Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement

Size: px
Start display at page:

Download "Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement"

Transcription

1 1 Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement In the last lecture, we saw that a repeating alternation between chemical (ATP hydrolysis) and vectorial (movement) steps is required for myosin to move forward rather than slipping back and forth along the actin filament. It turns out that this repeating mechanism is the secret behind an entire class of processes in which chemical reactions are coupled to vectorial motion. I. Regulation of muscle contraction A. Actin - tropomyosin - troponin complex Now that we ve looked at how muscles contract, the opposite question arises: given a supply of ATP and the requisite proteins, why don t muscles contract all the time? The answer has to do with a set of proteins complexed to actin that effectively turn contraction on or off depending on the presence of calcium ions. Looking at the structure of a thin filament (V&V p Fig and MBOC p. 854, Fig ), you ll notice that in addition to the double helical actin strands discussed previously, the filament contains two more proteins, tropomyosin and troponin. Tropomyosin (TM) snakes down the middle of the actin helices and consists of two alpha-helical chains (each 35kD) that form a coiled-coil about 35 nm long (V&V p Fig ). Each TM molecule comes in contact with seven actin molecules. Sitting at one end of each TM is troponin, a complex which consists of three polypeptides known as TnI, TnT, and TnC. TnI has a significant contact with both TM and actin, while TnT serves to strengthen the interactions among TnI, TM, and actin. TnC sits on TnI. B. Calcium binding by TnC TnC is the component of the actin complex that senses the local calcium concentration and thus determines whether the actin filament is active. As shown in V&V p Fig , TnC has a central alpha-helix with a globular domain (combination of alpha structure and turns) at each end. Each terminal domain contains two motifs called EF hands, and it is the EF hands that directly bind calcium ions. Thus, the EF hands are TnC s way of sensing the calcium concentration; at 100 nm calcium (the usual cellular concentration) some of the EF hands are empty, but if the local concentration rises to 1 µm, as it does when the muscle contracts, all of the EF hand binds calcium. Despite the fact that each domain has two EF hands, the domains differ in their calcium affinity; the C- terminal EF hands have high affinity while the N-terminal ones have low affinity. The high affinity sites are always bound to Ca ++, but at the resting Ca ++ concentration, the low affinity sites are empty. When the low affinity sites bind calcium, contraction can occur. Experiment demonstrating regulation by calcium As discussed in the last lecture, combining myosin, actin monomers (G actin), and ATP leads to ATP hydrolysis and Pi release at a rate of s -1 :

2 2 A + M + ATP -----> AM + ADP + Pi s -1 However, if regulated actin, composed of actin, TM, and troponin, is used instead of the actin monomers, a much slower rate is observed: A-TM-Tr + M + ATP ----> AM-TM-Tr + ADP + Pi s -1 Although the regulated actin complex does associate with myosin as before, it no longer stimulates myosin. BUT if calcium is added to the prep, the rate of the reaction goes back up to s -1. Thus it appears that 1) actin alone can stimulate myosin and Pi release, but 2) actin in its complex filament form does not unless calcium is present. Thus, a component of the actin filament - TnC - insures that muscle remains at rest unless it receives a signal in the form of a rise in local calcium concentration. C. Mechanism for coupling calcium signal and muscle activity Protein-protein interactions among the components of the filament create a relay mechanism between TnC and actin. When calcium concentration increases, there is an alteration in the conformation of tropomyosin that gets transmitted to the 7 actin molecules in contact with it, and these actin molecules can then effectively contact myosin. Textbooks usually give a simple physical blocking model for the control of muscle activity which may not be entirely true (See MBOC p. 854 Fig b and V&V p Fig ), although some physical/conformational changes in the troponin complex is probably involved. D. What causes the calcium concentration to rise during a contraction? The calcium concentration in the cytosol rises in response to an incoming nerve signal. A signal traveling down a nearby nerve causes the nerve ending to release the chemical acetylcholine, which travels the short distance from the nerve to the muscle cell. At the muscle cell membrane, acetylcholine binds to an acetylcholine receptor, which is also a gated channel. It changes its conformation to allow sodium ions to flow into the cell. The influx of sodium causes the membrane to depolarize, meaning that its electrical gradient changes from negative on the inside and positive on the outside (polarized) to equal charge potentials on the inside and outside (see MBOC p. 853 Fig ). Once one spot becomes depolarized, the depolarized state spreads along the membrane by means of voltage-dependent sodium channels. This action potential is transmitted to the T-tubules, which invaginate from the plasma membrane, and is propagated via the dihydropyridine receptor, which is a voltage dependent calcium channel located on the T-tubules. Ryanodine channels are calcium channels that are located on the sarcoplasmic reticulum. When the T-tubules depolarize, the ryanodine channels open and calcium ions that are usually bound by calsequestrin pour out of the sarcoplasmic reticulum into the cytosol. The resulting calcium wave causes the conformational changes discussed above for TnC and the actin-myosin interaction, and the muscle contracts. During repolarization, which is mediated by potassium channels and sodium/potassium ATPases, the channels shut down. Calcium pumps rapidly pump calcium back into the sarcoplasmic reticulum to prevent the contraction from continuing long after the end of the original signal.

