Basic Principles of Unsupervised and Unsupervised

Size: px
Start display at page:

Download "Basic Principles of Unsupervised and Unsupervised"

Transcription

1 Basic Principles of Unsupervised and Unsupervised Learning Toward Deep Learning Shun ichi Amari (RIKEN Brain Science Institute) collaborators: R. Karakida, M. Okada (U. Tokyo)

2 Deep Learning Self Organization + Supervised Learning RBM: Restricted Boltzmann Machine Auto Encoder, Recurrent Net Dropout Contrastive divergence

3 Simple Hebbian Self Organization

4 self organization of

5 Equillibrium

6 Equillibrium: special cases

7 Two and many clusters

8 Dynamics of self organization

9 Lyapunov Function

10 Further Problems Distributed small clusters; large clusters Mutual interactions among h neurons neural field Localized receptive fields invariance

11 Boltzmann Machine

12 RBM: Restricted Boltzmann Machine

13 RBM

14 Self Organization

15 Interaction of Hidden Neurons

16

17 Recurrent Net (Auto Encoder)

18 Recurrent Net Self Organization

19 Gaussian RBM is easy Higher order interactions Gram Charlier expansion

20 Gaussian Boltzmann Machine

21 Equilibrium Solution

22 Equilibrium Solution General Solution diagonalized by You can choose m( k) eigen values form Stable Solution the case of m = k

23 Contrastive Divergence RBM 2 layered probabilistic neural network No connections within layers Visible v W Hidden h How to train RBM Maximum Likelihood (ML) learning is hard Sampling Input Equilibrium Many iterations of Gibbs Sampling demand too much computational time 23

24 Contrastive Divergence Solution

25 Solution General Solution Stable Solution = k the same analytical form with maximum likelihood regardless of n

26 Simulation Each Layer : 10 Neurons Input: 10 dim. Gaussian Distribution Mean = 0, Variance[0.2, 0.4,, 2], Covariance = 0 ML Extracted Eigenvalue Extracted Eigenvalue Input Eigenvalues Extracted Eigenvalues

27 Bayesian Duality in Exponential Family Data x Parameter (higher order concepts) Curved exponential family

28 RBM = h, x = Wv x = v = hw

29 Two Manifolds

30 Geometry of CDn (contrastive divergence)

31 Bernoulli Gaussian RBM ICA R. Karakida

32 Equilibrium Analysis: Results Assumption of Input s: Independent and nonnegative sources B: N N orthogonal matrix ICA (independent Component Analysis) Solutions If, ML and CD learning have the following stable solutions: W s Space CD Solutions Mean value: Model variance : σ ML Solutions ICA 32

33 Simulation The number of Neurons: N = M = 2, σ = 1/2 Sources p (s) Uniform Distribution Mixing Input CD ICA Solution Output Independent sources are extracted in G B RBM 33

34 Supervised Learning Multilayer perceptron Back prop learning Singularity!! Natural Gradient Solves Difficulty

35 Mathematical Neurons w x y wx h i i x y ( u) u

36 Multilayer Perceptrons y v i wi x w 1 x x ( x1, x2,..., x n ) x y f x v w x, i i ( w,..., w ; v,..., v ) 1 m 1 m

37 Multilayer Perceptron neuromanifold () x space of functions S y f x, θ v i w i x θ v, v ; w, w 1 m 1, m

38 Backpropagation ---gradient learning x x examples :,,, training set y1 1 y t t 1 l( y, x; ) y f x, 2 log p y, x; 2 l( yt, xt; t) t t f x, v w x i i

