Cell Network How Complex Cells Are Made in a Simple Cell Network Louis Tao Courant Institute, New York University Collaborators: Michael Shelley (Courant, NYU) Robert Shapley (CNS, NYU) David McLaughlin (Courant, NYU)

More information

Visual Motion Analysis by a Neural Network

Visual Motion Analysis by a Neural Network Visual Motion Analysis by a Neural Network Kansai University Takatsuki, Osaka 569 1095, Japan E-mail: fukushima@m.ieice.org (Submitted on December 12, 2006) Abstract In the visual systems of mammals, visual

More information

Ângelo Cardoso 27 May, Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico

Ângelo Cardoso 27 May, Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico BIOLOGICALLY INSPIRED COMPUTER MODELS FOR VISUAL RECOGNITION Ângelo Cardoso 27 May, 2010 Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico Index Human Vision Retinal Ganglion Cells Simple

More information

Sustained and transient channels

Sustained and transient channels Sustained and transient channels Chapter 5, pp. 141 164 19.12.2006 Some models of masking are based on two channels with different temporal properties Dual-channel models Evidence for two different channels

More information

Modeling retinal high and low contrast sensitivity lters. T. Lourens. Abstract

Modeling retinal high and low contrast sensitivity lters. T. Lourens. Abstract Modeling retinal high and low contrast sensitivity lters T. Lourens Department of Computer Science University of Groningen P.O. Box 800, 9700 AV Groningen, The Netherlands E-mail: tino@cs.rug.nl Abstract

More information

Perception of colour, form, depth and movement; organization of associative visual fields. Seminar Prof Maja Valić

Perception of colour, form, depth and movement; organization of associative visual fields. Seminar Prof Maja Valić Perception of colour, form, depth and movement; organization of associative visual fields Seminar Prof Maja Valić Perception of colour, form, depth and movement binding problem in the visual system: how

More information

Visual System. Anatomy of the Visual System. Advanced article

Visual System. Anatomy of the Visual System. Advanced article Stephen D Van Hooser, Brandeis University, Waltham, Massachusetts, USA Sacha B Nelson, Brandeis University, Waltham, Massachusetts, USA Humans and many other animals obtain much of their information about

More information

A Biologically-Inspired Model for Recognition of Overlapped Patterns

A Biologically-Inspired Model for Recognition of Overlapped Patterns A Biologically-Inspired Model for Recognition of Overlapped Patterns Mohammad Saifullah Department of Computer and Information Science Linkoping University, Sweden Mohammad.saifullah@liu.se Abstract. In

More information

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011 Crab cam (Barlow et al., 2001) self inhibition recurrent inhibition lateral inhibition - L16. Neural processing in Linear Systems: Temporal and Spatial Filtering C. D. Hopkins Sept. 21, 2011 The Neural

More information

A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn

A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn FirstCite e-publishing Received 13 December 1 Accepted 9 April Published online A spherical model for orientation spatial-frequency tuning in a cortical hypercolumn Paul C. Bressloff 1 Jack D. Cowan *

More information

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1)

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Lecture 6 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2015 1 Chapter 2 remnants 2 Receptive field:

More information

Nonlinear reverse-correlation with synthesized naturalistic noise

Nonlinear reverse-correlation with synthesized naturalistic noise Cognitive Science Online, Vol1, pp1 7, 2003 http://cogsci-onlineucsdedu Nonlinear reverse-correlation with synthesized naturalistic noise Hsin-Hao Yu Department of Cognitive Science University of California

More information

CLINICAL VISUAL OPTICS (OPTO 223) Weeks XII & XIII Dr Salwa Alsaleh

CLINICAL VISUAL OPTICS (OPTO 223) Weeks XII & XIII Dr Salwa Alsaleh CLINICAL VISUAL OPTICS (OPTO 223) Weeks XII & XIII Dr Salwa Alsaleh OUTLINE OF WEEKS XII & XIII Temporal resolution Temporal Summation. Broca-Sulzer effect. Critical flicker frequency (CFF). Temporal Contrast

