Searching for simple models

Size: px
Start display at page:

Download "Searching for simple models"

Transcription

1 Searching for simple models 9th Annual Pinkel Endowed Lecture Institute for Research in Cognitive Science University of Pennsylvania Friday April 7 William Bialek Joseph Henry Laboratories of Physics, and Lewis-Sigler Institute for Integrative Genomics Princeton University

2 When we think about (and act upon) the things that we see (and hear, and...), we put them into categories all images from Design Within Reach (

3 g stools office chairs dining chairs benches lounge chairs

4 In the dark of night, vision is based on signals (only) from the rod photoreceptor cells !.5!!.5! !.5!!.5! consider the responses to dim flashes of light.5.5.5!.5!!.5! !.5!.5.5!.5!.5!.5! !.5!!.5! !.5.5! !.5!!.5.5.5!.5!!.5.5!.5! !.5!!.5! !.5!!.5! !.5! !.5!!.5! !.5!.5.5!.5! !.5! !.5!!.5! !.5!!.5! !.5!!.5! ~ microns salamander rods (not that it really matters) rod image and current data from FM Rieke salamander image from MJ Berry II The brain has the problem of categorizing these responses!

5 Remember Hecht, Shlaer & Pirenne! Energy, quanta and vision, J Gen Physiol 5, 89 (94) probability of seeing Hecht Shlaer Pirenne K=6 (inferred) mean number of photons at the retina x-axis is proportional to light intensity of stimulus flash solid line is model where observer sees when more than K photons are counted at the retina... distribution of counts determined by physics of the light source in this regime, our visual perception is controlled by the random arrival of individual photons at the retina categories of rod cell response should correspond to zero, one, two... photons try to categorize based simply on current at peak time probability density (/pa) photons? photon!! current at t peak (pa) photons this gives the right idea, but simplest approach leaves substantial ambiguities (?) is there a better strategy??

6 Raw data for categorization is the current I(t) many time points = many dimensions better categories = better boundaries in this multi-dimensional space predicted bipolar response measured bipolar response try planar boundaries: decisions with output of a linear filter best filter determined by signal and noise properties of the rods themselves normalized voltage.4 photons measured rod (voltage) response. probability density (/pa) optimal filter resolves almost all ambiguity photon!! photons..5. time after light flash (seconds) if there is a unique optimal filtering strategy for processing the rod cell signals, the retina should use this strategy... this is a parameter free prediction! Optimal filtering in the salamander retina. F Rieke, WG Owen & W Bialek, in Advances in Neural Information Processing, R Lippman, J Moody & D Touretzky, eds, pp 77-8 (Morgan Kaufmann, San Mateo CA, 99).

7 categorizing rod responses might be analogous to categorizing images of chairs but sometimes simpler animals actually have to solve the same problem that we do not as different as Mr Larson thinks

8 place a small wire in the back of the fly s head to listen in on the electrical signals from nerve cells that respond to movement The fly has to solve (at least) two problems:! estimate motion from the movie on the retina, and represent or encode the result in the sequence of spikes Optimization principles (as with optimal filtering above): estimates as accurate as possible coding in spikes should be matched to input signals Spikes: Exploring the Neural code F Rieke, D Warland, RR de Ruyter van Steveninck & WB (MIT Press, 997) focus will be on extracting a feature rather than building its representation, i.e., estimation theory not information theory (maybe a mistake for this talk)

9 does the fly make accurate estimates of motion? we can get at this by decoding the spikes from the motion sensitive neurons then look at the power spectrum of errors in the reconstructed signal F ( τ) S(ω) N (ω) N min (ω) v est (t) = i F (t t i ) Reading a neural code WB, F Rieke, RR de Ruyter van Steveninck & D Warland Science 5, 854 (99) compare with the minimum level of errors set by diffraction blur and photoreceptor noise (includes averaging over ~ receptors!) fly approaches optimal estimation on short time scales (high frequencies) that actually matter for behavior

10 What computation must the fly do in order to achieve optimal motion estimates? motion estimation takes photoreceptor signals as inputs (not velocity!) after several layers of processing... output is an estimate of velocity we can actually solve the optimal estimation problem in some limiting cases (also need hypotheses about the statistical structure of the world) Statistical mechanics and visual signal processing M Potters & WB, J Phys I France 4, 755 (994) at high signal-to-noise ratios, velocity is just the ratio of temporal and spatial derivatives v est (t) i (dv i/dt) (V i V i+ ) constant + i (V i V i+ ) V/ t V/ x at low signal-to-noise ratios, the only reliable velocity signal is spatiotemporal correlation v est (t) ij dτ dτ V i (t τ)k ij (τ, τ )V j (t τ ) + optimal estimation always is a tradeoff between systematic and random errors (think about averaging over time in the lab!) the optimal estimator is not perfect... and can even see motion when nothing moves visual stimuli from RR de Ruyter van Steveninck (flies see it move too!) can go further with random stimuli to dissect the computation Features and dimensions: Motion estimation in fly vision WB & RR de Ruyter van Steveninck, (5)

