SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017

Size: px
Start display at page:

Download "SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017"

Transcription

1 SPIKE TRIGGERED APPROACHES Odelia Schwartz Computational Neuroscience Course 2017

2 LINEAR NONLINEAR MODELS Linear Nonlinear o Often constrain to some form of Linear, Nonlinear computations, e.g. visual receptive fields or filters, followed by nonlinear interactions

3 LINEAR NONLINEAR MODELS What type of nonlinearities?

4 DESCRIPTIVE MODELS: DIVISIVE NORMALIZATION o Canonical computation (Carandini, Heeger, 2013) o Has been applied to primary visual cortex (V1) o More broadly, to other systems and modalities, multimodal processing, value encoding, etc

5 DESCRIPTIVE MODELS: COMPLEX CELLS AND INVARIANCE o after Adelson & Bergen, 1985

6 FITTING DESCRIPTIVE MODELS TO DATA Linear Nonlinear Poisson

7 ROADMAP o Simple cell traditional approach o Simple cell (STA) o When STA fails o Complex cell (STC) o Another example (STC) o More generic model with multiple filters

8 REMINDER: RECEPTIVE FIELD Hubel and Wiesel, 1959 Stimuli Spikes

9 Primary Visual Cortex (V1) REMINDER: RECEPTIVE FIELD

10 RECEPTIVE FIELD o Response of a filter = inner/dot product/projection of filter with stimulus

11 ROADMAP o Simple cell traditional approach o Simple cell (STA) o When STA fails o Complex cell (STC) o Another example (STC) o More generic model with multiple filters

12

13 SPIKE-TRIGGERED AVERAGE

14 SPIKE-TRIGGERED AVERAGE

15 SPIKE-TRIGGERED AVERAGE

16 STA SPIKE-TRIGGERED AVERAGE

17 EFFECT OF NONLINEARITY IN MODEL?

18 EFFECT OF NONLINEARITY IN MODEL?

19 EFFECT OF NONLINEARITY IN MODEL? o Nonlinearity sets negative filter responses to zero (firing rates are positive)

20 SPIKE-TRIGGERED AVERAGE (STA) o Stimuli that are more similar to filter are more likely to elicit a spike

21 Model: SPIKE-TRIGGERED AVERAGE (STA)

22 SPIKE-TRIGGERED AVERAGE (STA) STA response Random filter response

23 Geometrical view: change in the mean Large filter response likely to elicit spike SPIKE-TRIGGERED AVERAGE (STA) Spike stimuli Raw stimuli STA response Random filter response

24 SPIKE-TRIGGERED AVERAGE (STA) STA We can also recover the nonlinearity

25 SPIKE-TRIGGERED AVERAGE (STA) We can also recover the nonlinearity

26 STEPS 1.Assume a model (filter/s, nonlinearity) (we assumed one filter and asymmetric nonlinearity) 2. Estimate model components (filter/s, nonlinearity) (we looked for changes in mean: STA)

27 ROADMAP o Simple cell traditional approach o Simple cell (STA) o When STA fails o Complex cell (STC) o Another example (STC) o More generic model with multiple filters

28 BUT STA DOES NOT ALWAYS WORK STA filter??

29 BUT STA DOES NOT ALWAYS WORK STA filter!

30 WHAT HAPPENED?? Nonlinearity sets negative filter responses to positive (firing rates are positive)

31 WHAT HAPPENED?? Spike stimuli Raw stimuli Model filter STA filter! Random filter response Large or small filter response likely to elicit spike Mean stimuli eliciting spikes = 0

32 CHANGE IN THE VARIANCE Spike stimuli Raw stimuli Positive 0 Model filter Negative STA filter! Large or small filter response likely to elicit spike Random filter response

33 SPIKE-TRIGGERED COVARIANCE (STC) Spike stimuli Raw stimuli Positive 0 Model filter Negative Standard algebra techniques (eigenvector analysis) recovers changes in variance Random filter response

34 SPIKE-TRIGGERED COVARIANCE (STC) Model filter Random filter response We can also recover the nonlinearity

35 STEPS 1.Assume a model (filter/s, nonlinearity) (we assumed one filter and symmetric nonlinearity) 2. Estimate model components (filter/s, nonlinearity) (STA failed) (we looked for changes in variance: STC)

36 SPIKE-TRIGGERED COVARIANCE (STC) o Figure from Schwartz et al. 2006; see also Rust et al. 2005, de Ruyter & Bialek 1988 o Approach estimates linear subspace and nonlinearity

37 ROADMAP o Simple cell traditional approach o Simple cell (STA) o When STA fails o Complex cell (STC) o Another example (STC) o More generic model with multiple filters