More information

Deep learning in the visual cortex

Deep learning in the visual cortex Deep learning in the visual cortex Thomas Serre Brown University. Fundamentals of primate vision. Computational mechanisms of rapid recognition and feedforward processing. Beyond feedforward processing:

More information

Visual motion processing and perceptual decision making

Visual motion processing and perceptual decision making Visual motion processing and perceptual decision making Aziz Hurzook (ahurzook@uwaterloo.ca) Oliver Trujillo (otrujill@uwaterloo.ca) Chris Eliasmith (celiasmith@uwaterloo.ca) Centre for Theoretical Neuroscience,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary discussion 1: Most excitatory and suppressive stimuli for model neurons The model allows us to determine, for each model neuron, the set of most excitatory and suppresive features. First,

More information

Tilt-aftereffect and adaptation of V1 neurons

Tilt-aftereffect and adaptation of V1 neurons Tilt-aftereffect and adaptation of V1 neurons Dezhe Jin Department of Physics The Pennsylvania State University Outline The tilt aftereffect (TAE) Classical model of neural basis of TAE Neural data on

More information

Statistics and geometry of orientation selectivity in primary visual cortex

Statistics and geometry of orientation selectivity in primary visual cortex Biol Cybern (2014) 108:631 653 DOI 10.1007/s00422-013-0576-0 ORIGINAL PAPER Statistics and geometry of orientation selectivity in primary visual cortex Sadra Sadeh Stefan Rotter Received: 7 June 2013 /

More information

Adaptation to a 'spatial-frequency doubled' stimulus

Adaptation to a 'spatial-frequency doubled' stimulus Perception, 1980, volume 9, pages 523-528 Adaptation to a 'spatial-frequency doubled' stimulus Peter Thompson^!, Brian J Murphy Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania

More information

Elements of Neurogeometry

Elements of Neurogeometry Lecture Notes in Morphogenesis Series Editor: Alessandro Sarti Jean Petitot Elements of Neurogeometry Functional Architectures of Vision http://www.springer.com/978-3-319-65589-5 Contents 1 Preface...

More information

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern.

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern. 1 Exercises Chapter 1 1. Generate spike sequences with a constant firing rate r 0 using a Poisson spike generator. Then, add a refractory period to the model by allowing the firing rate r(t) to depend

More information

BASIC VISUAL SCIENCE CORE

BASIC VISUAL SCIENCE CORE BASIC VISUAL SCIENCE CORE Absolute and Increment Thresholds Ronald S. Harwerth Fall, 2016 1. Psychophysics of Vision 2. Light and Dark Adaptation Michael Kalloniatis and Charles Luu 1 The Neuron Doctrine

More information

Fundamentals of Computational Neuroscience 2e

Fundamentals of Computational Neuroscience 2e Fundamentals of Computational Neuroscience 2e January 1, 2010 Chapter 10: The cognitive brain Hierarchical maps and attentive vision A. Ventral visual pathway B. Layered cortical maps Receptive field size

More information

Brain-Like Approximate Reasoning

Brain-Like Approximate Reasoning Andrzej W. Przybyszewski Dept Neurology, UMass Medical Center, MA, USA, and Dept Psychology McGill, QC, Canada Andrzej.Przybyszewski@umassmed.edu Humans can easily recognize objects as complex as faces

More information

Spatial-frequency organization in primate striate cortex

Spatial-frequency organization in primate striate cortex Proc. Natl. Acad. Sci. USA Vol. 86, pp. 711-715, January 1989 Neurobiology Spatial-frequency organization in primate striate cortex (cortical modules/multiple channels/cytochrome oxidase "blobs") MARTIN

More information

Adaptation in the Neural Code of the Retina

Adaptation in the Neural Code of the Retina Adaptation in the Neural Code of the Retina Lens Retina Fovea Optic Nerve Optic Nerve Bottleneck Neurons Information Receptors: 108 95% Optic Nerve 106 5% After Polyak 1941 Visual Cortex ~1010 Mean Intensity