11 Almost everything interesting that the brain does involves LOTS of neurons How do we think about these networks as a whole? Imagine slicing time into little windows, like the frames of a movie. In each frame, each cell either spikes, or it doesn t. a moment ago now a moment later neuron # spike no spike no spike neuron # no spike spike no spike neuron # spike no spike spike neuron # 4 no spike no spike spike New experimental methods make it possible to listen in on many neurons at once (MJ Berry II). neuron #5 no spike spike no spike neuron # 6 no spike no spike spike neuron # 7 no spike spike no spike neuron # 8 spike no spike no spike neuron # 9 no spike no spike no spike neuron # no spike spike spike states of the network: these cells from a salamander retina (not crucial, but cute) These are the words with which the retina tells the brain what we see! How big is the vocabulary? cells = 4 possible words cells =,67,65,6,8,9,45,44,4,7,84 possible words

12 An important insight from theory: If it really is as complicated as it possibly could be, you ll never understand it. Progress = Simplification Simplifying hypothesis #: cells cooperate, but only talk to each other by... collective actions emerge from all pairwise discussions. Simplifying hypothesis #: every cell does its thing independently of all the others. works surprisingly well if you look just at pairs of cells # of cell pairs % correlation independent model experiments! probability fails dramatically if you look at 4 cells (or in detail at cells) / /, one in a million (C Boutin & J Jameson, Princeton Weekly Bulletin, May, 6) 5 5 # of cells that spike together Simplifying hypothesis #: if cells spike together, there must be something special about those cells... (actually, not a simplification). Take seriously the weak correlations among many pairs (compare w/cortex!). Build the least structured model consistent with these correlations. (least structured = maximum entropy) Weak pairwise correlations imply strongly correlated network states in a neural population E Schneidman, MJ Berry II, R Segev & WB, Nature 44, 7 (6).

13 The model we are looking for (minimal structure to match the pairwise correlations) is exactly the Ising model in statistical mechanics. σ i = + neuron i fires a spike σ i = neuron i is silent state of entire network: σ, σ,, σ N {σ i } distribution of network states (words) P (σ, σ,, σ N ) = Z exp h i σ i + J ij σ i σ j i i j for N= we can check the whole distribution! entropy if N neurons are independent Entropy scale Max ent model captures ~9% of the structure max ent given pair correlations actual entropy independent neurons (suggested by weak correlations) pairwise (Ising) model But this is also the Hopfield model of memory! Are there stored patterns?

14 Moving to larger networks opens a much richer structure! with N=4 neurons we have multiple ground states (=stored patterns) network returns to the same basin of attraction when we play the movie again, even if microstate is different observed groups of cells are typical of ensembles generated by drawing means and correlations at random from observed distribution... suggests extrapolation to larger N model from real data can be thought of as being at temperature T= study specific heat vs T (integrate to get entropy) is the system poised near a critical point? (test via adaptation expt!) Ising models for networks of real neurons G Tkacik, E Schneidman, MJ Berry II & WB, (6)

15 How seriously should you take these maximum entropy models? Can we use them to describe more complex phenomena? Try words as networks of letters! one year of Reuters articles (~9 million words) choose 5 most common words select the subset of four letter words (66 distinct words) 4 full probability distribution has (6) ~ half a million elements max ent model consistent with pairwise correlations has ~ 6x(6) ~ 4 parameters, x fewer (!) recall that spelling rules have a very combinatorial feel... if all letters used equally, entropy = 4xlog (6) = 8.8 bits taking account of letter frequencies, entropy of independent letters = 4.59 bits entropy of actual distribution = 7.4 bits so, multi-information = 7.7 bits max-ent model captures 6. bits, or ~87% of the structure inevitably, the model assigns nonzero probability to words not seen in the data... (remember the data are limited to 5 most common words) rite, hove, rase, lost, hive, mave, wark, whet, lise, tame, leat, fave, tike, pall, meek, nate, mast, hale, sime, gave, tome,... Toward a statistical mechanics of four letter words, GJ Stephens & WB, in progress (6).

16 What problem is the brain solving? classification (e.g., rod responses) estimating a feature (e.g., motion)... in many (simple) cases, there is evidence for near-optimal performance (many examples I didn t discuss) if we take this seriously, we have a theory of what the brain should compute; key qualitative prediction is context dependence but: why these features? (laundry list problem) is there a unifying theme for the problems that the brain solves well? are all the problems really the problem of prediction? How do neurons cooperate in networks? common observation is that pairs of neurons are only weakly correlated or anti-correlated but there are LOTS of pairs from (simple) statistical mechanics models: if all pairs interact, weak is <</N, not << minimally structured models consistent with weak correlations predict dramatic collective states: memories, critical points... (exotica implied by modest phenomena!) how do we connect network dynamics and computational function? maybe: predictive information is maximal at critical points...

encoding and estimation bottleneck and limits to visual fidelity

encoding and estimation bottleneck and limits to visual fidelity Retina Light Optic Nerve photoreceptors encoding and estimation bottleneck and limits to visual fidelity interneurons ganglion cells light The Neural Coding Problem s(t) {t i } Central goals for today:

More information

Optimal Filtering in the Salamander Retina

Optimal Filtering in the Salamander Retina Optimal Filtering in the Salamander Retina Fred Riekea,c, W. Geoffrey Owenb and William Bialeka,b,c Departments of Physicsa and Molecular and Cell Biologyb University of California Berkeley, California

More information

Information Theory. Mark van Rossum. January 24, School of Informatics, University of Edinburgh 1 / 35

Information Theory. Mark van Rossum. January 24, School of Informatics, University of Edinburgh 1 / 35 1 / 35 Information Theory Mark van Rossum School of Informatics, University of Edinburgh January 24, 2018 0 Version: January 24, 2018 Why information theory 2 / 35 Understanding the neural code. Encoding

More information

Do Neurons Process Information Efficiently?

Do Neurons Process Information Efficiently? Do Neurons Process Information Efficiently? James V Stone, University of Sheffield Claude Shannon, 1916-2001 Nothing in biology makes sense except in the light of evolution. Theodosius Dobzhansky, 1973.

More information

The homogeneous Poisson process

The homogeneous Poisson process The homogeneous Poisson process during very short time interval Δt there is a fixed probability of an event (spike) occurring independent of what happened previously if r is the rate of the Poisson process,

More information

Membrane equation. VCl. dv dt + V = V Na G Na + V K G K + V Cl G Cl. G total. C m. G total = G Na + G K + G Cl

Membrane equation. VCl. dv dt + V = V Na G Na + V K G K + V Cl G Cl. G total. C m. G total = G Na + G K + G Cl Spiking neurons Membrane equation V GNa GK GCl Cm VNa VK VCl dv dt + V = V Na G Na + V K G K + V Cl G Cl G total G total = G Na + G K + G Cl = C m G total Membrane with synaptic inputs V Gleak GNa GK

More information

Transformation of stimulus correlations by the retina

Transformation of stimulus correlations by the retina Transformation of stimulus correlations by the retina Kristina Simmons (University of Pennsylvania) and Jason Prentice, (now Princeton University) with Gasper Tkacik (IST Austria) Jan Homann (now Princeton

More information

Analyzing large-scale spike trains data with spatio-temporal constraints

Analyzing large-scale spike trains data with spatio-temporal constraints Author manuscript, published in "NeuroComp/KEOpS'12 workshop beyond the retina: from computational models to outcomes in bioengineering. Focus on architecture and dynamics sustaining information flows

More information

Brains and Computation

Brains and Computation 15-883: Computational Models of Neural Systems Lecture 1.1: Brains and Computation David S. Touretzky Computer Science Department Carnegie Mellon University 1 Models of the Nervous System Hydraulic network

More information

arxiv:physics/ v1 [physics.data-an] 7 Jun 2003

arxiv:physics/ v1 [physics.data-an] 7 Jun 2003 Entropy and information in neural spike trains: Progress on the sampling problem arxiv:physics/0306063v1 [physics.data-an] 7 Jun 2003 Ilya Nemenman, 1 William Bialek, 2 and Rob de Ruyter van Steveninck

More information

BASIC VISUAL SCIENCE CORE

BASIC VISUAL SCIENCE CORE BASIC VISUAL SCIENCE CORE Absolute and Increment Thresholds Ronald S. Harwerth Fall, 2016 1. Psychophysics of Vision 2. Light and Dark Adaptation Michael Kalloniatis and Charles Luu 1 The Neuron Doctrine

More information

4.2 Entropy lost and information gained

4.2 Entropy lost and information gained 4.2. ENTROPY LOST AND INFORMATION GAINED 101 4.2 Entropy lost and information gained Returning to the conversation between Max and Allan, we assumed that Max would receive a complete answer to his question,

More information

arxiv:q-bio/ v1 [q-bio.nc] 2 May 2005

arxiv:q-bio/ v1 [q-bio.nc] 2 May 2005 Features and dimensions: Motion estimation in fly vision William Bialek a and Rob R. de Ruyter van Steveninck b a Joseph Henry Laboratories of Physics, b Department of Molecular Biology, and the Lewis

More information

Analyzing large-scale spike trains data with spatio-temporal constraints

Analyzing large-scale spike trains data with spatio-temporal constraints Analyzing large-scale spike trains data with spatio-temporal constraints Hassan Nasser, Olivier Marre, Selim Kraria, Thierry Viéville, Bruno Cessac To cite this version: Hassan Nasser, Olivier Marre, Selim

More information

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1)

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Lecture 6 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2015 1 Chapter 2 remnants 2 Receptive field:

More information

Adaptation in the Neural Code of the Retina

Adaptation in the Neural Code of the Retina Adaptation in the Neural Code of the Retina Lens Retina Fovea Optic Nerve Optic Nerve Bottleneck Neurons Information Receptors: 108 95% Optic Nerve 106 5% After Polyak 1941 Visual Cortex ~1010 Mean Intensity

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Features and dimensions: Motion estimation in fly vision