38 SPIKE-TRIGGERED COVARIANCE (STC)

39 CHANGE IN VARIANCE (STC) Spike stimuli Raw stimuli

40 CHANGE IN VARIANCE (STC) STA filter!

41 CHANGE IN VARIANCE (STC)

42 STEPS 1.Assume a model (filter/s, nonlinearity) (we assumed more than one filter and symmetric nonlinearity) 2. Estimate model components (filter/s, nonlinearity) (STA failed) (we looked for changes in variance: STC)

43 ROADMAP o Simple cell traditional approach o Simple cell (STA) o When STA fails o Complex cell (STC) o Another example (STC) o More generic model with multiple filters

44 SECOND FILTER SUPPRESSIVE (E.G., DIVISIVE)

45 SECOND FILTER SUPPRESSIVE (E.G., DIVISIVE) Second filter brings about reduction in variance! Spike stimuli Raw stimuli

46 SECOND FILTER SUPPRESSIVE (E.G., DIVISIVE) Second filter brings about reduction in variance!

47 STEPS 1.Assume a model (filter/s, nonlinearity) (we assumed more than one filter and symmetric nonlinearity) 2. Estimate model components (filter/s, nonlinearity) (we looked for changes in variance, this time reduced variance: STC)

48 SPIKE TRIGGERED APPROACES Change in the mean (STA) Complex cell Divisive normalization Changes in the variance (STC)

49 ROADMAP o Simple cell traditional approach o Simple cell (STA) o When STA fails o Complex cell (STC) o Another example (STC) o More generic model with multiple filters

50 MORE GENERAL CLASS OF MODEL Look for changes in both the mean and the variance

51 APPLICATION: V1 EXPERIMENT

52 V1 NEURAL DATA: SPIKE-TRIGGERED COVARIANCE o Example V1 neuron estimated filters from Rust et al. 2005

53 V1 NEURAL DATA: RECALL THE STANDARD MODELS But Data show multiple filters (excitatory and suppressive) for both. Are these really two different classes of neurons, or is there a continuum??

54 STC ISSUES: HOW MANY SPIKES? Filter estimate depends on: Spatial and time dimensionality of input stimulus (smaller = better estimate) Number of spikes (more = better estimate)

55 STC CAVEATS Analysis forces filters that are 90 degrees apart! Filters should not be taken literally as physiological mechanisms

56 STC CAVEATS But true filters are linear combinations of original ( span the same subspace )

57 STC CAVEATS Analysis forces filters that are 90 degrees apart! Filters should not be taken literally as physiological mechanisms Spiking in neuron may be non Poisson (bursts;; refractory period;; etc.) Filters should not be taken literally as physiological mechanisms There might be more filters affecting neural response than what analysis finds STC guaranteed to work only for Gaussian stimuli There might be changes that are not in the mean or variance (other approaches;; e.g., info theory)

58 EXAMPLE: FITTING LN-LN MODEL o o o Figure from Pagan et al describing retina and V1 with subunits (see Rust et al. 2005; Vintch et al. 2015) In Pagan et al addressing higher level brain areas See also Rowekamp et al addressing area V2

59 EXAMPLE: GENERALIZED LINEAR MODEL Stimulus filter Stochastic Nonlinearity spiking e x Post-spike filter Neuron 1 Coupling filters Neuron 2 o Figure from Pillow et al., 2008, describing retina

1/12/2017. Computational neuroscience. Neurotechnology.

1/12/2017. Computational neuroscience. Neurotechnology. Computational neuroscience Neurotechnology https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/ 1 Neurotechnology http://www.lce.hut.fi/research/cogntech/neurophysiology Recording

More information

Efficient and direct estimation of a neural subunit model for sensory coding

Efficient and direct estimation of a neural subunit model for sensory coding To appear in: Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada. December 3-6, 22. Efficient and direct estimation of a neural subunit model for sensory coding Brett Vintch Andrew D. Zaharia

More information

Statistical models for neural encoding

Statistical models for neural encoding Statistical models for neural encoding Part 1: discrete-time models Liam Paninski Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/ liam liam@gatsby.ucl.ac.uk

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary discussion 1: Most excitatory and suppressive stimuli for model neurons The model allows us to determine, for each model neuron, the set of most excitatory and suppresive features. First,

More information

Mid Year Project Report: Statistical models of visual neurons

Mid Year Project Report: Statistical models of visual neurons Mid Year Project Report: Statistical models of visual neurons Anna Sotnikova asotniko@math.umd.edu Project Advisor: Prof. Daniel A. Butts dab@umd.edu Department of Biology Abstract Studying visual neurons

More information

Phenomenological Models of Neurons!! Lecture 5!