More information

Motion Perception 1. PSY305 Lecture 12 JV Stone

Motion Perception 1. PSY305 Lecture 12 JV Stone Motion Perception 1 PSY305 Lecture 12 JV Stone 1 Structure Human visual system as a band-pass filter. Neuronal motion detection, the Reichardt detector. The aperture problem. 2 The visual system is a temporal

More information

Neural Encoding II: Reverse Correlation and Visual Receptive Fields

Neural Encoding II: Reverse Correlation and Visual Receptive Fields Chapter 2 Neural Encoding II: Reverse Correlation and Visual Receptive Fields 2.1 Introduction The spike-triggered average stimulus introduced in chapter 1 is a standard way of characterizing the selectivity

More information

Sub-Riemannian geometry in models of the visual cortex

Sub-Riemannian geometry in models of the visual cortex Sub-Riemannian geometry in models of the visual cortex Scott Pauls Department of Mathematics Dartmouth College 4 th Symposium on Analysis and PDE Purdue, May 27, 2009 Mathematical structure in the visual

More information

Neural Networks. Henrik I. Christensen. Computer Science and Engineering University of California, San Diego

Neural Networks. Henrik I. Christensen. Computer Science and Engineering University of California, San Diego Neural Networks Henrik I. Christensen Computer Science and Engineering University of California, San Diego http://www.hichristensen.net Henrik I. Christensen (UCSD) Neural Networks 1 / 39 Introduction

More information

Charles Cadieu, Minjoon Kouh, Anitha Pasupathy, Charles E. Connor, Maximilian Riesenhuber and Tomaso Poggio

Charles Cadieu, Minjoon Kouh, Anitha Pasupathy, Charles E. Connor, Maximilian Riesenhuber and Tomaso Poggio Charles Cadieu, Minjoon Kouh, Anitha Pasupathy, Charles E. Connor, Maximilian Riesenhuber and Tomaso Poggio J Neurophysiol 98:733-75, 27. First published Jun 27, 27; doi:.52/jn.265.26 You might find this

More information

Neuroinformatics. Marcus Kaiser. Week 10: Cortical maps and competitive population coding (textbook chapter 7)!

Neuroinformatics. Marcus Kaiser. Week 10: Cortical maps and competitive population coding (textbook chapter 7)! 0 Neuroinformatics Marcus Kaiser Week 10: Cortical maps and competitive population coding (textbook chapter 7)! Outline Topographic maps Self-organizing maps Willshaw & von der Malsburg Kohonen Dynamic

More information

Simple Cell Receptive Fields in V1.

Simple Cell Receptive Fields in V1. Simple Cell Receptive Fields in V1. The receptive field properties of simple cells in V1 were studied by Hubel and Wiesel [65][66] who showed that many cells were tuned to the orientation of edges and

More information

Natural Image Statistics

Natural Image Statistics Natural Image Statistics A probabilistic approach to modelling early visual processing in the cortex Dept of Computer Science Early visual processing LGN V1 retina From the eye to the primary visual cortex

More information

Dynamic Shape Synthesis in Posterior Inferotemporal Cortex

Dynamic Shape Synthesis in Posterior Inferotemporal Cortex Neuron 49, 17 24, January 5, 2006 ª2006 Elsevier Inc. DOI 10.1016/j.neuron.2005.11.026 Dynamic Shape Synthesis in Posterior Inferotemporal Cortex Report Scott L. Brincat 1,2 and Charles E. Connor 1, *

More information

Lateral organization & computation

Lateral organization & computation Lateral organization & computation review Population encoding & decoding lateral organization Efficient representations that reduce or exploit redundancy Fixation task 1rst order Retinotopic maps Log-polar

More information

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be Supplementary Materials General case: computing log likelihood We first describe the general case of computing the log likelihood of a sensory parameter θ that is encoded by the activity of neurons. Each

More information

High-dimensional geometry of cortical population activity. Marius Pachitariu University College London