3 3 E. Dystrophin: integrity of the sarcolemma The plasma membrane of skeletal cells, or the sarcolemma, is supported by a network of proteins. Dystrophin, a 400 kd protein, is situated right underneath the plasma membrane, and is part of a glycoprotein complex that is in contact with the basal membrane, or extracellular cell matrix. Dystrophin also interacts with F-actin, and these interactions provides structural integrity and resistance to the sarcolemma. Duchenne's muscular dystrophy is an X-linked disease in which the dystrophin gene is mutated. Onset of disease occurs when the affected individual reaches 3-4 yrs of age. Apparently, this disease affects muscles which have attained a certain size, since knocking out this gene in mice appears to have no effect. II. Actin polymerization Although up to this point we ve seen that movement is produced by an interaction between actin and myosin, organisms that lack myosin still manage to move. How? The answer is via the dynamic process of actin polymerization. Actin is a highly conserved molecule in all eukaryotic cells and it is complexed to a nucleotide (either ATP or ADP). Actin can be induced to polymerize by first preparing monomers (G-actin, or globular actin) and then adding Mg, KCl, and ATP to form the polymer F-actin, in which each monomer contacts four other monomers. The monomers polymerize in a head to tail direction. A graph of the formation of F-actin vs. time (see MBOC p. 824) reveals that polymerization occurs in three distinct phases, an initial lag time, a growth phase, and a steady-state. The lag time, during which polymerization is slow, represents the time it takes for three monomers to come together - that is, to nucleate. Before nucleation, the individual interactions between monomers are weak, but after three come together the interaction of an additional monomer becomes more stable, so that the polymer can start to form. Polymerization continues until the monomer concentration falls to a level where the actin filaments reach a state of equilibrium with the monomers. In this condition of steady state, the rate of monomer addition equals the rate off monomers falling off of the polymer. As suggested by the head to tail arrangement of monomers, the two ends of the filament have different properties. As mentioned in the previous lecture, when S1 myosin heads are added to the filament, they all point in the same direction so that the decorated actin takes on an arrow-like shape: barbed end (+) pointed end (-) It turns out that if myosin-decorated actin is used as a nucleating site and the polymerization ingredients actin, Mg, KCl, and ATP are added, a long filament grows from the barbed end while only a short filament grows from the pointed end. Thus, actin seems to add more rapidly to the barbed (+) end.

4 4 Why does this happen? For simple monomer addition, G has to be the same at both ends, since the same interactions between monomer and filament must be broken or formed. Thus, even if the specific rate constants differ at the two ends, their ratio would be expected to be the same, so that if one end grew faster it would also shrink faster and the overall growth rates of the two ends would be equal. However, the involvement of ATP hydrolysis changes the picture and causes the disparity between the ends. For both ends, the actin monomer that adds to the filament is ATP-bound, since the addition rate is faster for ATP-actin than for ADP-actin. The corresponding monomer loss rate for ATP-actin is slow, but once the monomer is on the filament its rate of ATP hydrolysis goes up, so that monomer dissociation involves loss of ADP-actin, which falls off faster than ATP-actin. Since the on and off reactions are no longer simply the reverses of each other under these conditions, the constraint that if one end grows faster it must also shrink faster no longer applies. Steady state and critical concentration A related consequence of the loss of the requirement for a constant ratio between the on and off rates is that the ends reach the steady state (at which monomer addition equals monomer loss, or kon [A] = koff) at different concentrations of monomer. This concentration, which is also the steady state dissociation constant (Kd) for monomer addition, is known as the critical concentration. The critical concentration can also be defined as the concentration of actin monomer above which monomer adds to the filament faster than it falls off and therefore above which that end of the filament grows. The critical concentration for the plus end is lower than for the minus end, so that the plus end can grow with fewer monomers around. Consequently, if the monomer concentration is between the critical concentrations for the plus and minus ends, the plus end will grow while the minus end shrinks. At some concentration the rate of addition to the plus end will equal the rate of loss at the minus end, so that the filament will appear to move in the direction of the plus end at a constant length. This is called treadmilling. III. Actin-dependent movement Although an actin filament at the steady state doesn t grow, the fact that a monomer adds to the plus end at the same time another one comes off the minus end leads to an overall displacement of the filament toward the plus end. Some types of movement in the cell are thought to occur by this mechanism. For example, the listeria bacterium, which enters cells by phagocytosis and zooms across the cell to the other side where it makes a protrusion in the membrane en route to the next cell in order to avoid being exposed to antibodies outside the cells, may use this feature of actin to cross the cell (see MBOC p. 830 Fig ). Observed in the act of swimming, the bacterium appears to carry an actin tail of constant length behind it. However, if one of the monomers in the filament is tagged, it turns out that this monomer stays put while the bacterium moves. This paradox is explained by the observation that as the bacterium moves forward, a space between it and its

5 actin tail opens up, and subsequently an actin monomer slips in, adds to the filament, and allows the filament end to catch up with the bacterium and force it forward further. Since depolymerization is occurring at the other end of the filament, the overall appearance is that of a constant length jet engine tail pushing the bacterium along. Thus, one way actin can cause movement in the absence of myosin is by this process of polymerizing (or depolymerizing) at different rates at its two ends. 5

According to the diagram, which of the following is NOT true?