Features and dimensions: Motion estimation in fly vision Features and dimensions: Motion estimation in fly vision William Bialek a and Rob R. de Ruyter van Steveninck b a Joseph Henry Laboratories of Physics, and Lewis Sigler Institute for Integrative Genomics

More information

Bayesian probability theory and generative models

Bayesian probability theory and generative models Bayesian probability theory and generative models Bruno A. Olshausen November 8, 2006 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using

More information

arxiv:cond-mat/ v2 27 Jun 1997

arxiv:cond-mat/ v2 27 Jun 1997 Entropy and Information in Neural Spike rains Steven P. Strong, 1 Roland Koberle, 1,2 Rob R. de Ruyter van Steveninck, 1 and William Bialek 1 1 NEC Research Institute, 4 Independence Way, Princeton, New

More information

Estimation of information-theoretic quantities

Estimation of information-theoretic quantities Estimation of information-theoretic quantities Liam Paninski Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/ liam liam@gatsby.ucl.ac.uk November 16, 2004 Some

More information

Learning the collective dynamics of complex biological systems. from neurons to animal groups. Thierry Mora

Learning the collective dynamics of complex biological systems. from neurons to animal groups. Thierry Mora Learning the collective dynamics of complex biological systems from neurons to animal groups Thierry Mora Università Sapienza Rome A. Cavagna I. Giardina O. Pohl E. Silvestri M. Viale Aberdeen University

More information

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011 Crab cam (Barlow et al., 2001) self inhibition recurrent inhibition lateral inhibition - L16. Neural processing in Linear Systems: Temporal and Spatial Filtering C. D. Hopkins Sept. 21, 2011 The Neural

More information

RESEARCH STATEMENT. Nora Youngs, University of Nebraska - Lincoln

RESEARCH STATEMENT. Nora Youngs, University of Nebraska - Lincoln RESEARCH STATEMENT Nora Youngs, University of Nebraska - Lincoln 1. Introduction Understanding how the brain encodes information is a major part of neuroscience research. In the field of neural coding,

More information

1/12/2017. Computational neuroscience. Neurotechnology.

1/12/2017. Computational neuroscience. Neurotechnology. Computational neuroscience Neurotechnology https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/ 1 Neurotechnology http://www.lce.hut.fi/research/cogntech/neurophysiology Recording

More information

Hopfield Neural Network and Associative Memory. Typical Myelinated Vertebrate Motoneuron (Wikipedia) Topic 3 Polymers and Neurons Lecture 5

Hopfield Neural Network and Associative Memory. Typical Myelinated Vertebrate Motoneuron (Wikipedia) Topic 3 Polymers and Neurons Lecture 5 Hopfield Neural Network and Associative Memory Typical Myelinated Vertebrate Motoneuron (Wikipedia) PHY 411-506 Computational Physics 2 1 Wednesday, March 5 1906 Nobel Prize in Physiology or Medicine.

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Intro to Learning Theory Date: 12/8/16

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Intro to Learning Theory Date: 12/8/16 600.463 Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Intro to Learning Theory Date: 12/8/16 25.1 Introduction Today we re going to talk about machine learning, but from an

More information

Solving with Absolute Value

Solving with Absolute Value Solving with Absolute Value Who knew two little lines could cause so much trouble? Ask someone to solve the equation 3x 2 = 7 and they ll say No problem! Add just two little lines, and ask them to solve

More information

Efficient representation as a design principle for neural coding and computation

Efficient representation as a design principle for neural coding and computation Efficient representation as a design principle for neural coding and computation William Bialek, a Rob R. de Ruyter van Steveninck b and Naftali Tishby c a Joseph Henry Laboratories of Physics, Lewis Sigler

More information

Do students sleep the recommended 8 hours a night on average?

Do students sleep the recommended 8 hours a night on average? BIEB100. Professor Rifkin. Notes on Section 2.2, lecture of 27 January 2014. Do students sleep the recommended 8 hours a night on average? We first set up our null and alternative hypotheses: H0: μ= 8

More information

In other words, we are interested in what is happening to the y values as we get really large x values and as we get really small x values.

In other words, we are interested in what is happening to the y values as we get really large x values and as we get really small x values. Polynomial functions: End behavior Solutions NAME: In this lab, we are looking at the end behavior of polynomial graphs, i.e. what is happening to the y values at the (left and right) ends of the graph.

More information

Resonance and response

Resonance and response Chapter 2 Resonance and response Last updated September 20, 2008 In this section of the course we begin with a very simple system a mass hanging from a spring and see how some remarkable ideas emerge.

More information

The Philosophy of Physics. Is Space Absolute or Relational?

The Philosophy of Physics. Is Space Absolute or Relational? The Philosophy of Physics Lecture Two Is Space Absolute or Relational? Rob Trueman rob.trueman@york.ac.uk University of York Newton s Absolute Motion and Acceleration Is Space Absolute or Relational? Newton

More information

Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay. Lecture - 15 Momentum Energy Four Vector

Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay. Lecture - 15 Momentum Energy Four Vector Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay Lecture - 15 Momentum Energy Four Vector We had started discussing the concept of four vectors.