High-dimensional geometry of cortical population activity. Marius Pachitariu University College London High-dimensional geometry of cortical population activity Marius Pachitariu University College London Part I: introduction to the brave new world of large-scale neuroscience Part II: large-scale data preprocessing

More information

Realistic Modeling of Simple and Complex Cell Tuning in the HMAX Model, and Implications for Invariant Object Recognition in Cortex

Realistic Modeling of Simple and Complex Cell Tuning in the HMAX Model, and Implications for Invariant Object Recognition in Cortex massachusetts institute of technology computer science and artificial intelligence laboratory Realistic Modeling of Simple and Complex Cell Tuning in the HMAX Model, and Implications for Invariant Object

More information

b). (Enroth-Cugell & Robson, 1966; Cleland, Dubin & Levick, 1971; Lennie, 1980a

b). (Enroth-Cugell & Robson, 1966; Cleland, Dubin & Levick, 1971; Lennie, 1980a J. Physiol. (1982), 330, pp. 125-143 125 With 10 text-figures Printed in Great Britain X AND Y CELLS IN THE LATERAL GENICULATE NUCLEUS OF MACAQUE MONKEYS BY E. KAPLAN AND R. M. SHAPLEY From the Rockefeller

More information

Functional Anatomy of Macaque Striate Cortex. III. Color

Functional Anatomy of Macaque Striate Cortex. III. Color The Journal of Neuroscience, May 1988, 8(5): 1589-I 593 Functional Anatomy of Macaque Striate Cortex. III. Color Roger 8. H. Tootell, Martin S. Silverman, 2+Su~an L. Hamilton, Russell L. De Valois, and

More information

Krubitzer & Kaas S1 S2

Krubitzer & Kaas S1 S2 Krubitzer & Kaas S1 S2 V1 V2 A1 MT 30 μm pia white matter Somato- Mean of Motor sensory Frontal Temporal Parietal Visual means Mouse 109.2 ± 6.7 111.9 ±6.9 110.8 ±7.1 110.5 ±6.5 104.7 ±7.2 112.2 ±6.0 109.9

More information

Modeling and Characterization of Neural Gain Control. Odelia Schwartz. A dissertation submitted in partial fulfillment

Modeling and Characterization of Neural Gain Control. Odelia Schwartz. A dissertation submitted in partial fulfillment Modeling and Characterization of Neural Gain Control by Odelia Schwartz A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Center for Neural Science

More information

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing Tuning tuning curves So far: Receptive fields Representation of stimuli Population vectors Today: Contrast enhancment, cortical processing Firing frequency N 3 s max (N 1 ) = 40 o N4 N 1 N N 5 2 s max

More information

Extraclassical Receptive Field Phenomena and Short-Range Connectivity in V1

Extraclassical Receptive Field Phenomena and Short-Range Connectivity in V1 Cerebral Cortex November 2006;16:1531--1545 doi:10.1093/cercor/bhj090 Advance Access publication December 22, 2005 Extraclassical Receptive Field Phenomena and Short-Range Connectivity in V1 Jim Wielaard

More information

Information maximization in a network of linear neurons

Information maximization in a network of linear neurons Information maximization in a network of linear neurons Holger Arnold May 30, 005 1 Introduction It is known since the work of Hubel and Wiesel [3], that many cells in the early visual areas of mammals

More information

A Three-dimensional Physiologically Realistic Model of the Retina

A Three-dimensional Physiologically Realistic Model of the Retina A Three-dimensional Physiologically Realistic Model of the Retina Michael Tadross, Cameron Whitehouse, Melissa Hornstein, Vicky Eng and Evangelia Micheli-Tzanakou Department of Biomedical Engineering 617

More information

A General Mechanism for Tuning: Gain Control Circuits and Synapses Underlie Tuning of Cortical Neurons

A General Mechanism for Tuning: Gain Control Circuits and Synapses Underlie Tuning of Cortical Neurons massachusetts institute of technology computer science and artificial intelligence laboratory A General Mechanism for Tuning: Gain Control Circuits and Synapses Underlie Tuning of Cortical Neurons Minjoon