According to the diagram, which of the following is NOT true? Instructions: Review Chapter 44 on muscular-skeletal systems and locomotion, and then complete the following Blackboard activity. This activity will introduce topics that will be covered in the next few

More information

Lecture 13, 05 October 2004 Chapter 10, Muscle. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Lecture 13, 05 October 2004 Chapter 10, Muscle. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a. Lecture 13, 05 October 2004 Chapter 10, Muscle Vertebrate Physiology ECOL 437 University of Arizona Fall 2004 instr: Kevin Bonine t.a.: Nate Swenson Vertebrate Physiology 437 18 1. Muscle A. Sarcomere

More information

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 2 Chapter 9 Muscles and Muscle Tissue Overview of Muscle Tissue types of muscle: are all prefixes for muscle Contractility all muscles cells can Smooth & skeletal

More information

Muscle tissue. Types. Functions. Cardiac, Smooth, and Skeletal

Muscle tissue. Types. Functions. Cardiac, Smooth, and Skeletal Types Cardiac, Smooth, and Skeletal Functions movements posture and body position Support soft tissues Guard openings body temperature nutrient reserves Muscle tissue Special Characteristics of Muscle

More information

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc.

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc. Chapter 16 Cellular Movement: Motility and Contractility Lectures by Kathleen Fitzpatrick Simon Fraser University Two eukaryotic motility systems 1. Interactions between motor proteins and microtubules

More information

the axons of the nerve meet with the muscle cell.

the axons of the nerve meet with the muscle cell. Steps to Contraction 1. A nerve impulse travels to the neuromuscular junction on a muscle cell. The neuromuscular junction is the point where the axons of the nerve meet with the muscle cell. 2. Ach is

More information

Membrane Physiology. Dr. Hiwa Shafiq Oct-18 1

Membrane Physiology. Dr. Hiwa Shafiq Oct-18 1 Membrane Physiology Dr. Hiwa Shafiq 22-10-2018 29-Oct-18 1 Chemical compositions of extracellular and intracellular fluids. 29-Oct-18 2 Transport through the cell membrane occurs by one of two basic processes:

More information

UNIT 6 THE MUSCULAR SYSTEM

UNIT 6 THE MUSCULAR SYSTEM UNIT 6 THE MUSCULAR SYSTEM I. Functions of Muscular System A. Produces Movement Internal vs. External «locomotion & manipulation «circulate blood & maintain blood pressure «move fluids, food, baby B. Maintaining

More information

Bioelectricity Prof. Mainak Das Department of Biological Sciences, and Bioengineering Indian Institute of Technology, Kanpur.

Bioelectricity Prof. Mainak Das Department of Biological Sciences, and Bioengineering Indian Institute of Technology, Kanpur. Bioelectricity Prof. Mainak Das Department of Biological Sciences, and Bioengineering Indian Institute of Technology, Kanpur Lecture 17 Welcome back to the bioelectricity lecture, series. So, in the last

More information

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins Advanced Higher Biology Unit 1- Cells and Proteins 2c) Membrane Proteins Membrane Structure Phospholipid bilayer Transmembrane protein Integral protein Movement of Molecules Across Membranes Phospholipid

More information

Our patient for the day...

Our patient for the day... Muscles Ch.12 Our patient for the day... Name: Eddy Age: Newborn Whole-body muscle contractions No relaxation Severe difficulty breathing due to inadequate relaxation of breathing muscles Diagnosed with

More information

Modeling. EC-Coupling and Contraction

Modeling. EC-Coupling and Contraction Bioeng 6460 Electrophysiology and Bioelectricity Modeling of EC-Coupling and Contraction Frank B. Sachse fs@cvrti.utah.edu Overview Quiz Excitation-Contraction Coupling Anatomy Cross Bridge Binding Coupling

More information

monomer polymer polymeric network cell

monomer polymer polymeric network cell 3.1 Motivation 3.2 Polymerization The structural stability of the cell is provided by the cytoskeleton. Assembling and disassembling dynamically, the cytoskeleton enables cell movement through a highly

More information

Neurophysiology. Danil Hammoudi.MD

Neurophysiology. Danil Hammoudi.MD Neurophysiology Danil Hammoudi.MD ACTION POTENTIAL An action potential is a wave of electrical discharge that travels along the membrane of a cell. Action potentials are an essential feature of animal

More information

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES.

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES. !! www.clutchprep.com K + K + K + K + CELL BIOLOGY - CLUTCH CONCEPT: PRINCIPLES OF TRANSMEMBRANE TRANSPORT Membranes and Gradients Cells must be able to communicate across their membrane barriers to materials

More information

Slide 1. Slide 2. Slide 3. Muscles general information. Muscles - introduction. Microtubule Function

Slide 1. Slide 2. Slide 3. Muscles general information. Muscles - introduction. Microtubule Function Slide 1 Muscles general information Vertebrates and many invertebrates have three main classes of muscle Skeletal muscle connect bones are are used for complex coordianted activities. Smooth muscles surround

More information

LESSON 2.2 WORKBOOK How do our axons transmit electrical signals?

