Series & Parallel Resistors 3/17/2015 1

Size: px
Start display at page:

Download "Series & Parallel Resistors 3/17/2015 1"

Transcription

1 Series & Parallel Resistors 3/17/2015 1

2 Series Resistors & Voltage Division Consider the single-loop circuit as shown in figure. The two resistors are in series, since the same current i flows in both of them. Applying Ohm s law to each of the resistors, we obtain v 1 = ir 1 and, v 2 = ir 2. (1) If we apply KVL to the loop, we have v + v 1 + v 2 = 0... (2) Combining Eqs. (1) and (2), we get Fig.1 v = v 1 + v 2 = i(r 1 + R 2 )...(3) or i = v / (R 1 + R 2 )..... (4) Notice that Eq. (3) can be written as v = ir eq.....(5) Fig.2 implying that the two resistors can be replaced by an equivalent resistor R eq ; that is, R eq = R 1 + R (6) Thus, Fig.1 can be replaced by the equivalent circuit in Fig. 2. The two circuits in Figs. 1 and 2 are equivalent because they exhibit the same voltage-current relationships at the terminals a-b. An equivalent circuit such as the one in Fig. 2 is useful in simplifying the analysis of a circuit. 3/17/2015 2

3 In general, For N resistors in series then, To determine the voltage across each resistor in Fig. 1, we substitute Eq. (4) into Eq. (1) and obtain This is called the principle of voltage division, and the circuit in Fig. 1 is called a voltage divider. In general, if a voltage divider has N resistors (R 1,R 2,..., R N ) in series with the source voltage v, the nth resistor (R n ) will have a voltage drop of 3/17/2015 3

4 Parallel Resistors & Current Division Consider the circuit in Fig.1, where two resistors are connected in parallel and therefore have the same voltage across them. From Ohm s law, v = i 1 R 1 = i 2 R 2 or (1) Applying KCL at node a gives the total current i as Substituting Eq. (1) into Eq. (2), we get (2) (3) Fig.1 where Req is the equivalent resistance of the resistors in parallel: (4) 3/17/ (5)

5 We can extend the result in Eq. (4) to the general case of a circuit with N resistors in parallel. The equivalent resistance is (6) It is often more convenient to use conductance rather than resistance when dealing with resistors in parallel. From Eq. (2.38), the equivalent conductance for N resistors in parallel is (7) 3/17/2015 5

6 CURRENT DIVISION i 2 / i 1 = R 1 / R 2 Or, i 2 = i 1 R 1 / R (4) Insert the value of i 1 from eq. (1) Therefore, i 2 = (i i 2 ) R 1 / R 2 i 2 R 2 = i R 1 i 2 R 1 i R 1 = i 2 (R 1 + R 2 ) i = i 1 + i 2 Or, i 1 = i i (1) But, i 2 = v / R (2) and i 1 = v / R (3) From equations (2) and (3), We have: Or, i 2 = i R 1 / (R 1 + R 2 ) (5) Insert the value of i 2 from eq. (5) into eq. (4) we have, i 1 = i R 2 / (R 1 + R 2 ) 3/17/2015 6

7 Example: Find R eq for the circuit shown in Fig. 1. The 6Ω and 3 Ω resistors in the given Fig. 1 are in parallel therefore, R eq = 6 3 / = 2 Ω Also, the 1 Ω and 5 Ω resistors are in series; hence R eq = = 6 Ω Thus the given circuit of Fig. 1 is reduced to that in Fig. 2. In Fig. 2. the two 2 Ω resistors are in series, so R eq = = 4 Ω This 4 Ω resistor is now in parallel with the 6 Ω resistor in Fig. 2; Therefore, R eq = 4 6 / = 2.4 Ω The circuit in Fig. 2 is now replaced with that in Fig. 3. In Fig. 3, the three resistors are in series. Hence, the equivalent resistance for the circuit is Req = = 14.4 Ω Fig. 1 Fig. 2 Fig. 3 3/17/2015 7

8 Example: Find R ab of the given circuit /17/2015 8

9 Example: Find R 13 for the circuit shown in Example: Find R 12 for the circuit shown in 3/17/2015 9

10 Example: Calculate G eq in the circuit of the given Fig. S Therefore, G eq = 12 x 6 / = 4s 3/17/

11 Example: Calculate the equivalent resistance R ab in the circuit in the givenfig. a a b Therefore, R ab = = 11.2 Ohms b 3/17/

12 Example: Find v 1 and v 2 in the circuit shown in the given Fig. Also calculate i 1 and i 2 and the power dissipated in the 12 and 40 Ohms resistors. Total current, i = 15/12 = 1.25 A i 1 = 1.25 x 6/12+6 = A I 2 = 1.25 x 10/10+40 =0.25A V 1 = i 1 x 12 = x 12 = V V 2 = i 2 x 40 = 0.25 x 40 = 10V P 12 = i 1 2 x 12 = (0.416) 2 x 12 = 2W P 40 = i 2 2 x 40 = (0.25) 2 x 40 = 248W 3/17/