More information

Structured hierarchical models for neurons in the early visual system

Structured hierarchical models for neurons in the early visual system Structured hierarchical models for neurons in the early visual system by Brett Vintch A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Center for

More information

V2 Thin Stripes Contain Spatially Organized Representations of Achromatic Luminance Change

V2 Thin Stripes Contain Spatially Organized Representations of Achromatic Luminance Change Cerebral Cortex January 2007;17:116-129 doi:10.1093/cercor/bhj131 Advance Access publication February 8, 2006 V2 Thin Stripes Contain Spatially Organized Representations of Achromatic Luminance Change

More information

Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell

Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell 1. Abstract Matthew Dunlevie Clement Lee Indrani Mikkilineni mdunlevi@ucsd.edu cll008@ucsd.edu imikkili@ucsd.edu Isolated

More information

Relationship between spatial-frequency and orientation tuning of striate-cortex cells

Relationship between spatial-frequency and orientation tuning of striate-cortex cells 1124 J. Opt. Soc. Am. A/Vol. 2, No. 7/July 1985 M. A. Webster and R. L. De Valois Relationship between spatial-frequency and orientation tuning of striate-cortex cells Michael A. Webster and Russell L.

More information

Viewpoint invariant face recognition using independent component analysis and attractor networks

Viewpoint invariant face recognition using independent component analysis and attractor networks Viewpoint invariant face recognition using independent component analysis and attractor networks Marian Stewart Bartlett University of California San Diego The Salk Institute La Jolla, CA 92037 marni@salk.edu

More information

Σ S(x )δ x. x. Σ S(x )δ x ) x Σ F(S(x )δ x ), by superposition x Σ S(x )F(δ x ), by homogeneity x Σ S(x )I x. x. Σ S(x ) I x (y ) = x

Σ S(x )δ x. x. Σ S(x )δ x ) x Σ F(S(x )δ x ), by superposition x Σ S(x )F(δ x ), by homogeneity x Σ S(x )I x. x. Σ S(x ) I x (y ) = x 4. Vision: LST approach - Flicker, Spatial Frequency Channels I. Goals Stimulus representation System identification and prediction II. Linear, shift-invariant systems Linearity Homogeneity: F(aS) = af(s)

More information

Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells

Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells Sven Dähne 1,2,3 *, Niko Wilbert 2,3, Laurenz Wiskott 2,3,4 1 Machine Learning Group, Department of Computer Science, Berlin Institute of

More information

A Neurocomputational Model of Smooth Pursuit Control to Interact with the Real World

A Neurocomputational Model of Smooth Pursuit Control to Interact with the Real World A Neurocomputational Model of Smooth Pursuit Control to Interact with the Real World by Seyed Omid Sadat Rezai A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

Neurogeometry of vision. Lecture IV. Primary visual corte

Neurogeometry of vision. Lecture IV. Primary visual corte Neurogeometry of vision. Lecture IV. Primary visual corterx Institute for Information Transmission Problems, Moscow,Russia and Faculty of Science University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove,

More information

Auto-correlation of retinal ganglion cell mosaics shows hexagonal structure

Auto-correlation of retinal ganglion cell mosaics shows hexagonal structure Supplementary Discussion Auto-correlation of retinal ganglion cell mosaics shows hexagonal structure Wässle and colleagues first observed that the local structure of cell mosaics was approximately hexagonal

More information

Topographic organization of areas V3 and V4 and its relation to supra-areal organization of the primate visual system

Topographic organization of areas V3 and V4 and its relation to supra-areal organization of the primate visual system Visual Neuroscience (2015), 32, e014, 15 pages. Copyright Cambridge University Press, 2015 0952-5238/15 doi:10.1017/s0952523815000115 SPECIAL COLLECTION Controversial Issues in Visual Cortex Mapping REVIEW

More information

Structure and function of parallel pathways in the primate early visual system

Structure and function of parallel pathways in the primate early visual system J Physiol 566.1 (2005) pp 13 19 13 SYMPOSIUM REPORT Structure and function of parallel pathways in the primate early visual system Edward M. Callaway Systems Neurobiology Laboratories, The Salk Institute