LESSON 2.2 WORKBOOK How do our axons transmit electrical signals? LESSON 2.2 WORKBOOK How do our axons transmit electrical signals? This lesson introduces you to the action potential, which is the process by which axons signal electrically. In this lesson you will learn

More information

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/ MEMBRANE STRUCTURE Lecture 9 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University RED BLOOD CELL MEMBRANE PROTEINS The Dynamic Nature of the Plasma Membrane SEM of human erythrocytes

More information

Muscles and Muscle Tissue: Part A

Muscles and Muscle Tissue: Part A PowerPoint Lecture Slides prepared by Janice Meeking, Mount Royal College CHAPTER 9 Muscles and Muscle Tissue: Part A Warm Up 12/12/16 Describe the major differences between cardiac, skeletal and smooth

More information

1. The plasma membrane of eukaryotic cells is supported by a. actin filaments. b. microtubules. c. lamins. d. intermediate filaments.

1. The plasma membrane of eukaryotic cells is supported by a. actin filaments. b. microtubules. c. lamins. d. intermediate filaments. ANALYSIS AND MODELING OF CELL MECHANICS Homework #2 (due 1/30/13) This homework involves comprehension of key biomechanical concepts of the cytoskeleton, cell-matrix adhesions, and cellcell adhesions.

More information

Chapt. 12, Movement Across Membranes. Chapt. 12, Movement through lipid bilayer. Chapt. 12, Movement through lipid bilayer

Chapt. 12, Movement Across Membranes. Chapt. 12, Movement through lipid bilayer. Chapt. 12, Movement through lipid bilayer Chapt. 12, Movement Across Membranes Two ways substances can cross membranes Passing through the lipid bilayer Passing through the membrane as a result of specialized proteins 1 Chapt. 12, Movement through

More information

(Be sure to clearly state the principles addressed in your discussion.)

(Be sure to clearly state the principles addressed in your discussion.) CELL QUESTION 1992: AP BIOLOGY A laboratory assistant prepared solutions of 0.8 M, 0.6 M, 0.4 M, and 0.2 M sucrose, but forgot to label them. After realizing the error, the assistant randomly labeled the

More information

Dr. Ketki Assistant Professor Department of Biochemistry Heritage IMS, Varanasi

Dr. Ketki Assistant Professor Department of Biochemistry Heritage IMS, Varanasi TRANSPORT MECHANISMS Dr. Ketki Assistant Professor Department of Biochemistry Heritage IMS, Varanasi Membrane selectivity allows adjustments of cell composition and function If plasma membrane is relatively

More information

The Molecules of Movement Musc 1 - Professor Michael Ferenczi

The Molecules of Movement Musc 1 - Professor Michael Ferenczi The Molecules of Movement Musc 1 - Professor Michael Ferenczi (m.ferenczi@imperial.ac.uk) 1. Appreciate that there are a large number of molecular motors, each with its assigned role. 2. Linear molecular

More information

The Nervous System. Nerve Impulses. Resting Membrane Potential. Overview. Nerve Impulses. Resting Membrane Potential

The Nervous System. Nerve Impulses. Resting Membrane Potential. Overview. Nerve Impulses. Resting Membrane Potential The Nervous System Overview Nerve Impulses (completed12/03/04) (completed12/03/04) How do nerve impulses start? (completed 19/03/04) (completed 19/03/04) How Fast are Nerve Impulses? Nerve Impulses Nerve

More information

Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch.

Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch. 1. Describe the basic structure of an ion channel. Name 3 ways a channel can be "activated," and describe what occurs upon activation. What are some ways a channel can decide what is allowed to pass through?

More information

Particles with opposite charges (positives and negatives) attract each other, while particles with the same charge repel each other.

Particles with opposite charges (positives and negatives) attract each other, while particles with the same charge repel each other. III. NEUROPHYSIOLOGY A) REVIEW - 3 basic ideas that the student must remember from chemistry and physics: (i) CONCENTRATION measure of relative amounts of solutes in a solution. * Measured in units called

More information

Electrical Signaling. Lecture Outline. Using Ions as Messengers. Potentials in Electrical Signaling

Electrical Signaling. Lecture Outline. Using Ions as Messengers. Potentials in Electrical Signaling Lecture Outline Electrical Signaling Using ions as messengers Potentials in electrical signaling Action Graded Other electrical signaling Gap junctions The neuron Using Ions as Messengers Important things

More information

Nervous System Organization

Nervous System Organization The Nervous System Nervous System Organization Receptors respond to stimuli Sensory receptors detect the stimulus Motor effectors respond to stimulus Nervous system divisions Central nervous system Command

More information

Nervous Systems: Neuron Structure and Function

Nervous Systems: Neuron Structure and Function Nervous Systems: Neuron Structure and Function Integration An animal needs to function like a coherent organism, not like a loose collection of cells. Integration = refers to processes such as summation

More information

Lecture 3 13/11/2018

Lecture 3 13/11/2018 Lecture 3 13/11/2018 1 Plasma membrane ALL cells have a cell membrane made of proteins and lipids. protein channel Cell Membrane Layer 1 Layer 2 lipid bilayer protein pump Lipid bilayer allows water, carbon

More information

Membrane Potential. 1. Resting membrane potential (RMP): 2. Action Potential (AP):

Membrane Potential. 1. Resting membrane potential (RMP): 2. Action Potential (AP): Membrane Potential 1. Resting membrane potential (RMP): 2. Action Potential (AP): Resting Membrane Potential (RMP) It is the potential difference across the cell membrane. If an electrode of a voltmeter

More information

2401 : Anatomy/Physiology

2401 : Anatomy/Physiology Dr. Chris Doumen Week 6 2401 : Anatomy/Physiology Action Potentials NeuroPhysiology TextBook Readings Pages 400 through 408 Make use of the figures in your textbook ; a picture is worth a thousand words!