Phenomenological Models of Neurons!! Lecture 5! Phenomenological Models of Neurons!! Lecture 5! 1! Some Linear Algebra First!! Notes from Eero Simoncelli 2! Vector Addition! Notes from Eero Simoncelli 3! Scalar Multiplication of a Vector! 4! Vector

More information

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES CHARACTERIZATION OF NONLINEAR NEURON RESPONSES Matt Whiteway whit8022@umd.edu Dr. Daniel A. Butts dab@umd.edu Neuroscience and Cognitive Science (NACS) Applied Mathematics and Scientific Computation (AMSC)

More information

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES CHARACTERIZATION OF NONLINEAR NEURON RESPONSES Matt Whiteway whit8022@umd.edu Dr. Daniel A. Butts dab@umd.edu Neuroscience and Cognitive Science (NACS) Applied Mathematics and Scientific Computation (AMSC)

More information

Dimensionality reduction in neural models: an information-theoretic generalization of spiketriggered average and covariance analysis

Dimensionality reduction in neural models: an information-theoretic generalization of spiketriggered average and covariance analysis to appear: Journal of Vision, 26 Dimensionality reduction in neural models: an information-theoretic generalization of spiketriggered average and covariance analysis Jonathan W. Pillow 1 and Eero P. Simoncelli

More information

Characterization of Nonlinear Neuron Responses

Characterization of Nonlinear Neuron Responses Characterization of Nonlinear Neuron Responses Mid Year Report Matt Whiteway Department of Applied Mathematics and Scientific Computing whit822@umd.edu Advisor Dr. Daniel A. Butts Neuroscience and Cognitive

More information

What is the neural code? Sekuler lab, Brandeis

What is the neural code? Sekuler lab, Brandeis What is the neural code? Sekuler lab, Brandeis What is the neural code? What is the neural code? Alan Litke, UCSD What is the neural code? What is the neural code? What is the neural code? Encoding: how

More information

Structured hierarchical models for neurons in the early visual system

Structured hierarchical models for neurons in the early visual system Structured hierarchical models for neurons in the early visual system by Brett Vintch A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Center for

More information

The homogeneous Poisson process

The homogeneous Poisson process The homogeneous Poisson process during very short time interval Δt there is a fixed probability of an event (spike) occurring independent of what happened previously if r is the rate of the Poisson process,

More information

encoding and estimation bottleneck and limits to visual fidelity

encoding and estimation bottleneck and limits to visual fidelity Retina Light Optic Nerve photoreceptors encoding and estimation bottleneck and limits to visual fidelity interneurons ganglion cells light The Neural Coding Problem s(t) {t i } Central goals for today:

More information

Characterization of Nonlinear Neuron Responses

Characterization of Nonlinear Neuron Responses Characterization of Nonlinear Neuron Responses Final Report Matt Whiteway Department of Applied Mathematics and Scientific Computing whit822@umd.edu Advisor Dr. Daniel A. Butts Neuroscience and Cognitive

More information

Dimensionality reduction in neural models: An information-theoretic generalization of spike-triggered average and covariance analysis

Dimensionality reduction in neural models: An information-theoretic generalization of spike-triggered average and covariance analysis Journal of Vision (2006) 6, 414 428 http://journalofvision.org/6/4/9/ 414 Dimensionality reduction in neural models: An information-theoretic generalization of spike-triggered average and covariance analysis

More information

Modeling and Characterization of Neural Gain Control. Odelia Schwartz. A dissertation submitted in partial fulfillment

Modeling and Characterization of Neural Gain Control. Odelia Schwartz. A dissertation submitted in partial fulfillment Modeling and Characterization of Neural Gain Control by Odelia Schwartz A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Center for Neural Science

More information

Identifying Functional Bases for Multidimensional Neural Computations

Identifying Functional Bases for Multidimensional Neural Computations LETTER Communicated by Jonathan Pillow Identifying Functional Bases for Multidimensional Neural Computations Joel Kaardal jkaardal@physics.ucsd.edu Jeffrey D. Fitzgerald jfitzgerald@physics.ucsd.edu Computational

More information

Spatiotemporal Elements of Macaque V1 Receptive Fields

Spatiotemporal Elements of Macaque V1 Receptive Fields Neuron, Vol. 46, 945 956, June 16, 2005, Copyright 2005 by Elsevier Inc. DOI 10.1016/j.neuron.2005.05.021 Spatiotemporal Elements of Macaque V1 Receptive Fields Nicole C. Rust, 1, * Odelia Schwartz, 3

More information

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern.