More information

Spatial Representations in the Parietal Cortex May Use Basis Functions

Spatial Representations in the Parietal Cortex May Use Basis Functions Spatial Representations in the Parietal Cortex May Use Basis Functions Alexandre Pouget alex@salk.edu Terrence J. Sejnowski terry@salk.edu Howard Hughes Medical Institute The Salk Institute La Jolla, CA

More information

Lecture 6: Non-Cortical Visual Pathways MCP 9.013/7.68, 03

Lecture 6: Non-Cortical Visual Pathways MCP 9.013/7.68, 03 Lecture 6: Non-Cortical Visual Pathways MCP 9.013/7.68, 03 Roger W. Sperry The problem of central nervous reorganization after nerve regeneration and muscle transposition. R.W. Sperry. Quart. Rev. Biol.

More information

Mid Year Project Report: Statistical models of visual neurons

Mid Year Project Report: Statistical models of visual neurons Mid Year Project Report: Statistical models of visual neurons Anna Sotnikova asotniko@math.umd.edu Project Advisor: Prof. Daniel A. Butts dab@umd.edu Department of Biology Abstract Studying visual neurons

More information

Spatial pattern summation is phase-insensitive in the fovea but not in the periphery

Spatial pattern summation is phase-insensitive in the fovea but not in the periphery Spatial pattern summation is phase-insensitive in the fovea but not in the periphery CHIEN-CHUNG CHEN * and CHRISTOPHER W. TYLER Smith-Kettlewell Eye Research Institute, 2318 Fillmore Street, San Francisco,

More information

SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017

SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017 SPIKE TRIGGERED APPROACHES Odelia Schwartz Computational Neuroscience Course 2017 LINEAR NONLINEAR MODELS Linear Nonlinear o Often constrain to some form of Linear, Nonlinear computations, e.g. visual

More information

Information Processing in Neural Populations

Information Processing in Neural Populations Information Processing in Neural Populations selective tutorial introduction KITP, UCSB July 2011 Jonathan Victor Neurology and Neuroscience Weill Cornell Medical College Disclaimers The visual system

More information

Is the Human Visual System Invariant to Translation and Scale?

Is the Human Visual System Invariant to Translation and Scale? The AAAI 207 Spring Symposium on Science of Intelligence: Computational Principles of Natural and Artificial Intelligence Technical Report SS-7-07 Is the Human Visual System Invariant to Translation and

More information

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Bayesian Computation in Recurrent Neural Circuits

Bayesian Computation in Recurrent Neural Circuits Bayesian Computation in Recurrent Neural Circuits Rajesh P. N. Rao Department of Computer Science and Engineering University of Washington Seattle, WA 98195 E-mail: rao@cs.washington.edu Appeared in: Neural

More information

Contextual modulation of V1 receptive fields depends on their spatial symmetry

Contextual modulation of V1 receptive fields depends on their spatial symmetry DOI./s8-8-- Contextual modulation of V receptive fields depends on their spatial symmetry Tatyana O. Sharpee & Jonathan D. Victor Received: April 8 /Revised: 9 June 8 /Accepted: June 8 # Springer Science

More information

A Model of Local Adaptation supplementary information

A Model of Local Adaptation supplementary information A Model of Local Adaptation supplementary information Peter Vangorp Bangor University, UK & MPI Informatik, Germany Karol Myszkowski MPI Informatik, Germany Erich W. Graf University of Southampton, United

More information

LGN Input to Simple Cells and Contrast-Invariant Orientation Tuning: An Analysis

LGN Input to Simple Cells and Contrast-Invariant Orientation Tuning: An Analysis J Neurophysiol 87: 2741 2752, 2002; 10.1152/jn.00474.2001. LGN Input to Simple Cells and Contrast-Invariant Orientation Tuning: An Analysis TODD W. TROYER, 1 ANTON E. KRUKOWSKI, 2 AND KENNETH D. MILLER