39 Flaws of MLP slow convergence : Plateau error local minima Boosting and Bagging; SVM

40 Parameter Space vs Function Space

41 Singularity of MLP example

42 Geometry of singular model y v wx n v v w 0 W

43 singularities

44 Gaussian mixture ;,, 1 p x v w w v x w v x w x exp x singular : w w, v 1v v w 1 w 2

45 Steepest Direction---Natural Gradient l( ) l l l,, 1 n 1 l G l 2 d i j d d Gd = G d d ij lx (, y; ) t t t t t

46 Natural Gradient max dl l d l d 2 1 l G l lx (, y; ) t t t t t

47 Adaptive Natural Gradient

48 Learning, Estimation, and Model Selection x: x; Egen D p0 y p y E train Dpemp y x; E E gen gen d 2n E train d n d :dimension

49

50

51

52 Coordinate Transformation u w2 w1 : u0 v1w1 v2w2 w w w v v v1 v2 v v v2 v1 z z 1 v

53 Singular lines in the parameter space

54 Learning Trajectory near the singularity

55 Milnor attractor

56 Dynamic vector fields: Redundant case

57 Dynamics of Learning : Trajectories log z l z z l v h v z h z z z h v z c z u u u u u

58 Dynamic vector fields: General case ( z <1 part stable)

59 Dynamic vector fields: General case ( z >1 part stable )

60 Fig. 2: trajectories

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING UNSUPERVISED LEARNING Topics Layer-wise (unsupervised) pre-training Restricted Boltzmann Machines Auto-encoders LAYER-WISE (UNSUPERVISED) PRE-TRAINING Breakthrough in 2006 Layer-wise (unsupervised) pre-training

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Non-Convex Optimization in Machine Learning. Jan Mrkos AIC

Non-Convex Optimization in Machine Learning. Jan Mrkos AIC Non-Convex Optimization in Machine Learning Jan Mrkos AIC The Plan 1. Introduction 2. Non convexity 3. (Some) optimization approaches 4. Speed and stuff? Neural net universal approximation Theorem (1989):

More information

Neural Networks. Mark van Rossum. January 15, School of Informatics, University of Edinburgh 1 / 28

Neural Networks. Mark van Rossum. January 15, School of Informatics, University of Edinburgh 1 / 28 1 / 28 Neural Networks Mark van Rossum School of Informatics, University of Edinburgh January 15, 2018 2 / 28 Goals: Understand how (recurrent) networks behave Find a way to teach networks to do a certain

More information

Greedy Layer-Wise Training of Deep Networks

Greedy Layer-Wise Training of Deep Networks Greedy Layer-Wise Training of Deep Networks Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle NIPS 2007 Presented by Ahmed Hefny Story so far Deep neural nets are more expressive: Can learn

More information

Deep unsupervised learning

Deep unsupervised learning Deep unsupervised learning Advanced data-mining Yongdai Kim Department of Statistics, Seoul National University, South Korea Unsupervised learning In machine learning, there are 3 kinds of learning paradigm.

More information

Plan. Perceptron Linear discriminant. Associative memories Hopfield networks Chaotic networks. Multilayer perceptron Backpropagation

Plan. Perceptron Linear discriminant. Associative memories Hopfield networks Chaotic networks. Multilayer perceptron Backpropagation Neural Networks Plan Perceptron Linear discriminant Associative memories Hopfield networks Chaotic networks Multilayer perceptron Backpropagation Perceptron Historically, the first neural net Inspired

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Statistical Learning Theory. Part I 5. Deep Learning

Statistical Learning Theory. Part I 5. Deep Learning Statistical Learning Theory Part I 5. Deep Learning Sumio Watanabe Tokyo Institute of Technology Review : Supervised Learning Training Data X 1, X 2,, X n q(x,y) =q(x)q(y x) Information Source Y 1, Y 2,,

More information

COMP9444 Neural Networks and Deep Learning 11. Boltzmann Machines. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 11. Boltzmann Machines. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 11. Boltzmann Machines COMP9444 17s2 Boltzmann Machines 1 Outline Content Addressable Memory Hopfield Network Generative Models Boltzmann Machine Restricted Boltzmann