More information

SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017

SPIKE TRIGGERED APPROACHES. Odelia Schwartz Computational Neuroscience Course 2017 SPIKE TRIGGERED APPROACHES Odelia Schwartz Computational Neuroscience Course 2017 LINEAR NONLINEAR MODELS Linear Nonlinear o Often constrain to some form of Linear, Nonlinear computations, e.g. visual

More information

Ising models for neural activity inferred via Selective Cluster Expansion: structural and coding properties

Ising models for neural activity inferred via Selective Cluster Expansion: structural and coding properties Ising models for neural activity inferred via Selective Cluster Expansion: structural and coding properties John Barton,, and Simona Cocco Department of Physics, Rutgers University, Piscataway, NJ 8854

More information

Bayesian Inference. 2 CS295-7 cfl Michael J. Black,

Bayesian Inference. 2 CS295-7 cfl Michael J. Black, Population Coding Now listen to me closely, young gentlemen. That brain is thinking. Maybe it s thinking about music. Maybe it has a great symphony all thought out or a mathematical formula that would

More information

September 16, 2004 The NEURON Book: Chapter 2

September 16, 2004 The NEURON Book: Chapter 2 Chapter 2 The ing perspective This and the following chapter deal with concepts that are not NEURON-specific but instead pertain equally well to any tools used for neural ing. Why? In order to achieve

More information

Identification of Odors by the Spatiotemporal Dynamics of the Olfactory Bulb. Outline

Identification of Odors by the Spatiotemporal Dynamics of the Olfactory Bulb. Outline Identification of Odors by the Spatiotemporal Dynamics of the Olfactory Bulb Henry Greenside Department of Physics Duke University Outline Why think about olfaction? Crash course on neurobiology. Some

More information

Adaptive contrast gain control and information maximization $

Adaptive contrast gain control and information maximization $ Neurocomputing 65 66 (2005) 6 www.elsevier.com/locate/neucom Adaptive contrast gain control and information maximization $ Yuguo Yu a,, Tai Sing Lee b a Center for the Neural Basis of Cognition, Carnegie

More information

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 40 (2003) pp. 607 613 c International Academic Publishers Vol. 40, No. 5, November 15, 2003 Effects of Interactive Function Forms in a Self-Organized Critical Model

More information

Temporal filtering in retinal bipolar cells

Temporal filtering in retinal bipolar cells Temporal filtering in retinal bipolar cells Elements of an optimal computation? William Bialek*t and W. Geoffrey Owen$ Departments of *Physics and tmolecular and Cell Biology, University of California

More information

Lesson 6-1: Relations and Functions

Lesson 6-1: Relations and Functions I ll bet you think numbers are pretty boring, don t you? I ll bet you think numbers have no life. For instance, numbers don t have relationships do they? And if you had no relationships, life would be

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Spatio-temporal correlations and visual signaling in a complete neuronal population Jonathan W. Pillow 1, Jonathon Shlens 2, Liam Paninski 3, Alexander Sher 4, Alan M. Litke 4,E.J.Chichilnisky 2, Eero

More information

CSC321 Lecture 16: ResNets and Attention

CSC321 Lecture 16: ResNets and Attention CSC321 Lecture 16: ResNets and Attention Roger Grosse Roger Grosse CSC321 Lecture 16: ResNets and Attention 1 / 24 Overview Two topics for today: Topic 1: Deep Residual Networks (ResNets) This is the state-of-the

More information

CS1800: Mathematical Induction. Professor Kevin Gold

CS1800: Mathematical Induction. Professor Kevin Gold CS1800: Mathematical Induction Professor Kevin Gold Induction: Used to Prove Patterns Just Keep Going For an algorithm, we may want to prove that it just keeps working, no matter how big the input size

More information

Mid Year Project Report: Statistical models of visual neurons

Mid Year Project Report: Statistical models of visual neurons Mid Year Project Report: Statistical models of visual neurons Anna Sotnikova asotniko@math.umd.edu Project Advisor: Prof. Daniel A. Butts dab@umd.edu Department of Biology Abstract Studying visual neurons

More information

Machine Learning. Neural Networks

Machine Learning. Neural Networks Machine Learning Neural Networks Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 Biological Analogy Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 THE

More information

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Anthony Trubiano April 11th, 2018 1 Introduction Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a probability

More information

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Jonathan Pillow HHMI and NYU http://www.cns.nyu.edu/~pillow Oct 5, Course lecture: Computational Modeling of Neuronal Systems

More information

7 Rate-Based Recurrent Networks of Threshold Neurons: Basis for Associative Memory

7 Rate-Based Recurrent Networks of Threshold Neurons: Basis for Associative Memory Physics 178/278 - David Kleinfeld - Fall 2005; Revised for Winter 2017 7 Rate-Based Recurrent etworks of Threshold eurons: Basis for Associative Memory 7.1 A recurrent network with threshold elements The

More information

213 Midterm coming up

213 Midterm coming up 213 Midterm coming up Monday April 8 @ 7 pm (conflict exam @ 5:15pm) Covers: Lectures 1-12 (not including thermal radiation) HW 1-4 Discussion 1-4 Labs 1-2 Review Session Sunday April 7, 3-5 PM, 141 Loomis

More information

Capacitors. Chapter How capacitors work Inside a capacitor

Capacitors. Chapter How capacitors work Inside a capacitor Chapter 6 Capacitors In every device we have studied so far sources, resistors, diodes and transistors the relationship between voltage and current depends only on the present, independent of the past.