More information

Clicker Question. Discussion Question

Clicker Question. Discussion Question Connectomics Networks and Graph Theory A network is a set of nodes connected by edges The field of graph theory has developed a number of measures to analyze networks Mean shortest path length: the average

More information

Morphology of physiologically identified neurons in the visual cortex of the cat

Morphology of physiologically identified neurons in the visual cortex of the cat 344 Brain Research, 172 (1979) ~44-348 O Elsevier/North-Holland Biomedical Presg Morphology of physiologically identified neurons in the visual cortex of the cat C.-S. LIN*, MICHAEL J. FRIEDLANDER** and

More information

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p.

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. 5 Signaling in Nerve Cells p. 9 Cellular and Molecular Biology of Neurons

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Peter Hitchcock, PH.D., 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

Neural Encoding I: Firing Rates and Spike Statistics

Neural Encoding I: Firing Rates and Spike Statistics Chapter 1 Neural Encoding I: Firing Rates and Spike Statistics 1.1 Introduction Neurons are remarkable among the cells of the body in their ability to propagate signals rapidly over large distances. They

More information

Normative Theory of Visual Receptive Fields

Normative Theory of Visual Receptive Fields Normative Theory of Visual Receptive Fields Tony Lindeberg Computational Brain Science Lab, Department of Computational Science and Technology, KTH Royal Institute of Technology, SE-00 44 Stockholm, Sweden.

More information

Convolutional neural networks

Convolutional neural networks 11-1: Convolutional neural networks Prof. J.C. Kao, UCLA Convolutional neural networks Motivation Biological inspiration Convolution operation Convolutional layer Padding and stride CNN architecture 11-2:

More information

encoding and estimation bottleneck and limits to visual fidelity

encoding and estimation bottleneck and limits to visual fidelity Retina Light Optic Nerve photoreceptors encoding and estimation bottleneck and limits to visual fidelity interneurons ganglion cells light The Neural Coding Problem s(t) {t i } Central goals for today:

More information

Decoding conceptual representations

Decoding conceptual representations Decoding conceptual representations!!!! Marcel van Gerven! Computational Cognitive Neuroscience Lab (www.ccnlab.net) Artificial Intelligence Department Donders Centre for Cognition Donders Institute for

More information

EXTENSIONS OF ICA AS MODELS OF NATURAL IMAGES AND VISUAL PROCESSING. Aapo Hyvärinen, Patrik O. Hoyer and Jarmo Hurri

EXTENSIONS OF ICA AS MODELS OF NATURAL IMAGES AND VISUAL PROCESSING. Aapo Hyvärinen, Patrik O. Hoyer and Jarmo Hurri EXTENSIONS OF ICA AS MODELS OF NATURAL IMAGES AND VISUAL PROCESSING Aapo Hyvärinen, Patrik O. Hoyer and Jarmo Hurri Neural Networks Research Centre Helsinki University of Technology P.O. Box 5400, FIN-02015

More information

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References 24th March 2011 Update Hierarchical Model Rao and Ballard (1999) presented a hierarchical model of visual cortex to show how classical and extra-classical Receptive Field (RF) effects could be explained

More information

Modeling Surround Suppression in V1 Neurons with a Statistically-Derived Normalization Model

Modeling Surround Suppression in V1 Neurons with a Statistically-Derived Normalization Model Presented at: NIPS-98, Denver CO, 1-3 Dec 1998. Pulished in: Advances in Neural Information Processing Systems eds. M. S. Kearns, S. A. Solla, and D. A. Cohn volume 11, pages 153--159 MIT Press, Cambridge,

More information

LGN Input to Simple Cells and Contrast-Invariant Orientation Tuning: An Analysis

LGN Input to Simple Cells and Contrast-Invariant Orientation Tuning: An Analysis LGN Input to Simple Cells and Contrast-Invariant Orientation Tuning: An Analysis Todd W. Troyer 1, Anton E. Krukowski 2 and Kenneth D. Miller 3 Dept. of Psychology Neuroscience and Cognitive Science Program