More information

Neurons and Nervous Systems

Neurons and Nervous Systems 34 Neurons and Nervous Systems Concept 34.1 Nervous Systems Consist of Neurons and Glia Nervous systems have two categories of cells: Neurons, or nerve cells, are excitable they generate and transmit electrical

More information

Movement & Muscle. 19 th Lecture Fri 27 Feb Chapter 18. Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009

Movement & Muscle. 19 th Lecture Fri 27 Feb Chapter 18. Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 19 th Lecture Fri 27 Feb 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh Movement & Muscle Chapter 18 1 Housekeeping, Fri 27 February 2009 Readings

More information

Movement & Muscle Chapter 18

Movement & Muscle Chapter 18 19 th Lecture Fri 27 Feb 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh Movement & Muscle Chapter 18 1 Housekeeping, Fri 27 February 2009 Readings

More information

Membrane Potentials. Why are some cells electrically active? Model 1: The Sodium/Potassium pump. Critical Thinking Questions

Membrane Potentials. Why are some cells electrically active? Model 1: The Sodium/Potassium pump. Critical Thinking Questions Membrane Potentials Model 1: The Sodium/Potassium pump Why are some cells electrically active? 1. What ion is being moved out of the cell according to model 1? a. How many of these are being moved out?

More information

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 KEY CONCEPTS 34.1 Nervous Systems Are Composed of Neurons and Glial Cells 34.2 Neurons Generate Electric Signals by Controlling Ion Distributions 34.3

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2013 Monday, 17 June, 2.30 pm 5.45 pm 15

More information

Rahaf Nasser mohammad khatatbeh

Rahaf Nasser mohammad khatatbeh 7 7... Hiba Abu Hayyeh... Rahaf Nasser mohammad khatatbeh Mohammad khatatbeh Brief introduction about membrane potential The term membrane potential refers to a separation of opposite charges across the

More information

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials Nerve Signal Conduction Resting Potential Action Potential Conduction of Action Potentials Resting Potential Resting neurons are always prepared to send a nerve signal. Neuron possesses potential energy

More information

Molecular Cell Biology 5068 In Class Exam 1 September 30, Please print your name:

Molecular Cell Biology 5068 In Class Exam 1 September 30, Please print your name: Molecular Cell Biology 5068 In Class Exam 1 September 30, 2014 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your

More information

ACTIVE TRANSPORT AND GLUCOSE TRANSPORT. (Chapter 14 and 15, pp and pp )

ACTIVE TRANSPORT AND GLUCOSE TRANSPORT. (Chapter 14 and 15, pp and pp ) ACTIVE TRANSPORT AND GLUCOSE TRANSPORT (Chapter 14 and 15, pp 140-143 and pp 146-151) Overview Active transport is the movement of molecules across a cell membrane in the direction against their concentration

More information

PNS Chapter 7. Membrane Potential / Neural Signal Processing Spring 2017 Prof. Byron Yu

PNS Chapter 7. Membrane Potential / Neural Signal Processing Spring 2017 Prof. Byron Yu PNS Chapter 7 Membrane Potential 18-698 / 42-632 Neural Signal Processing Spring 2017 Prof. Byron Yu Roadmap Introduction to neuroscience Chapter 1 The brain and behavior Chapter 2 Nerve cells and behavior

More information

Ch 8: Neurons: Cellular and Network Properties, Part 1

Ch 8: Neurons: Cellular and Network Properties, Part 1 Developed by John Gallagher, MS, DVM Ch 8: Neurons: Cellular and Network Properties, Part 1 Objectives: Describe the Cells of the NS Explain the creation and propagation of an electrical signal in a nerve

More information

Cellular Electrophysiology and Biophysics

Cellular Electrophysiology and Biophysics BIOEN 6003 Cellular Electrophysiology and Biophysics Modeling of Force Development in Myocytes II Frank B. Sachse, University of Utah Overview Experimental Studies Sliding Filament Theory Group work Excitation-Contraction

More information

Membrane Protein Channels

Membrane Protein Channels Membrane Protein Channels Potassium ions queuing up in the potassium channel Pumps: 1000 s -1 Channels: 1000000 s -1 Pumps & Channels The lipid bilayer of biological membranes is intrinsically impermeable

More information

Chapter 48 Neurons, Synapses, and Signaling

Chapter 48 Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling Concept 48.1 Neuron organization and structure reflect function in information transfer Neurons are nerve cells that transfer information within the body Neurons

More information

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles 1 Response Mechanism tropism Definition A growth movement of part of plant in response to a directional stimulus examples Positive:

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES Neuron Communication Neurons are stimulated by receptors on dendrites and cell bodies (soma) Ligand gated ion channels GPCR s Neurons stimulate cells