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern. 1 Exercises Chapter 1 1. Generate spike sequences with a constant firing rate r 0 using a Poisson spike generator. Then, add a refractory period to the model by allowing the firing rate r(t) to depend

More information

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Jonathan Pillow HHMI and NYU http://www.cns.nyu.edu/~pillow Oct 5, Course lecture: Computational Modeling of Neuronal Systems

More information

Flexible Gating of Contextual Influences in Natural Vision. Odelia Schwartz University of Miami Oct 2015

Flexible Gating of Contextual Influences in Natural Vision. Odelia Schwartz University of Miami Oct 2015 Flexible Gating of Contextual Influences in Natural Vision Odelia Schwartz University of Miami Oct 05 Contextual influences Perceptual illusions: no man is an island.. Review paper on context: Schwartz,

More information

Lateral organization & computation

Lateral organization & computation Lateral organization & computation review Population encoding & decoding lateral organization Efficient representations that reduce or exploit redundancy Fixation task 1rst order Retinotopic maps Log-polar

More information

This cannot be estimated directly... s 1. s 2. P(spike, stim) P(stim) P(spike stim) =

This cannot be estimated directly... s 1. s 2. P(spike, stim) P(stim) P(spike stim) = LNP cascade model Simplest successful descriptive spiking model Easily fit to (extracellular) data Descriptive, and interpretable (although not mechanistic) For a Poisson model, response is captured by

More information

Convolutional Spike-triggered Covariance Analysis for Neural Subunit Models

Convolutional Spike-triggered Covariance Analysis for Neural Subunit Models Published in: Advances in Neural Information Processing Systems 28 (215) Convolutional Spike-triggered Covariance Analysis for Neural Subunit Models Anqi Wu 1 Il Memming Park 2 Jonathan W. Pillow 1 1 Princeton

More information

Visual motion processing and perceptual decision making

Visual motion processing and perceptual decision making Visual motion processing and perceptual decision making Aziz Hurzook (ahurzook@uwaterloo.ca) Oliver Trujillo (otrujill@uwaterloo.ca) Chris Eliasmith (celiasmith@uwaterloo.ca) Centre for Theoretical Neuroscience,

More information

Convolutional Spike-triggered Covariance Analysis for Neural Subunit Models

Convolutional Spike-triggered Covariance Analysis for Neural Subunit Models Convolutional Spike-triggered Covariance Analysis for Neural Subunit Models Anqi Wu Il Memming Park 2 Jonathan W. Pillow Princeton Neuroscience Institute, Princeton University {anqiw, pillow}@princeton.edu

More information

Comparison of objective functions for estimating linear-nonlinear models

Comparison of objective functions for estimating linear-nonlinear models Comparison of objective functions for estimating linear-nonlinear models Tatyana O. Sharpee Computational Neurobiology Laboratory, the Salk Institute for Biological Studies, La Jolla, CA 937 sharpee@salk.edu

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Spatio-temporal correlations and visual signaling in a complete neuronal population Jonathan W. Pillow 1, Jonathon Shlens 2, Liam Paninski 3, Alexander Sher 4, Alan M. Litke 4,E.J.Chichilnisky 2, Eero

More information

Neural Encoding Models

Neural Encoding Models Neural Encoding Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2011 Studying sensory systems x(t) y(t) Decoding: ˆx(t)= G[y(t)]

More information

Neural Encoding. Mark van Rossum. January School of Informatics, University of Edinburgh 1 / 58

Neural Encoding. Mark van Rossum. January School of Informatics, University of Edinburgh 1 / 58 1 / 58 Neural Encoding Mark van Rossum School of Informatics, University of Edinburgh January 2015 2 / 58 Overview Understanding the neural code Encoding: Prediction of neural response to a given stimulus

More information

Features and dimensions: Motion estimation in fly vision

Features and dimensions: Motion estimation in fly vision Features and dimensions: Motion estimation in fly vision William Bialek a and Rob R. de Ruyter van Steveninck b a Joseph Henry Laboratories of Physics, and Lewis Sigler Institute for Integrative Genomics

More information

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Sean Escola. Center for Theoretical Neuroscience

Sean Escola. Center for Theoretical Neuroscience Employing hidden Markov models of neural spike-trains toward the improved estimation of linear receptive fields and the decoding of multiple firing regimes Sean Escola Center for Theoretical Neuroscience

More information

Comparison of receptive fields to polar and Cartesian stimuli computed with two kinds of models

Comparison of receptive fields to polar and Cartesian stimuli computed with two kinds of models Supplemental Material Comparison of receptive fields to polar and Cartesian stimuli computed with two kinds of models Motivation The purpose of this analysis is to verify that context dependent changes

More information

Modeling Convergent ON and OFF Pathways in the Early Visual System

Modeling Convergent ON and OFF Pathways in the Early Visual System Modeling Convergent ON and OFF Pathways in the Early Visual System The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gollisch,

More information

Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models

Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models Using Minimum and Maximum Mutual Information Models Jeffrey D. Fitzgerald 1,2, Ryan J. Rowekamp 1,2, Lawrence C. Sincich 3, Tatyana O. Sharpee 1,2 * 1 Computational Neurobiology Laboratory, The Salk Institute

More information

Learning quadratic receptive fields from neural responses to natural signals: information theoretic and likelihood methods

Learning quadratic receptive fields from neural responses to natural signals: information theoretic and likelihood methods Learning quadratic receptive fields from neural responses to natural signals: information theoretic and likelihood methods Kanaka Rajan Lewis-Sigler Institute for Integrative Genomics Princeton University