13 Example: Find v 1, v 2 and v 3 in the following circuit. 8 3/17/

14 Example: Calculate v 1, i 1, v 2 and i 2 in the given circuit. 3/17/

15 Example: In the given circuit find v, I, and the power absorbed by the 4 Ohm resistor. 3/17/

16 Example: Calculate V O and I O in the following circuit. 3/17/

17 Example: Calculate the equivalent resistance R ab at terminals a-b for each of the circuits given below: (a) (b) X 3/17/

18 (C) (D) 3/17/

19 Example: If R eq = 50 Ohms in the given circuit find R. 3/17/

20 Example: Reduce the following circuit shown in the given figure to a single resistor at terminals a-b. 3/17/

21 Example: Reduce the following circuit shown in the given figure to a single resistor at terminals a-b. 3/17/

22 Example: Calculate the equivalent resistance R ab at terminals a-b for the given circuit. 3/17/

23 Example: Find the equivalent resistance R ab in the following circuit: 3/17/

24 TUTORIAL # 01 Q.1 Find v 1 and v 2 in the following circuit. 3/17/

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1. Problem 1.24 The plot in Fig. P1.24 displays the cumulative charge q(t) that has entered a certain device up to time t. Sketch a plot of the corresponding current i(t). q 20 C 0 1 2 3 4 5 t (s) 20 C Figure

More information

ECE 1311: Electric Circuits. Chapter 2: Basic laws

ECE 1311: Electric Circuits. Chapter 2: Basic laws ECE 1311: Electric Circuits Chapter 2: Basic laws Basic Law Overview Ideal sources series and parallel Ohm s law Definitions open circuits, short circuits, conductance, nodes, branches, loops Kirchhoff's

More information

Lecture #3. Review: Power

Lecture #3. Review: Power Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 4 120906 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Voltage Divider Current Divider Node-Voltage Analysis 3 Network Analysis

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

Electric Circuits I. Nodal Analysis. Dr. Firas Obeidat

Electric Circuits I. Nodal Analysis. Dr. Firas Obeidat Electric Circuits I Nodal Analysis Dr. Firas Obeidat 1 Nodal Analysis Without Voltage Source Nodal analysis, which is based on a systematic application of Kirchhoff s current law (KCL). A node is defined

More information

Chapter 5. Department of Mechanical Engineering

Chapter 5. Department of Mechanical Engineering Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation

More information

Review of Circuit Analysis

Review of Circuit Analysis Review of Circuit Analysis Fundamental elements Wire Resistor Voltage Source Current Source Kirchhoff s Voltage and Current Laws Resistors in Series Voltage Division EE 42 Lecture 2 1 Voltage and Current

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module 2 DC Circuit Lesson 5 Node-voltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s

More information

ENGR 2405 Class No Electric Circuits I

ENGR 2405 Class No Electric Circuits I ENGR 2405 Class No. 48056 Electric Circuits I Dr. R. Williams Ph.D. rube.williams@hccs.edu Electric Circuit An electric circuit is an interconnec9on of electrical elements Charge Charge is an electrical

More information

Voltage Dividers, Nodal, and Mesh Analysis

Voltage Dividers, Nodal, and Mesh Analysis Engr228 Lab #2 Voltage Dividers, Nodal, and Mesh Analysis Name Partner(s) Grade /10 Introduction This lab exercise is designed to further your understanding of the use of the lab equipment and to verify

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Circuits & Electronics Problem Set #1 Solution

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Circuits & Electronics Problem Set #1 Solution Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.2: Circuits & Electronics Problem Set # Solution Exercise. The three resistors form a series connection.

More information

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer J. McNames Portland State University ECE 221 Circuit Theorems Ver. 1.36 1

More information

Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Circuit Analysis (EC 2) Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,

More information

DC STEADY STATE CIRCUIT ANALYSIS

DC STEADY STATE CIRCUIT ANALYSIS DC STEADY STATE CIRCUIT ANALYSIS 1. Introduction The basic quantities in electric circuits are current, voltage and resistance. They are related with Ohm s law. For a passive branch the current is: I=

More information

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal

More information

Preamble. Circuit Analysis II. Mesh Analysis. When circuits get really complex methods learned so far will still work,

Preamble. Circuit Analysis II. Mesh Analysis. When circuits get really complex methods learned so far will still work, Preamble Circuit Analysis II Physics, 8 th Edition Custom Edition Cutnell & Johnson When circuits get really complex methods learned so far will still work, but they can take a long time to do. A particularly

More information

Homework 1 solutions

Homework 1 solutions Electric Circuits 1 Homework 1 solutions (Due date: 2014/3/3) This assignment covers Ch1 and Ch2 of the textbook. The full credit is 100 points. For each question, detailed derivation processes and accurate