More information

Index. Santanu Pattanayak 2017 S. Pattanayak, Pro Deep Learning with TensorFlow,

Index. Santanu Pattanayak 2017 S. Pattanayak, Pro Deep Learning with TensorFlow, Index A Activation functions, neuron/perceptron binary threshold activation function, 102 103 linear activation function, 102 rectified linear unit, 106 sigmoid activation function, 103 104 SoftMax activation

More information

PATTERN CLASSIFICATION

PATTERN CLASSIFICATION PATTERN CLASSIFICATION Second Edition Richard O. Duda Peter E. Hart David G. Stork A Wiley-lnterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

Reading Group on Deep Learning Session 4 Unsupervised Neural Networks

Reading Group on Deep Learning Session 4 Unsupervised Neural Networks Reading Group on Deep Learning Session 4 Unsupervised Neural Networks Jakob Verbeek & Daan Wynen 206-09-22 Jakob Verbeek & Daan Wynen Unsupervised Neural Networks Outline Autoencoders Restricted) Boltzmann

More information

Unsupervised Neural Nets

Unsupervised Neural Nets Unsupervised Neural Nets (and ICA) Lyle Ungar (with contributions from Quoc Le, Socher & Manning) Lyle Ungar, University of Pennsylvania Semi-Supervised Learning Hypothesis:%P(c x)%can%be%more%accurately%computed%using%

More information

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning Lecture 0 Neural networks and optimization Machine Learning and Data Mining November 2009 UBC Gradient Searching for a good solution can be interpreted as looking for a minimum of some error (loss) function

More information

Deep Neural Networks

Deep Neural Networks Deep Neural Networks DT2118 Speech and Speaker Recognition Giampiero Salvi KTH/CSC/TMH giampi@kth.se VT 2015 1 / 45 Outline State-to-Output Probability Model Artificial Neural Networks Perceptron Multi

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari Deep Belief Nets Sargur N. Srihari srihari@cedar.buffalo.edu Topics 1. Boltzmann machines 2. Restricted Boltzmann machines 3. Deep Belief Networks 4. Deep Boltzmann machines 5. Boltzmann machines for continuous

More information

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight)

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight) CSCE 636 Neural Networks Instructor: Yoonsuck Choe Deep Learning What Is Deep Learning? Learning higher level abstractions/representations from data. Motivation: how the brain represents sensory information

More information

How to do backpropagation in a brain

How to do backpropagation in a brain How to do backpropagation in a brain Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto & Google Inc. Prelude I will start with three slides explaining a popular type of deep

More information

Lecture 14: Deep Generative Learning

Lecture 14: Deep Generative Learning Generative Modeling CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 14: Deep Generative Learning Density estimation Reconstructing probability density function using samples Bohyung Han

More information

Course Structure. Psychology 452 Week 12: Deep Learning. Chapter 8 Discussion. Part I: Deep Learning: What and Why? Rufus. Rufus Processed By Fetch

Course Structure. Psychology 452 Week 12: Deep Learning. Chapter 8 Discussion. Part I: Deep Learning: What and Why? Rufus. Rufus Processed By Fetch Psychology 452 Week 12: Deep Learning What Is Deep Learning? Preliminary Ideas (that we already know!) The Restricted Boltzmann Machine (RBM) Many Layers of RBMs Pros and Cons of Deep Learning Course Structure

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight)

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight) CSCE 636 Neural Networks Instructor: Yoonsuck Choe Deep Learning What Is Deep Learning? Learning higher level abstractions/representations from data. Motivation: how the brain represents sensory information

More information

Learning Deep Architectures for AI. Part II - Vijay Chakilam

Learning Deep Architectures for AI. Part II - Vijay Chakilam Learning Deep Architectures for AI - Yoshua Bengio Part II - Vijay Chakilam Limitations of Perceptron x1 W, b 0,1 1,1 y x2 weight plane output =1 output =0 There is no value for W and b such that the model