More information

COMP 546. Lecture 21. Cochlea to brain, Source Localization. Tues. April 3, 2018

COMP 546. Lecture 21. Cochlea to brain, Source Localization. Tues. April 3, 2018 COMP 546 Lecture 21 Cochlea to brain, Source Localization Tues. April 3, 2018 1 Ear pinna auditory canal cochlea outer middle inner 2 Eye Ear Lens? Retina? Photoreceptors (light -> chemical) Ganglion cells

More information

Fisher Information Quantifies Task-Specific Performance in the Blowfly Photoreceptor

Fisher Information Quantifies Task-Specific Performance in the Blowfly Photoreceptor Fisher Information Quantifies Task-Specific Performance in the Blowfly Photoreceptor Peng Xu and Pamela Abshire Department of Electrical and Computer Engineering and the Institute for Systems Research

More information

CHAPTER 3. Pattern Association. Neural Networks

CHAPTER 3. Pattern Association. Neural Networks CHAPTER 3 Pattern Association Neural Networks Pattern Association learning is the process of forming associations between related patterns. The patterns we associate together may be of the same type or

More information

Learning Outcomes 2. Key Concepts 2. Misconceptions and Teaching Challenges 3. Vocabulary 4. Lesson and Content Overview 5

Learning Outcomes 2. Key Concepts 2. Misconceptions and Teaching Challenges 3. Vocabulary 4. Lesson and Content Overview 5 UNIT 1 GUIDE Table of Contents Learning Outcomes 2 Key Concepts 2 Misconceptions and Teaching Challenges 3 Vocabulary 4 Lesson and Content Overview 5 BIG HISTORY PROJECT / UNIT 1 GUIDE 1 Unit 1 What Is

More information

Multiple Testing. Gary W. Oehlert. January 28, School of Statistics University of Minnesota

Multiple Testing. Gary W. Oehlert. January 28, School of Statistics University of Minnesota Multiple Testing Gary W. Oehlert School of Statistics University of Minnesota January 28, 2016 Background Suppose that you had a 20-sided die. Nineteen of the sides are labeled 0 and one of the sides is

More information

Artificial Neural Networks. Q550: Models in Cognitive Science Lecture 5

Artificial Neural Networks. Q550: Models in Cognitive Science Lecture 5 Artificial Neural Networks Q550: Models in Cognitive Science Lecture 5 "Intelligence is 10 million rules." --Doug Lenat The human brain has about 100 billion neurons. With an estimated average of one thousand

More information

Physics 403. Segev BenZvi. Credible Intervals, Confidence Intervals, and Limits. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Credible Intervals, Confidence Intervals, and Limits. Department of Physics and Astronomy University of Rochester Physics 403 Credible Intervals, Confidence Intervals, and Limits Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Summarizing Parameters with a Range Bayesian

More information

1 Probabilities. 1.1 Basics 1 PROBABILITIES

1 Probabilities. 1.1 Basics 1 PROBABILITIES 1 PROBABILITIES 1 Probabilities Probability is a tricky word usually meaning the likelyhood of something occuring or how frequent something is. Obviously, if something happens frequently, then its probability

More information

Once Upon A Time, There Was A Certain Ludwig

Once Upon A Time, There Was A Certain Ludwig Once Upon A Time, There Was A Certain Ludwig Statistical Mechanics: Ensembles, Distributions, Entropy and Thermostatting Srinivas Mushnoori Chemical & Biochemical Engineering Rutgers, The State University

More information

Classification and Regression Trees

Classification and Regression Trees Classification and Regression Trees Ryan P Adams So far, we have primarily examined linear classifiers and regressors, and considered several different ways to train them When we ve found the linearity

More information

Replay argument. Abstract. Tanasije Gjorgoski Posted on on 03 April 2006

Replay argument. Abstract. Tanasije Gjorgoski Posted on  on 03 April 2006 Replay argument Tanasije Gjorgoski Posted on http://broodsphilosophy.wordpress.com/, on 03 April 2006 Abstract Before a year or so ago, I was trying to think of an example so I can properly communicate

More information

Learning the dynamics of biological networks

Learning the dynamics of biological networks Learning the dynamics of biological networks Thierry Mora ENS Paris A.Walczak Università Sapienza Rome A. Cavagna I. Giardina O. Pohl E. Silvestri M.Viale Aberdeen University F. Ginelli Laboratoire de

More information

7 Recurrent Networks of Threshold (Binary) Neurons: Basis for Associative Memory

7 Recurrent Networks of Threshold (Binary) Neurons: Basis for Associative Memory Physics 178/278 - David Kleinfeld - Winter 2019 7 Recurrent etworks of Threshold (Binary) eurons: Basis for Associative Memory 7.1 The network The basic challenge in associative networks, also referred