More information

BIOMECHANICS 3 Origins and consequences of forces in biological systems

BIOMECHANICS 3 Origins and consequences of forces in biological systems BIOMECHANICS 3 Origins and consequences of forces in biological systems MOLECULAR MECHANISMS OF BIOLOGICAL MOVEMENT AT THE LEVELOF ORGANISMS MOLECULAR BASIS OF MUSCLE CONTRACTION DR. BEÁTA BUGYI - BIOPHYSICS

More information

Lecture 2. Excitability and ionic transport

Lecture 2. Excitability and ionic transport Lecture 2 Excitability and ionic transport Selective membrane permeability: The lipid barrier of the cell membrane and cell membrane transport proteins Chemical compositions of extracellular and intracellular

More information

Chapter 9. Nerve Signals and Homeostasis

Chapter 9. Nerve Signals and Homeostasis Chapter 9 Nerve Signals and Homeostasis A neuron is a specialized nerve cell that is the functional unit of the nervous system. Neural signaling communication by neurons is the process by which an animal

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES In Physiology Today Ohm s Law I = V/R Ohm s law: the current through a conductor between two points is directly proportional to the voltage across the

More information

Fundamentals of the Nervous System and Nervous Tissue

Fundamentals of the Nervous System and Nervous Tissue Chapter 11 Part B Fundamentals of the Nervous System and Nervous Tissue Annie Leibovitz/Contact Press Images PowerPoint Lecture Slides prepared by Karen Dunbar Kareiva Ivy Tech Community College 11.4 Membrane

More information

Biochemistry Prof. S. Dasgupta Department of Chemistry. Indian Institute of Technology Kharagpur. Lecture - 15 Nucleic Acids III

Biochemistry Prof. S. Dasgupta Department of Chemistry. Indian Institute of Technology Kharagpur. Lecture - 15 Nucleic Acids III Biochemistry Prof. S. Dasgupta Department of Chemistry. Indian Institute of Technology Kharagpur Lecture - 15 Nucleic Acids III In the last two classes we spoke about lipids and membranes. Now, what we

More information

Membrane Protein Pumps

Membrane Protein Pumps Membrane Protein Pumps Learning objectives You should be able to understand & discuss: Active transport-na + /K + ATPase ABC transporters Metabolite transport by lactose permease 1. Ion pumps: ATP-driven

More information

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 12, PAGE 1 of 7

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 12, PAGE 1 of 7 STEIN IN-TERM EXAM -- BIOLOGY 3058 -- FEBRUARY 12, 2009 -- PAGE 1 of 7 There are 25 questions in this Biology 3058 exam. All questions are "A, B, C, D, E, F, G, H" questions worth one point each. There

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #1 Wednesday, September 13, 2006 1. INTRODUCTION TO EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in

More information

Nervous System AP Biology

Nervous System AP Biology Nervous System 2007-2008 Why do animals need a nervous system? What characteristics do animals need in a nervous system? fast accurate reset quickly Remember Poor think bunny! about the bunny signal direction

More information

لجنة الطب البشري رؤية تنير دروب تميزكم

لجنة الطب البشري رؤية تنير دروب تميزكم 1) Hyperpolarization phase of the action potential: a. is due to the opening of voltage-gated Cl channels. b. is due to prolonged opening of voltage-gated K + channels. c. is due to closure of the Na +

More information

NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below.

NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below. Anatomy & Physiology Nervous System Part I 2/26/16 NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below. 1. 2. 3. 5. 4. 6. Part

More information

BIOL Week 5. Nervous System II. The Membrane Potential. Question : Is the Equilibrium Potential a set number or can it change?

BIOL Week 5. Nervous System II. The Membrane Potential. Question : Is the Equilibrium Potential a set number or can it change? Collin County Community College BIOL 2401 Week 5 Nervous System II 1 The Membrane Potential Question : Is the Equilibrium Potential a set number or can it change? Let s look at the Nernst Equation again.

More information

Phys498BIO; Prof. Paul Selvin Hw #9 Assigned Wed. 4/18/12: Due 4/25/08

Phys498BIO; Prof. Paul Selvin Hw #9 Assigned Wed. 4/18/12: Due 4/25/08 1. Ionic Movements Across a Permeable Membrane: The Nernst Potential. In class we showed that if a non-permeable membrane separates a solution with high [KCl] from a solution with low [KCl], the net charge

More information

Membranes 2: Transportation

Membranes 2: Transportation Membranes 2: Transportation Steven E. Massey, Ph.D. Associate Professor Bioinformatics Department of Biology University of Puerto Rico Río Piedras Office & Lab: NCN#343B Tel: 787-764-0000 ext. 7798 E-mail:

More information

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent Overview Organization: Central Nervous System (CNS) Brain and spinal cord receives and processes information. Peripheral Nervous System (PNS) Nerve cells that link CNS with organs throughout the body.

More information

Use the word bank to match the appropriate letter to the definitions/descriptions on the next page.