More information

Restricted Boltzmann Machines for Collaborative Filtering

Restricted Boltzmann Machines for Collaborative Filtering Restricted Boltzmann Machines for Collaborative Filtering Authors: Ruslan Salakhutdinov Andriy Mnih Geoffrey Hinton Benjamin Schwehn Presentation by: Ioan Stanculescu 1 Overview The Netflix prize problem

More information

Statistical Machine Learning (BE4M33SSU) Lecture 5: Artificial Neural Networks

Statistical Machine Learning (BE4M33SSU) Lecture 5: Artificial Neural Networks Statistical Machine Learning (BE4M33SSU) Lecture 5: Artificial Neural Networks Jan Drchal Czech Technical University in Prague Faculty of Electrical Engineering Department of Computer Science Topics covered

More information

Machine Learning. Neural Networks

Machine Learning. Neural Networks Machine Learning Neural Networks Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 Biological Analogy Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 THE

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Regularization in Neural Networks

Regularization in Neural Networks Regularization in Neural Networks Sargur Srihari 1 Topics in Neural Network Regularization What is regularization? Methods 1. Determining optimal number of hidden units 2. Use of regularizer in error function

More information

Hopfield Networks and Boltzmann Machines. Christian Borgelt Artificial Neural Networks and Deep Learning 296

Hopfield Networks and Boltzmann Machines. Christian Borgelt Artificial Neural Networks and Deep Learning 296 Hopfield Networks and Boltzmann Machines Christian Borgelt Artificial Neural Networks and Deep Learning 296 Hopfield Networks A Hopfield network is a neural network with a graph G = (U,C) that satisfies

More information

Neural networks. Chapter 20, Section 5 1

Neural networks. Chapter 20, Section 5 1 Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Unsupervised Learning

Unsupervised Learning CS 3750 Advanced Machine Learning hkc6@pitt.edu Unsupervised Learning Data: Just data, no labels Goal: Learn some underlying hidden structure of the data P(, ) P( ) Principle Component Analysis (Dimensionality

More information

Part 2. Representation Learning Algorithms

Part 2. Representation Learning Algorithms 53 Part 2 Representation Learning Algorithms 54 A neural network = running several logistic regressions at the same time If we feed a vector of inputs through a bunch of logis;c regression func;ons, then

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

Neural networks. Chapter 20. Chapter 20 1

Neural networks. Chapter 20. Chapter 20 1 Neural networks Chapter 20 Chapter 20 1 Outline Brains Neural networks Perceptrons Multilayer networks Applications of neural networks Chapter 20 2 Brains 10 11 neurons of > 20 types, 10 14 synapses, 1ms

More information

Learning to Disentangle Factors of Variation with Manifold Learning

Learning to Disentangle Factors of Variation with Manifold Learning Learning to Disentangle Factors of Variation with Manifold Learning Scott Reed Kihyuk Sohn Yuting Zhang Honglak Lee University of Michigan, Department of Electrical Engineering and Computer Science 08

More information

CSC321 Lecture 20: Autoencoders

CSC321 Lecture 20: Autoencoders CSC321 Lecture 20: Autoencoders Roger Grosse Roger Grosse CSC321 Lecture 20: Autoencoders 1 / 16 Overview Latent variable models so far: mixture models Boltzmann machines Both of these involve discrete

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Week 2: Latent Variable Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

Artificial Neural Networks. MGS Lecture 2

Artificial Neural Networks. MGS Lecture 2 Artificial Neural Networks MGS 2018 - Lecture 2 OVERVIEW Biological Neural Networks Cell Topology: Input, Output, and Hidden Layers Functional description Cost functions Training ANNs Back-Propagation

More information

Statistical learning. Chapter 20, Sections 1 4 1

Statistical learning. Chapter 20, Sections 1 4 1 Statistical learning Chapter 20, Sections 1 4 Chapter 20, Sections 1 4 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Neural Networks Lecture 4: Radial Bases Function Networks