More information

Two-dimensional adaptation in the auditory forebrain

Two-dimensional adaptation in the auditory forebrain Two-dimensional adaptation in the auditory forebrain Tatyana O. Sharpee, Katherine I. Nagel and Allison J. Doupe J Neurophysiol 106:1841-1861, 2011. First published 13 July 2011; doi:10.1152/jn.00905.2010

More information

Membrane equation. VCl. dv dt + V = V Na G Na + V K G K + V Cl G Cl. G total. C m. G total = G Na + G K + G Cl

Membrane equation. VCl. dv dt + V = V Na G Na + V K G K + V Cl G Cl. G total. C m. G total = G Na + G K + G Cl Spiking neurons Membrane equation V GNa GK GCl Cm VNa VK VCl dv dt + V = V Na G Na + V K G K + V Cl G Cl G total G total = G Na + G K + G Cl = C m G total Membrane with synaptic inputs V Gleak GNa GK

More information

Statistical models for neural encoding, decoding, information estimation, and optimal on-line stimulus design

Statistical models for neural encoding, decoding, information estimation, and optimal on-line stimulus design Statistical models for neural encoding, decoding, information estimation, and optimal on-line stimulus design Liam Paninski Department of Statistics and Center for Theoretical Neuroscience Columbia University

More information

Primer: The deconstruction of neuronal spike trains

Primer: The deconstruction of neuronal spike trains Primer: The deconstruction of neuronal spike trains JOHNATAN ALJADEFF 1,2, BENJAMIN J. LANSDELL 3, ADRIENNE L. FAIRHALL 4 AND DAVID KLEINFELD 1,5 1 Department of Physics, University of California, San

More information

Synaptic Input. Linear Model of Synaptic Transmission. Professor David Heeger. September 5, 2000

Synaptic Input. Linear Model of Synaptic Transmission. Professor David Heeger. September 5, 2000 Synaptic Input Professor David Heeger September 5, 2000 The purpose of this handout is to go a bit beyond the discussion in Ch. 6 of The Book of Genesis on synaptic input, and give some examples of how

More information

Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces

Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces LETTER Communicated by Bartlett Mel Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces Aapo Hyvärinen Patrik Hoyer Helsinki University

More information

Computation in a single neuron: Hodgkin and Huxley revisited

Computation in a single neuron: Hodgkin and Huxley revisited Computation in a single neuron: Hodgkin and Huxley revisited Blaise Agüera y Arcas, 1 Adrienne L. Fairhall, 2,3 and William Bialek 2,4 1 Rare Books Library, Princeton University, Princeton, New Jersey

More information

Inferring synaptic conductances from spike trains under a biophysically inspired point process model

Inferring synaptic conductances from spike trains under a biophysically inspired point process model Inferring synaptic conductances from spike trains under a biophysically inspired point process model Kenneth W. Latimer The Institute for Neuroscience The University of Texas at Austin latimerk@utexas.edu

More information

Efficient Coding. Odelia Schwartz 2017

Efficient Coding. Odelia Schwartz 2017 Efficient Coding Odelia Schwartz 2017 1 Levels of modeling Descriptive (what) Mechanistic (how) Interpretive (why) 2 Levels of modeling Fitting a receptive field model to experimental data (e.g., using

More information

Transformation of stimulus correlations by the retina

Transformation of stimulus correlations by the retina Transformation of stimulus correlations by the retina Kristina Simmons (University of Pennsylvania) and Jason Prentice, (now Princeton University) with Gasper Tkacik (IST Austria) Jan Homann (now Princeton

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

A Deep Learning Model of the Retina

A Deep Learning Model of the Retina A Deep Learning Model of the Retina Lane McIntosh and Niru Maheswaranathan Neurosciences Graduate Program, Stanford University Stanford, CA {lanemc, nirum}@stanford.edu Abstract The represents the first

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

Modeling Surround Suppression in V1 Neurons with a Statistically-Derived Normalization Model

Modeling Surround Suppression in V1 Neurons with a Statistically-Derived Normalization Model Presented at: NIPS-98, Denver CO, 1-3 Dec 1998. Pulished in: Advances in Neural Information Processing Systems eds. M. S. Kearns, S. A. Solla, and D. A. Cohn volume 11, pages 153--159 MIT Press, Cambridge,

More information

Neural characterization in partially observed populations of spiking neurons

Neural characterization in partially observed populations of spiking neurons Presented at NIPS 2007 To appear in Adv Neural Information Processing Systems 20, Jun 2008 Neural characterization in partially observed populations of spiking neurons Jonathan W. Pillow Peter Latham Gatsby

More information

High-dimensional geometry of cortical population activity. Marius Pachitariu University College London