More information

Modelling stochastic neural learning

Modelling stochastic neural learning Modelling stochastic neural learning Computational Neuroscience András Telcs telcs.andras@wigner.mta.hu www.cs.bme.hu/~telcs http://pattern.wigner.mta.hu/participants/andras-telcs Compiled from lectures

More information

SOME RELATIONS BETWEEN VISUAL PERCEPTION AND NON- LINEAR PHOTONIC STRUCTURES

SOME RELATIONS BETWEEN VISUAL PERCEPTION AND NON- LINEAR PHOTONIC STRUCTURES SOME RELATIONS BETWEEN VISUAL PERCEPTION AND NON- LINEAR PHOTONIC STRUCTURES J.A. Martin-Pereda E.T.S. Ingenieros de Telecomunicación Universidad Politécnica de Madrid SPAIN PHOTOPTICS 2013 20 21 February,

More information

This cannot be estimated directly... s 1. s 2. P(spike, stim) P(stim) P(spike stim) =

This cannot be estimated directly... s 1. s 2. P(spike, stim) P(stim) P(spike stim) = LNP cascade model Simplest successful descriptive spiking model Easily fit to (extracellular) data Descriptive, and interpretable (although not mechanistic) For a Poisson model, response is captured by

More information

The role of ephrins and structured retinal activity in the development of visual map topography

The role of ephrins and structured retinal activity in the development of visual map topography The role of ephrins and structured retinal activity in the development of visual map topography David Feldheim, UC Santa Cruz KITP Brain08 March 21, 2008 Topographic map development in the mouse visual

More information

arxiv: v2 [cs.cv] 29 Aug 2016

arxiv: v2 [cs.cv] 29 Aug 2016 Local and global gestalt laws: A neurally based spectral approach Marta Favali, Giovanna Citti and Alessandro Sarti Abstract arxiv:1512.06566v2 [cs.cv] 29 Aug 2016 A mathematical model of figure-ground

More information

The Temporal Dynamics of Cortical Normalization Models of Decision-making

The Temporal Dynamics of Cortical Normalization Models of Decision-making Letters in Biomathematics An International Journal Volume I, issue 2 (24) http://www.lettersinbiomath.org Research Article The Temporal Dynamics of Cortical Normalization Models of Decision-making Thomas

More information

Contact Geometry of the Visual Cortex

Contact Geometry of the Visual Cortex Ma191b Winter 2017 Geometry of Neuroscience References for this lecture Jean Petitot, Neurogéométrie de la Vision, Les Éditions de l École Polytechnique, 2008 John B. Entyre, Introductory Lectures on Contact

More information

Received 22 September 2006 Accepted 9 February 2007

Received 22 September 2006 Accepted 9 February 2007 International Journal of Humanoid Robotics Vol. 4, No. 2 (2007) 281 320 c World Scientific Publishing Company A MULTILAYER IN-PLACE LEARNING NETWORK FOR DEVELOPMENT OF GENERAL INVARIANCES JUYANG WENG,,,

More information

Recipes for the Linear Analysis of EEG and applications

Recipes for the Linear Analysis of EEG and applications Recipes for the Linear Analysis of EEG and applications Paul Sajda Department of Biomedical Engineering Columbia University Can we read the brain non-invasively and in real-time? decoder 1001110 if YES

More information

Adaptive Velocity Tuning for Visual Motion Estimation

Adaptive Velocity Tuning for Visual Motion Estimation Adaptive Velocity Tuning for Visual Motion Estimation Volker Willert 1 and Julian Eggert 2 1- Darmstadt University of Technology Institute of Automatic Control, Control Theory and Robotics Lab Landgraf-Georg-Str.

More information

The Hebb rule Neurons that fire together wire together.

The Hebb rule Neurons that fire together wire together. Unsupervised learning The Hebb rule Neurons that fire together wire together. PCA RF development with PCA Classical Conditioning and Hebbʼs rule Ear A Nose B Tongue When an axon in cell A is near enough

More information