Neural Networks Lecture 4: Radial Bases Function Networks Neural Networks Lecture 4: Radial Bases Function Networks H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011. A. Talebi, Farzaneh Abdollahi

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information

Variational Autoencoders

Variational Autoencoders Variational Autoencoders Recap: Story so far A classification MLP actually comprises two components A feature extraction network that converts the inputs into linearly separable features Or nearly linearly

More information

Robust Classification using Boltzmann machines by Vasileios Vasilakakis

Robust Classification using Boltzmann machines by Vasileios Vasilakakis Robust Classification using Boltzmann machines by Vasileios Vasilakakis The scope of this report is to propose an architecture of Boltzmann machines that could be used in the context of classification,

More information

Introduction to Restricted Boltzmann Machines

Introduction to Restricted Boltzmann Machines Introduction to Restricted Boltzmann Machines Ilija Bogunovic and Edo Collins EPFL {ilija.bogunovic,edo.collins}@epfl.ch October 13, 2014 Introduction Ingredients: 1. Probabilistic graphical models (undirected,

More information

Natural Gradient Learning for Over- and Under-Complete Bases in ICA

Natural Gradient Learning for Over- and Under-Complete Bases in ICA NOTE Communicated by Jean-François Cardoso Natural Gradient Learning for Over- and Under-Complete Bases in ICA Shun-ichi Amari RIKEN Brain Science Institute, Wako-shi, Hirosawa, Saitama 351-01, Japan Independent

More information

Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning

Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning Nicolas Thome Prenom.Nom@cnam.fr http://cedric.cnam.fr/vertigo/cours/ml2/ Département Informatique Conservatoire

More information

Machine Learning Lecture 5

Machine Learning Lecture 5 Machine Learning Lecture 5 Linear Discriminant Functions 26.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory

More information

Deep Learning: a gentle introduction

Deep Learning: a gentle introduction Deep Learning: a gentle introduction Jamal Atif jamal.atif@dauphine.fr PSL, Université Paris-Dauphine, LAMSADE February 8, 206 Jamal Atif (Université Paris-Dauphine) Deep Learning February 8, 206 / Why

More information

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), April 2003, d-side publi., ISBN X, pp.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), April 2003, d-side publi., ISBN X, pp. On different ensembles of kernel machines Michiko Yamana, Hiroyuki Nakahara, Massimiliano Pontil, and Shun-ichi Amari Λ Abstract. We study some ensembles of kernel machines. Each machine is first trained

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 8 Continuous Latent Variable

More information

1. A discrete-time recurrent network is described by the following equation: y(n + 1) = A y(n) + B x(n)

1. A discrete-time recurrent network is described by the following equation: y(n + 1) = A y(n) + B x(n) Neuro-Fuzzy, Revision questions June, 25. A discrete-time recurrent network is described by the following equation: y(n + ) = A y(n) + B x(n) where A =.7.5.4.6, B = 2 (a) Sketch the dendritic and signal-flow

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes CS 6501: Deep Learning for Computer Graphics Basics of Neural Networks Connelly Barnes Overview Simple neural networks Perceptron Feedforward neural networks Multilayer perceptron and properties Autoencoders

More information

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1).

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1). Regression and PCA Classification The goal: map from input X to a label Y. Y has a discrete set of possible values We focused on binary Y (values 0 or 1). But we also discussed larger number of classes

More information

Neural Networks. Hopfield Nets and Auto Associators Fall 2017

Neural Networks. Hopfield Nets and Auto Associators Fall 2017 Neural Networks Hopfield Nets and Auto Associators Fall 2017 1 Story so far Neural networks for computation All feedforward structures But what about.. 2 Loopy network Θ z = ቊ +1 if z > 0 1 if z 0 y i

More information

Error Empirical error. Generalization error. Time (number of iteration)

Error Empirical error. Generalization error. Time (number of iteration) Submitted to Neural Networks. Dynamics of Batch Learning in Multilayer Networks { Overrealizability and Overtraining { Kenji Fukumizu The Institute of Physical and Chemical Research (RIKEN) E-mail: fuku@brain.riken.go.jp