More information

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 206 Jonathan Pillow Homework 8: Logistic Regression & Information Theory Due: Tuesday, April 26, 9:59am Optimization Toolbox One

More information

Chapter 9: The Perceptron

Chapter 9: The Perceptron Chapter 9: The Perceptron 9.1 INTRODUCTION At this point in the book, we have completed all of the exercises that we are going to do with the James program. These exercises have shown that distributed

More information

CPSC 340: Machine Learning and Data Mining. MLE and MAP Fall 2017

CPSC 340: Machine Learning and Data Mining. MLE and MAP Fall 2017 CPSC 340: Machine Learning and Data Mining MLE and MAP Fall 2017 Assignment 3: Admin 1 late day to hand in tonight, 2 late days for Wednesday. Assignment 4: Due Friday of next week. Last Time: Multi-Class

More information

arxiv:physics/ v2 [physics.bio-ph] 9 Jul 2002

arxiv:physics/ v2 [physics.bio-ph] 9 Jul 2002 arxiv:physics/0205030v2 [physics.bio-ph] 9 Jul 2002 Thinking about the brain Based on lectures at Les Houches Session LXXV, July 2001 William Bialek NEC Research Institute, 4 Independence Way, Princeton,

More information

Lecture 11: Extrema. Nathan Pflueger. 2 October 2013

Lecture 11: Extrema. Nathan Pflueger. 2 October 2013 Lecture 11: Extrema Nathan Pflueger 2 October 201 1 Introduction In this lecture we begin to consider the notion of extrema of functions on chosen intervals. This discussion will continue in the lectures

More information

37-6 Watching the electrons (matter waves)

37-6 Watching the electrons (matter waves) 37-6 Watching the electrons (matter waves) 1 testing our proposition: the electrons go either through hole 1 or hole 2 add a very strong light source behind walls between two holes, electrons will scatter

More information

Computation in a single neuron: Hodgkin and Huxley revisited

Computation in a single neuron: Hodgkin and Huxley revisited Computation in a single neuron: Hodgkin and Huxley revisited Blaise Agüera y Arcas, 1 Adrienne L. Fairhall, 2,3 and William Bialek 2,4 1 Rare Books Library, Princeton University, Princeton, New Jersey

More information

Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment

Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment Neural coding Ecological approach to sensory coding: efficient adaptation to the natural environment Jean-Pierre Nadal CNRS & EHESS Laboratoire de Physique Statistique (LPS, UMR 8550 CNRS - ENS UPMC Univ.

More information

MITOCW ocw f99-lec01_300k

MITOCW ocw f99-lec01_300k MITOCW ocw-18.06-f99-lec01_300k Hi. This is the first lecture in MIT's course 18.06, linear algebra, and I'm Gilbert Strang. The text for the course is this book, Introduction to Linear Algebra. And the

More information

Nonlinear reverse-correlation with synthesized naturalistic noise

Nonlinear reverse-correlation with synthesized naturalistic noise Cognitive Science Online, Vol1, pp1 7, 2003 http://cogsci-onlineucsdedu Nonlinear reverse-correlation with synthesized naturalistic noise Hsin-Hao Yu Department of Cognitive Science University of California

More information

Probability and Independence Terri Bittner, Ph.D.

Probability and Independence Terri Bittner, Ph.D. Probability and Independence Terri Bittner, Ph.D. The concept of independence is often confusing for students. This brief paper will cover the basics, and will explain the difference between independent

More information

CMPSCI611: Three Divide-and-Conquer Examples Lecture 2

CMPSCI611: Three Divide-and-Conquer Examples Lecture 2 CMPSCI611: Three Divide-and-Conquer Examples Lecture 2 Last lecture we presented and analyzed Mergesort, a simple divide-and-conquer algorithm. We then stated and proved the Master Theorem, which gives

More information

Concerns of the Psychophysicist. Three methods for measuring perception. Yes/no method of constant stimuli. Detection / discrimination.

Concerns of the Psychophysicist. Three methods for measuring perception. Yes/no method of constant stimuli. Detection / discrimination. Three methods for measuring perception Concerns of the Psychophysicist. Magnitude estimation 2. Matching 3. Detection/discrimination Bias/ Attentiveness Strategy/Artifactual Cues History of stimulation

More information

AN ALGEBRA PRIMER WITH A VIEW TOWARD CURVES OVER FINITE FIELDS

AN ALGEBRA PRIMER WITH A VIEW TOWARD CURVES OVER FINITE FIELDS AN ALGEBRA PRIMER WITH A VIEW TOWARD CURVES OVER FINITE FIELDS The integers are the set 1. Groups, Rings, and Fields: Basic Examples Z := {..., 3, 2, 1, 0, 1, 2, 3,...}, and we can add, subtract, and multiply

More information

Introduction to MRI Acquisition

Introduction to MRI Acquisition Introduction to MRI Acquisition James Meakin FMRIB Physics Group FSL Course, Bristol, September 2012 1 What are we trying to achieve? 2 What are we trying to achieve? Informed decision making: Protocols

More information

Natural Image Statistics and Neural Representations

Natural Image Statistics and Neural Representations Natural Image Statistics and Neural Representations Michael Lewicki Center for the Neural Basis of Cognition & Department of Computer Science Carnegie Mellon University? 1 Outline 1. Information theory

More information

Chapter 2. Mathematical Reasoning. 2.1 Mathematical Models

Chapter 2. Mathematical Reasoning. 2.1 Mathematical Models Contents Mathematical Reasoning 3.1 Mathematical Models........................... 3. Mathematical Proof............................ 4..1 Structure of Proofs........................ 4.. Direct Method..........................