Use the word bank to match the appropriate letter to the definitions/descriptions on the next page. NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE All or Nothing: A Case Study in Muscle Contraction by Ryan T. Neumann*, Collin J. Quinn*, Brittany A. Whitaker*, Sean T. Woyton*, and Breanna N. Harris

More information

CIE Biology A-level Topic 15: Control and coordination

CIE Biology A-level Topic 15: Control and coordination CIE Biology A-level Topic 15: Control and coordination Notes Neuron structure The nerve cells called neurones play an important role in coordinating communication within the nervous system. The structure

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #1 Tuesday, September 18, 2012 1. INTRODUCTION TO EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in 1780s

More information

Excitation of Skeletal Muscle: Neuromuscular Transmission and Excitation-Contraction Coupling

Excitation of Skeletal Muscle: Neuromuscular Transmission and Excitation-Contraction Coupling C H A P T E R 7 Excitation of Skeletal Muscle: Neuromuscular Transmission and Excitation-Contraction Coupling U N I T I I TRANSMISSION OF IMPULSES FROM NERVE ENDINGS TO SKELETAL MUSCLE FIBERS: THE NEUROMUSCULAR

More information

Nervous Tissue. Neurons Neural communication Nervous Systems

Nervous Tissue. Neurons Neural communication Nervous Systems Nervous Tissue Neurons Neural communication Nervous Systems What is the function of nervous tissue? Maintain homeostasis & respond to stimuli Sense & transmit information rapidly, to specific cells and

More information

(by Ken Robinson, revised 2009 by NPelaez)

(by Ken Robinson, revised 2009 by NPelaez) Biology 13100 (by Ken Robinson, revised 2009 by NPelaez) The Transport of Water in Higher Plants, and Ca 2+ as Cellular Regulator (including problem set 3) The movement of water across a cell membrane

More information

Membrane transport 1. Summary

Membrane transport 1. Summary Membrane transport 1. Summary A. Simple diffusion 1) Diffusion by electrochemical gradient no energy required 2) No channel or carrier (or transporter protein) is needed B. Passive transport (= Facilitated

More information

7.013 Spring 2005 Problem Set 4

7.013 Spring 2005 Problem Set 4 MIT Department of Biology 7.013: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr. Claudette Gardel NAME TA 7.013 Spring 2005 Problem Set 4 FRIDAY April 8th,

More information

Chem Lecture 9 Pumps and Channels Part 1

Chem Lecture 9 Pumps and Channels Part 1 Chem 45 - Lecture 9 Pumps and Channels Part 1 Question of the Day: What two factors about a molecule influence the change in its free energy as it moves across a membrane? Membrane proteins function as

More information

Information processing. Divisions of nervous system. Neuron structure and function Synapse. Neurons, synapses, and signaling 11/3/2017

Information processing. Divisions of nervous system. Neuron structure and function Synapse. Neurons, synapses, and signaling 11/3/2017 Neurons, synapses, and signaling Chapter 48 Information processing Divisions of nervous system Central nervous system (CNS) Brain and a nerve cord Integration center Peripheral nervous system (PNS) Nerves

More information

TRANSPORT ACROSS MEMBRANE

TRANSPORT ACROSS MEMBRANE TRANSPORT ACROSS MEMBRANE The plasma membrane functions to isolate the inside of the cell from its environment, but isolation is not complete. A large number of molecules constantly transit between the

More information

Main idea of this lecture:

Main idea of this lecture: Ac#ve Transport Main idea of this lecture: How do molecules, big and small, get in OR out of a cell? 2 Main ways: Passive Transport (Does not require energy) Lecture 1 Ac=ve Transport (Requires energy)

More information

Computational Modeling of the Cardiovascular and Neuronal System

Computational Modeling of the Cardiovascular and Neuronal System BIOEN 6900 Computational Modeling of the Cardiovascular and Neuronal System Modeling of Force Development in Myocytes Overview Recapitulation Modeling of Conduction Modeling of Force in Skeletal Muscle

More information

b) What is the gradient at room temperature? Du = J/molK * 298 K * ln (1/1000) = kj/mol

b) What is the gradient at room temperature? Du = J/molK * 298 K * ln (1/1000) = kj/mol Chem350 Practice Problems Membranes 1. a) What is the chemical potential generated by the movement of glucose by passive diffusion established by a 1000 fold concentration gradient at physiological temperature?

More information

Nervous Lecture Test Questions Set 2

Nervous Lecture Test Questions Set 2 Nervous Lecture Test Questions Set 2 1. The role of chloride in a resting membrane potential: a. creates resting potential b. indirectly causes repolarization c. stabilization of sodium d. it has none,

More information

Molecular Motors. Structural and Mechanistic Overview! Kimberly Nguyen - December 6, 2013! MOLECULAR MOTORS - KIMBERLY NGUYEN

Molecular Motors. Structural and Mechanistic Overview! Kimberly Nguyen - December 6, 2013! MOLECULAR MOTORS - KIMBERLY NGUYEN Molecular Motors Structural and Mechanistic Overview!! Kimberly Nguyen - December 6, 2013!! 1 Molecular Motors: A Structure and Mechanism Overview! Introduction! Molecular motors are fundamental agents

More information

Neurite formation & neuronal polarization. The cytoskeletal components of neurons have characteristic distributions and associations

Neurite formation & neuronal polarization. The cytoskeletal components of neurons have characteristic distributions and associations Mechanisms of neuronal migration & Neurite formation & neuronal polarization Paul Letourneau letou001@umn.edu Chapter 16; The Cytoskeleton; Molecular Biology of the Cell, Alberts et al. 1 The cytoskeletal