More information

Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method

Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method Antti Honkela 1, Stefan Harmeling 2, Leo Lundqvist 1, and Harri Valpola 1 1 Helsinki University of Technology,

More information

Deep Feedforward Networks. Seung-Hoon Na Chonbuk National University

Deep Feedforward Networks. Seung-Hoon Na Chonbuk National University Deep Feedforward Networks Seung-Hoon Na Chonbuk National University Neural Network: Types Feedforward neural networks (FNN) = Deep feedforward networks = multilayer perceptrons (MLP) No feedback connections

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011!

Artificial Neural Networks and Nonparametric Methods CMPSCI 383 Nov 17, 2011! Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011! 1 Todayʼs lecture" How the brain works (!)! Artificial neural networks! Perceptrons! Multilayer feed-forward networks! Error

More information

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts III-IV

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts III-IV Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts III-IV Aapo Hyvärinen Gatsby Unit University College London Part III: Estimation of unnormalized models Often,

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

= w 2. w 1. B j. A j. C + j1j2

= w 2. w 1. B j. A j. C + j1j2 Local Minima and Plateaus in Multilayer Neural Networks Kenji Fukumizu and Shun-ichi Amari Brain Science Institute, RIKEN Hirosawa 2-, Wako, Saitama 35-098, Japan E-mail: ffuku, amarig@brain.riken.go.jp

More information

CSC 411 Lecture 10: Neural Networks

CSC 411 Lecture 10: Neural Networks CSC 411 Lecture 10: Neural Networks Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 10-Neural Networks 1 / 35 Inspiration: The Brain Our brain has 10 11

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data January 17, 2006 Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Multi-Layer Perceptrons Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data January 17, 2006 Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Other Artificial Neural Networks Samy Bengio IDIAP Research Institute, Martigny, Switzerland,

More information

Immediate Reward Reinforcement Learning for Projective Kernel Methods

Immediate Reward Reinforcement Learning for Projective Kernel Methods ESANN'27 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), 25-27 April 27, d-side publi., ISBN 2-9337-7-2. Immediate Reward Reinforcement Learning for Projective Kernel Methods

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks Delivered by Mark Ebden With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable

More information

Deep Neural Networks

Deep Neural Networks Universidad Autónoma de Madrid Escuela Politécnica Superior - Departamento de Ingeniería Informática Facultad de Ciencias - Departamento de Matemáticas Deep Neural Networks Master s thesis presented to

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 Exam policy: This exam allows two one-page, two-sided cheat sheets (i.e. 4 sides); No other materials. Time: 2 hours. Be sure to write

More information

Lecture 4: Perceptrons and Multilayer Perceptrons

Lecture 4: Perceptrons and Multilayer Perceptrons Lecture 4: Perceptrons and Multilayer Perceptrons Cognitive Systems II - Machine Learning SS 2005 Part I: Basic Approaches of Concept Learning Perceptrons, Artificial Neuronal Networks Lecture 4: Perceptrons

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

Discriminative Learning of Sum-Product Networks. Robert Gens Pedro Domingos

Discriminative Learning of Sum-Product Networks. Robert Gens Pedro Domingos Discriminative Learning of Sum-Product Networks Robert Gens Pedro Domingos X1 X1 X1 X1 X2 X2 X2 X2 X3 X3 X3 X3 X4 X4 X4 X4 X5 X5 X5 X5 X6 X6 X6 X6 Distributions X 1 X 1 X 1 X 1 X 2 X 2 X 2 X 2 X 3 X 3

More information

Neural Networks. Bishop PRML Ch. 5. Alireza Ghane. Feed-forward Networks Network Training Error Backpropagation Applications