High-dimensional geometry of cortical population activity. Marius Pachitariu University College London High-dimensional geometry of cortical population activity Marius Pachitariu University College London Part I: introduction to the brave new world of large-scale neuroscience Part II: large-scale data preprocessing

More information

Information Theory. Mark van Rossum. January 24, School of Informatics, University of Edinburgh 1 / 35

Information Theory. Mark van Rossum. January 24, School of Informatics, University of Edinburgh 1 / 35 1 / 35 Information Theory Mark van Rossum School of Informatics, University of Edinburgh January 24, 2018 0 Version: January 24, 2018 Why information theory 2 / 35 Understanding the neural code. Encoding

More information

Neural Codes and Neural Rings: Topology and Algebraic Geometry

Neural Codes and Neural Rings: Topology and Algebraic Geometry Neural Codes and Neural Rings: Topology and Algebraic Geometry Ma191b Winter 2017 Geometry of Neuroscience References for this lecture: Curto, Carina; Itskov, Vladimir; Veliz-Cuba, Alan; Youngs, Nora,

More information

Likelihood-Based Approaches to

Likelihood-Based Approaches to Likelihood-Based Approaches to 3 Modeling the Neural Code Jonathan Pillow One of the central problems in systems neuroscience is that of characterizing the functional relationship between sensory stimuli

More information

Comparing integrate-and-fire models estimated using intracellular and extracellular data 1

Comparing integrate-and-fire models estimated using intracellular and extracellular data 1 Comparing integrate-and-fire models estimated using intracellular and extracellular data 1 Liam Paninski a,b,2 Jonathan Pillow b Eero Simoncelli b a Gatsby Computational Neuroscience Unit, University College

More information

Visual Motion Analysis by a Neural Network

Visual Motion Analysis by a Neural Network Visual Motion Analysis by a Neural Network Kansai University Takatsuki, Osaka 569 1095, Japan E-mail: fukushima@m.ieice.org (Submitted on December 12, 2006) Abstract In the visual systems of mammals, visual

More information

Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model

Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model ACCEPTED FOR NIPS: DRAFT VERSION Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model Sander M. Bohte CWI, Life Sciences Amsterdam, The Netherlands S.M.Bohte@cwi.nl September

More information

Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data

Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data Maneesh Sahani Gatsby Computational Neuroscience Unit University College, London Jennifer

More information

Simple Cell Receptive Fields in V1.

Simple Cell Receptive Fields in V1. Simple Cell Receptive Fields in V1. The receptive field properties of simple cells in V1 were studied by Hubel and Wiesel [65][66] who showed that many cells were tuned to the orientation of edges and

More information

Convolutional networks. Sebastian Seung

Convolutional networks. Sebastian Seung Convolutional networks Sebastian Seung Convolutional network Neural network with spatial organization every neuron has a location usually on a grid Translation invariance synaptic strength depends on locations

More information

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience An Introductory Course in Computational Neuroscience Contents Series Foreword Acknowledgments Preface 1 Preliminary Material 1.1. Introduction 1.1.1 The Cell, the Circuit, and the Brain 1.1.2 Physics of

More information

Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions

Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions ARTICLE Communicated by Pamela Reinagel Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions Tatyana Sharpee sharpee@phy.ucsf.edu Sloan Swartz Center for Theoretical Neurobiology

More information

Natural Image Statistics

Natural Image Statistics Natural Image Statistics A probabilistic approach to modelling early visual processing in the cortex Dept of Computer Science Early visual processing LGN V1 retina From the eye to the primary visual cortex

More information

Finding a Basis for the Neural State

Finding a Basis for the Neural State Finding a Basis for the Neural State Chris Cueva ccueva@stanford.edu I. INTRODUCTION How is information represented in the brain? For example, consider arm movement. Neurons in dorsal premotor cortex (PMd)

More information

Charles Cadieu, Minjoon Kouh, Anitha Pasupathy, Charles E. Connor, Maximilian Riesenhuber and Tomaso Poggio

Charles Cadieu, Minjoon Kouh, Anitha Pasupathy, Charles E. Connor, Maximilian Riesenhuber and Tomaso Poggio Charles Cadieu, Minjoon Kouh, Anitha Pasupathy, Charles E. Connor, Maximilian Riesenhuber and Tomaso Poggio J Neurophysiol 98:733-75, 27. First published Jun 27, 27; doi:.52/jn.265.26 You might find this

More information

Modelling stochastic neural learning

Modelling stochastic neural learning Modelling stochastic neural learning Computational Neuroscience András Telcs telcs.andras@wigner.mta.hu www.cs.bme.hu/~telcs http://pattern.wigner.mta.hu/participants/andras-telcs Compiled from lectures

More information

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 Page 1 of 43 Information maximization as a principle for contrast gain control Journal: Manuscript ID: Manuscript Type: Manuscript Section: Conflict of Interest: Date Submitted by the Author: Keywords:

More information

Maximally Informative Stimulus Energies in the Analysis of Neural Responses to Natural Signals

Maximally Informative Stimulus Energies in the Analysis of Neural Responses to Natural Signals Maximally Informative Stimulus Energies in the Analysis of Neural Responses to Natural Signals Kanaka Rajan*, William Bialek Joseph Henry Laboratories of Physics and Lewis Sigler Institute for Integrative

More information

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II Gatsby Unit University College London 27 Feb 2017 Outline Part I: Theory of ICA Definition and difference

More information

Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment

Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment Jean-Pierre Nadal CNRS & EHESS Laboratoire de Physique Statistique (LPS, UMR 8550 CNRS - ENS UPMC Univ.