More information

Nervous System: Part II How A Neuron Works

Nervous System: Part II How A Neuron Works Nervous System: Part II How A Neuron Works Essential Knowledge Statement 3.E.2 Continued Animals have nervous systems that detect external and internal signals, transmit and integrate information, and

More information

Modeling 3-D Calcium Waves from Stochastic Calcium sparks in a Sarcomere Using COMSOL

Modeling 3-D Calcium Waves from Stochastic Calcium sparks in a Sarcomere Using COMSOL Modeling 3-D Calcium Waves from Stochastic Calcium sparks in a Sarcomere Using COMSOL Zana Coulibaly 1, Leighton T. Izu 2 and Bradford E. Peercy 1 1 University of Maryland, Baltimore County 2 University

More information

Action Potentials & Nervous System. Bio 219 Napa Valley College Dr. Adam Ross

Action Potentials & Nervous System. Bio 219 Napa Valley College Dr. Adam Ross Action Potentials & Nervous System Bio 219 Napa Valley College Dr. Adam Ross Review: Membrane potentials exist due to unequal distribution of charge across the membrane Concentration gradients drive ion

More information

Neuron Func?on. Principles of Electricity. Defini?ons 2/6/15

Neuron Func?on. Principles of Electricity. Defini?ons 2/6/15 Neuron Func?on 11 Fundamentals of the Nervous System and Nervous Tissue: Part B Neurons are highly Respond to adequate s?mulus by genera?ng an ac?on poten?al (nerve impulse) Impulse is always the regardless

More information

ACTION POTENTIAL. Dr. Ayisha Qureshi Professor MBBS, MPhil

ACTION POTENTIAL. Dr. Ayisha Qureshi Professor MBBS, MPhil ACTION POTENTIAL Dr. Ayisha Qureshi Professor MBBS, MPhil DEFINITIONS: Stimulus: A stimulus is an external force or event which when applied to an excitable tissue produces a characteristic response. Subthreshold

More information

The biological motors

The biological motors Motor proteins The definition of motor proteins Miklós Nyitrai, November 30, 2016 Molecular machines key to understand biological processes machines in the micro/nano-world (unidirectional steps): nm,

More information

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle The Nervous System and Muscle SECTION 2 2-1 Nernst Potential 2-2 Resting Membrane Potential 2-3 Axonal Action Potential 2-4 Neurons 2-5 Axonal Conduction 2-6 Morphology of Synapses 2-7 Chemical Synaptic

More information

Molecular Cell Biology 5068 In Class Exam 2 November 8, 2016

Molecular Cell Biology 5068 In Class Exam 2 November 8, 2016 Molecular Cell Biology 5068 In Class Exam 2 November 8, 2016 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your

More information

! Depolarization continued. AP Biology. " The final phase of a local action

! Depolarization continued. AP Biology.  The final phase of a local action ! Resting State Resting potential is maintained mainly by non-gated K channels which allow K to diffuse out! Voltage-gated ion K and channels along axon are closed! Depolarization A stimulus causes channels

More information

Interactions and Dynamics within the Troponin Complex

Interactions and Dynamics within the Troponin Complex Interactions and Dynamics within the Troponin Complex Tharin Blumenschein Steve Matthews Lab - Imperial College London (formerly Brian Sykes Lab, Canada) Striated muscle Thin filament proteins - regulation

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 48 Neurons, Synapses, and Signaling

More information

BIOLOGY. 1. Overview of Neurons 11/3/2014. Neurons, Synapses, and Signaling. Communication in Neurons

BIOLOGY. 1. Overview of Neurons 11/3/2014. Neurons, Synapses, and Signaling. Communication in Neurons CAMPBELL BIOLOGY TENTH EDITION 48 Reece Urry Cain Wasserman Minorsky Jackson Neurons, Synapses, and Signaling Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick 1. Overview of Neurons Communication

More information

Naseem Demeri. Mohammad Alfarra. Mohammad Khatatbeh

Naseem Demeri. Mohammad Alfarra. Mohammad Khatatbeh 7 Naseem Demeri Mohammad Alfarra Mohammad Khatatbeh In the previous lectures, we have talked about how the difference in permeability for ions across the cell membrane can generate a potential. The potential

More information

The following question(s) were incorrectly answered.

The following question(s) were incorrectly answered. Name: Marcie Joseph Module: Cells & chemistry Test topic/animation: My animations/all animations Test type: Multiple choice Score: 48/50 Percent correct: 96% The following question(s) were incorrectly

More information

Neurite formation & neuronal polarization

Neurite formation & neuronal polarization Neurite formation & neuronal polarization Paul Letourneau letou001@umn.edu Chapter 16; The Cytoskeleton; Molecular Biology of the Cell, Alberts et al. 1 An immature neuron in cell culture first sprouts

More information

BIO 311C Spring 2010

BIO 311C Spring 2010 BIO 311C Spring 2010 Prokaryotic cells contain structures that are very similar to structures of the eukaryotic cytoskeleton. Prokaryotic cytoskeletal elements are required for cell division, maintaining

More information

Dendrites - receives information from other neuron cells - input receivers.

Dendrites - receives information from other neuron cells - input receivers. The Nerve Tissue Neuron - the nerve cell Dendrites - receives information from other neuron cells - input receivers. Cell body - includes usual parts of the organelles of a cell (nucleus, mitochondria)

More information