Neural Networks. Bishop PRML Ch. 5. Alireza Ghane. Feed-forward Networks Network Training Error Backpropagation Applications Neural Networks Bishop PRML Ch. 5 Alireza Ghane Neural Networks Alireza Ghane / Greg Mori 1 Neural Networks Neural networks arise from attempts to model human/animal brains Many models, many claims of

More information

Machine Learning Basics III

Machine Learning Basics III Machine Learning Basics III Benjamin Roth CIS LMU München Benjamin Roth (CIS LMU München) Machine Learning Basics III 1 / 62 Outline 1 Classification Logistic Regression 2 Gradient Based Optimization Gradient

More information

Kyle Reing University of Southern California April 18, 2018

Kyle Reing University of Southern California April 18, 2018 Renormalization Group and Information Theory Kyle Reing University of Southern California April 18, 2018 Overview Renormalization Group Overview Information Theoretic Preliminaries Real Space Mutual Information

More information

Speaker Representation and Verification Part II. by Vasileios Vasilakakis

Speaker Representation and Verification Part II. by Vasileios Vasilakakis Speaker Representation and Verification Part II by Vasileios Vasilakakis Outline -Approaches of Neural Networks in Speaker/Speech Recognition -Feed-Forward Neural Networks -Training with Back-propagation

More information

Lecture 5: Recurrent Neural Networks

Lecture 5: Recurrent Neural Networks 1/25 Lecture 5: Recurrent Neural Networks Nima Mohajerin University of Waterloo WAVE Lab nima.mohajerin@uwaterloo.ca July 4, 2017 2/25 Overview 1 Recap 2 RNN Architectures for Learning Long Term Dependencies

More information

Learning Energy-Based Models of High-Dimensional Data

Learning Energy-Based Models of High-Dimensional Data Learning Energy-Based Models of High-Dimensional Data Geoffrey Hinton Max Welling Yee-Whye Teh Simon Osindero www.cs.toronto.edu/~hinton/energybasedmodelsweb.htm Discovering causal structure as a goal

More information

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

Chapter 20. Deep Generative Models

Chapter 20. Deep Generative Models Peng et al.: Deep Learning and Practice 1 Chapter 20 Deep Generative Models Peng et al.: Deep Learning and Practice 2 Generative Models Models that are able to Provide an estimate of the probability distribution

More information

Introduction to Neural Networks

Introduction to Neural Networks CUONG TUAN NGUYEN SEIJI HOTTA MASAKI NAKAGAWA Tokyo University of Agriculture and Technology Copyright by Nguyen, Hotta and Nakagawa 1 Pattern classification Which category of an input? Example: Character

More information

Normalization Techniques

Normalization Techniques Normalization Techniques Devansh Arpit Normalization Techniques 1 / 39 Table of Contents 1 Introduction 2 Motivation 3 Batch Normalization 4 Normalization Propagation 5 Weight Normalization 6 Layer Normalization

More information

Local minima and plateaus in hierarchical structures of multilayer perceptrons

Local minima and plateaus in hierarchical structures of multilayer perceptrons Neural Networks PERGAMON Neural Networks 13 (2000) 317 327 Contributed article Local minima and plateaus in hierarchical structures of multilayer perceptrons www.elsevier.com/locate/neunet K. Fukumizu*,

More information

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26 Clustering Professor Ameet Talwalkar Professor Ameet Talwalkar CS26 Machine Learning Algorithms March 8, 217 1 / 26 Outline 1 Administration 2 Review of last lecture 3 Clustering Professor Ameet Talwalkar

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

A summary of Deep Learning without Poor Local Minima

A summary of Deep Learning without Poor Local Minima A summary of Deep Learning without Poor Local Minima by Kenji Kawaguchi MIT oral presentation at NIPS 2016 Learning Supervised (or Predictive) learning Learn a mapping from inputs x to outputs y, given

More information

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References 24th March 2011 Update Hierarchical Model Rao and Ballard (1999) presented a hierarchical model of visual cortex to show how classical and extra-classical Receptive Field (RF) effects could be explained

More information