More information

Information Theory and Neuroscience II

Information Theory and Neuroscience II John Z. Sun and Da Wang Massachusetts Institute of Technology October 14, 2009 Outline System Model & Problem Formulation Information Rate Analysis Recap 2 / 23 Neurons Neuron (denoted by j) I/O: via synapses

More information

Nonlinear reverse-correlation with synthesized naturalistic noise

Nonlinear reverse-correlation with synthesized naturalistic noise Cognitive Science Online, Vol1, pp1 7, 2003 http://cogsci-onlineucsdedu Nonlinear reverse-correlation with synthesized naturalistic noise Hsin-Hao Yu Department of Cognitive Science University of California

More information

Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons

Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons Yan Karklin and Eero P. Simoncelli NYU Overview Efficient coding is a well-known objective for the evaluation and

More information

Modelling temporal structure (in noise and signal)

Modelling temporal structure (in noise and signal) Modelling temporal structure (in noise and signal) Mark Woolrich, Christian Beckmann*, Salima Makni & Steve Smith FMRIB, Oxford *Imperial/FMRIB temporal noise: modelling temporal autocorrelation temporal

More information

Neural Spike Train Analysis 1: Introduction to Point Processes

Neural Spike Train Analysis 1: Introduction to Point Processes SAMSI Summer 2015: CCNS Computational Neuroscience Summer School Neural Spike Train Analysis 1: Introduction to Point Processes Uri Eden BU Department of Mathematics and Statistics July 27, 2015 Spikes

More information

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 206 Jonathan Pillow Homework 8: Logistic Regression & Information Theory Due: Tuesday, April 26, 9:59am Optimization Toolbox One

More information

Tilt-aftereffect and adaptation of V1 neurons

Tilt-aftereffect and adaptation of V1 neurons Tilt-aftereffect and adaptation of V1 neurons Dezhe Jin Department of Physics The Pennsylvania State University Outline The tilt aftereffect (TAE) Classical model of neural basis of TAE Neural data on

More information

Using Statistics of Natural Images to Facilitate Automatic Receptive Field Analysis

Using Statistics of Natural Images to Facilitate Automatic Receptive Field Analysis Using Statistics of Natural Images to Facilitate Automatic Receptive Field Analysis Matthew Harrison Division of Applied Mathematics Brown University Providence, RI 292 USA Matthew Harrison@Brown.EDU Stuart

More information

EXTENSIONS OF ICA AS MODELS OF NATURAL IMAGES AND VISUAL PROCESSING. Aapo Hyvärinen, Patrik O. Hoyer and Jarmo Hurri

EXTENSIONS OF ICA AS MODELS OF NATURAL IMAGES AND VISUAL PROCESSING. Aapo Hyvärinen, Patrik O. Hoyer and Jarmo Hurri EXTENSIONS OF ICA AS MODELS OF NATURAL IMAGES AND VISUAL PROCESSING Aapo Hyvärinen, Patrik O. Hoyer and Jarmo Hurri Neural Networks Research Centre Helsinki University of Technology P.O. Box 5400, FIN-02015

More information

Memories Associated with Single Neurons and Proximity Matrices

Memories Associated with Single Neurons and Proximity Matrices Memories Associated with Single Neurons and Proximity Matrices Subhash Kak Oklahoma State University, Stillwater Abstract: This paper extends the treatment of single-neuron memories obtained by the use

More information

arxiv:q-bio/ v1 [q-bio.nc] 2 May 2005

arxiv:q-bio/ v1 [q-bio.nc] 2 May 2005 Features and dimensions: Motion estimation in fly vision William Bialek a and Rob R. de Ruyter van Steveninck b a Joseph Henry Laboratories of Physics, b Department of Molecular Biology, and the Lewis

More information

Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Model

Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Model Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Model Jonathan W. Pillow, Liam Paninski, and Eero P. Simoncelli Howard Hughes Medical Institute Center for Neural Science New York

More information

Contextual modulation of V1 receptive fields depends on their spatial symmetry

Contextual modulation of V1 receptive fields depends on their spatial symmetry DOI./s8-8-- Contextual modulation of V receptive fields depends on their spatial symmetry Tatyana O. Sharpee & Jonathan D. Victor Received: April 8 /Revised: 9 June 8 /Accepted: June 8 # Springer Science