More information

Convolution and Linear Systems

Convolution and Linear Systems CS 450: Introduction to Digital Signal and Image Processing Bryan Morse BYU Computer Science Introduction Analyzing Systems Goal: analyze a device that turns one signal into another. Notation: f (t) g(t)

More information

Neuroscience Introduction

Neuroscience Introduction Neuroscience Introduction The brain As humans, we can identify galaxies light years away, we can study particles smaller than an atom. But we still haven t unlocked the mystery of the three pounds of matter

More information

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 15. Random Variables: Distributions, Independence, and Expectations

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 15. Random Variables: Distributions, Independence, and Expectations EECS 70 Discrete Mathematics and Probability Theory Fall 204 Anant Sahai Note 5 Random Variables: Distributions, Independence, and Expectations In the last note, we saw how useful it is to have a way of

More information

15-451/651: Design & Analysis of Algorithms September 13, 2018 Lecture #6: Streaming Algorithms last changed: August 30, 2018

15-451/651: Design & Analysis of Algorithms September 13, 2018 Lecture #6: Streaming Algorithms last changed: August 30, 2018 15-451/651: Design & Analysis of Algorithms September 13, 2018 Lecture #6: Streaming Algorithms last changed: August 30, 2018 Today we ll talk about a topic that is both very old (as far as computer science

More information

AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013

AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013 AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013 Lecturer: Dr. Mark Tame Introduction With the emergence of new types of information, in this case

More information

The World According to Wolfram

The World According to Wolfram The World According to Wolfram Basic Summary of NKS- A New Kind of Science is Stephen Wolfram s attempt to revolutionize the theoretical and methodological underpinnings of the universe. Though this endeavor

More information

Period Analysis on a Spreadsheet

Period Analysis on a Spreadsheet Aliases in Depth An alias for a period is another period where the data seemingly fits as well, or nearly so, as the correct period. The most common encounter with aliasing is when you observe a target

More information

Section 20: Arrow Diagrams on the Integers

Section 20: Arrow Diagrams on the Integers Section 0: Arrow Diagrams on the Integers Most of the material we have discussed so far concerns the idea and representations of functions. A function is a relationship between a set of inputs (the leave

More information

THE retina in general consists of three layers: photoreceptors

THE retina in general consists of three layers: photoreceptors CS229 MACHINE LEARNING, STANFORD UNIVERSITY, DECEMBER 2016 1 Models of Neuron Coding in Retinal Ganglion Cells and Clustering by Receptive Field Kevin Fegelis, SUID: 005996192, Claire Hebert, SUID: 006122438,

More information

Entropy and information in neural spike trains: Progress on the sampling problem

Entropy and information in neural spike trains: Progress on the sampling problem PHYSICAL REVIEW E 69, 056111 (2004) Entropy and information in neural spike trains: Progress on the sampling problem Ilya Nemenman, 1, * William Bialek, 2, and Rob de Ruyter van Steveninck 3, 1 avli Institute

More information

CPSC 340: Machine Learning and Data Mining

CPSC 340: Machine Learning and Data Mining CPSC 340: Machine Learning and Data Mining MLE and MAP Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1 Admin Assignment 4: Due tonight. Assignment 5: Will be released

More information

1 Boolean Algebra Simplification

1 Boolean Algebra Simplification cs281: Computer Organization Lab3 Prelab Our objective in this prelab is to lay the groundwork for simplifying boolean expressions in order to minimize the complexity of the resultant digital logic circuit.

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

Math 138: Introduction to solving systems of equations with matrices. The Concept of Balance for Systems of Equations

Math 138: Introduction to solving systems of equations with matrices. The Concept of Balance for Systems of Equations Math 138: Introduction to solving systems of equations with matrices. Pedagogy focus: Concept of equation balance, integer arithmetic, quadratic equations. The Concept of Balance for Systems of Equations

More information

Modeling Convergent ON and OFF Pathways in the Early Visual System

Modeling Convergent ON and OFF Pathways in the Early Visual System Modeling Convergent ON and OFF Pathways in the Early Visual System The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gollisch,

More information

Please bring the task to your first physics lesson and hand it to the teacher.

Please bring the task to your first physics lesson and hand it to the teacher. Pre-enrolment task for 2014 entry Physics Why do I need to complete a pre-enrolment task? This bridging pack serves a number of purposes. It gives you practice in some of the important skills you will

More information