More information

Simultaneous activity measurements on intact mammalian retina

Simultaneous activity measurements on intact mammalian retina Simultaneous activity measurements on intact mammalian retina Phil Nelson University of Pennsylvania For these slides see: www.physics.upenn.edu/~pcn Cartoon by Larry Gonick Part IV: Parallel recordings

More information

CIFAR Lectures: Non-Gaussian statistics and natural images

CIFAR Lectures: Non-Gaussian statistics and natural images CIFAR Lectures: Non-Gaussian statistics and natural images Dept of Computer Science University of Helsinki, Finland Outline Part I: Theory of ICA Definition and difference to PCA Importance of non-gaussianity

More information

Spatiotemporal Response Properties of Optic-Flow Processing Neurons

Spatiotemporal Response Properties of Optic-Flow Processing Neurons Article Spatiotemporal Response Properties of Optic-Flow Processing Neurons Franz Weber, 1,3, * Christian K. Machens, 2 and Alexander Borst 1 1 Department of Systems and Computational Neurobiology, Max-Planck-Institute

More information

THE retina in general consists of three layers: photoreceptors

THE retina in general consists of three layers: photoreceptors CS229 MACHINE LEARNING, STANFORD UNIVERSITY, DECEMBER 2016 1 Models of Neuron Coding in Retinal Ganglion Cells and Clustering by Receptive Field Kevin Fegelis, SUID: 005996192, Claire Hebert, SUID: 006122438,

More information

A Monte Carlo Sequential Estimation for Point Process Optimum Filtering

A Monte Carlo Sequential Estimation for Point Process Optimum Filtering 2006 International Joint Conference on Neural Networks Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July 16-21, 2006 A Monte Carlo Sequential Estimation for Point Process Optimum Filtering

More information

Information maximization in a network of linear neurons

Information maximization in a network of linear neurons Information maximization in a network of linear neurons Holger Arnold May 30, 005 1 Introduction It is known since the work of Hubel and Wiesel [3], that many cells in the early visual areas of mammals

More information

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be Supplementary Materials General case: computing log likelihood We first describe the general case of computing the log likelihood of a sensory parameter θ that is encoded by the activity of neurons. Each

More information

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing Tuning tuning curves So far: Receptive fields Representation of stimuli Population vectors Today: Contrast enhancment, cortical processing Firing frequency N 3 s max (N 1 ) = 40 o N4 N 1 N N 5 2 s max

More information

Blue-Yellow Signals Are Enhanced by Spatiotemporal Luminance Contrast in Macaque V1

Blue-Yellow Signals Are Enhanced by Spatiotemporal Luminance Contrast in Macaque V1 J Neurophysiol 93: 2263 2278, 2005; doi:10.1152/jn.00743.2004. Blue-Yellow Signals Are Enhanced by Spatiotemporal Luminance Contrast in Macaque V1 Gregory D. Horwitz, 1,2 E. J. Chichilnisky, 2 and Thomas

More information

RESEARCH STATEMENT. Nora Youngs, University of Nebraska - Lincoln

RESEARCH STATEMENT. Nora Youngs, University of Nebraska - Lincoln RESEARCH STATEMENT Nora Youngs, University of Nebraska - Lincoln 1. Introduction Understanding how the brain encodes information is a major part of neuroscience research. In the field of neural coding,

More information

LGN Input to Simple Cells and Contrast-Invariant Orientation Tuning: An Analysis

LGN Input to Simple Cells and Contrast-Invariant Orientation Tuning: An Analysis J Neurophysiol 87: 2741 2752, 2002; 10.1152/jn.00474.2001. LGN Input to Simple Cells and Contrast-Invariant Orientation Tuning: An Analysis TODD W. TROYER, 1 ANTON E. KRUKOWSKI, 2 AND KENNETH D. MILLER

More information

60 ms. 0 ms 10 ms 30 ms. 100 ms 150 ms 200 ms 350 ms. 400 ms 470 ms 570 ms 850 ms. 950 ms 1025 ms 1100 ms 1200 ms

60 ms. 0 ms 10 ms 30 ms. 100 ms 150 ms 200 ms 350 ms. 400 ms 470 ms 570 ms 850 ms. 950 ms 1025 ms 1100 ms 1200 ms POSITION AND VELOCITY ESTIMATION IN THE VISUAL CORTEX Bijoy K. Ghosh 1 Zoran Nenadic Department of Systems Science and Mathematics Campus Box 1040 Washington University Saint Louis, MO 63130 U.S.A. Abstract:

More information

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu Dimension Reduction Techniques Presented by Jie (Jerry) Yu Outline Problem Modeling Review of PCA and MDS Isomap Local Linear Embedding (LLE) Charting Background Advances in data collection and storage

More information