More information

Lecture 1. Electrical Transport

Lecture 1. Electrical Transport Lecture 1. Electrical Transport 1.1 Introduction * Objectives * Requirements & Grading Policy * Other information 1.2 Basic Circuit Concepts * Electrical l quantities current, voltage & power, sign conventions

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Review The resistance R of a device is given by Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 8 R =! L A ρ is resistivity of the material from which the device is constructed L is the

More information

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving

More information

Discussion Question 6A

Discussion Question 6A Discussion Question 6 P212, Week 6 Two Methods for Circuit nalysis Method 1: Progressive collapsing of circuit elements In last week s discussion, we learned how to analyse circuits involving batteries

More information

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat Electric Circuits II Sinusoidal Steady State Analysis Dr. Firas Obeidat 1 Table of Contents 1 2 3 4 5 Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin and Norton Equivalent

More information

MAE140 - Linear Circuits - Winter 09 Midterm, February 5

MAE140 - Linear Circuits - Winter 09 Midterm, February 5 Instructions MAE40 - Linear ircuits - Winter 09 Midterm, February 5 (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a

More information

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents around an electrical circuit. This is a short lecture,

More information

Midterm Exam (closed book/notes) Tuesday, February 23, 2010

Midterm Exam (closed book/notes) Tuesday, February 23, 2010 University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple

More information

MAE140 - Linear Circuits - Fall 14 Midterm, November 6

MAE140 - Linear Circuits - Fall 14 Midterm, November 6 MAE140 - Linear Circuits - Fall 14 Midterm, November 6 Instructions (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a

More information

ELECTRICAL THEORY. Ideal Basic Circuit Element

ELECTRICAL THEORY. Ideal Basic Circuit Element ELECTRICAL THEORY PROF. SIRIPONG POTISUK ELEC 106 Ideal Basic Circuit Element Has only two terminals which are points of connection to other circuit components Can be described mathematically in terms

More information

ECEN 325 Electronics

ECEN 325 Electronics ECEN 325 Electronics Introduction Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Ohm s Law i R i R v 1 v v 2 v v 1 v 2 v = v 1 v 2 v = v 1 v 2 v = ir

More information

CHAPTER FOUR CIRCUIT THEOREMS

CHAPTER FOUR CIRCUIT THEOREMS 4.1 INTRODUCTION CHAPTER FOUR CIRCUIT THEOREMS The growth in areas of application of electric circuits has led to an evolution from simple to complex circuits. To handle the complexity, engineers over

More information

Name: Lab: M8 M2 W8 Th8 Th11 Th2 F8. cos( θ) = cos(θ) sin( θ) = sin(θ) sin(θ) = cos. θ (radians) θ (degrees) cos θ sin θ π/6 30

Name: Lab: M8 M2 W8 Th8 Th11 Th2 F8. cos( θ) = cos(θ) sin( θ) = sin(θ) sin(θ) = cos. θ (radians) θ (degrees) cos θ sin θ π/6 30 Name: Lab: M8 M2 W8 Th8 Th11 Th2 F8 Trigonometric Identities cos(θ) = cos(θ) sin(θ) = sin(θ) sin(θ) = cos Cosines and Sines of common angles Euler s Formula θ (radians) θ (degrees) cos θ sin θ 0 0 1 0

More information

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents. Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in

More information

Sirindhorn International Institute of Technology Thammasat University at Rangsit

Sirindhorn International Institute of Technology Thammasat University at Rangsit Sirindhorn International Institute of Technology Thammasat University at Rangsit School of Information, Computer and Communication Technology COURSE : ECS 304 Basic Electrical Engineering Lab INSTRUCTOR

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

Basic Laws. Bởi: Sy Hien Dinh

Basic Laws. Bởi: Sy Hien Dinh Basic Laws Bởi: Sy Hien Dinh INTRODUCTION Chapter 1 introduced basic concepts such as current, voltage, and power in an electric circuit. To actually determine the values of this variable in a given circuit

More information

Resistor. l A. Factors affecting the resistance are 1. Cross-sectional area, A 2. Length, l 3. Resistivity, ρ

Resistor. l A. Factors affecting the resistance are 1. Cross-sectional area, A 2. Length, l 3. Resistivity, ρ Chapter 2 Basic Laws. Ohm s Law 2. Branches, loops and nodes definition 3. Kirchhoff s Law 4. Series resistors circuit and voltage division. 5. Equivalent parallel circuit and current division. 6. Wye-Delta

More information

Analysis of a single-loop circuit using the KVL method

Analysis of a single-loop circuit using the KVL method Analysis of a single-loop circuit using the KVL method Figure 1 is our circuit to analyze. We shall attempt to determine the current through each element, the voltage across each element, and the power

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 2100 Circuit Analysis Lesson 3 Chapter 2 Ohm s Law Network Topology: nodes, branches, and loops Daniel M. Litynski, Ph.D. http://homepages.wmich.edu/~dlitynsk/ esistance ESISTANCE = Physical property

More information

R 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. C-C Tsai

R 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. C-C Tsai Chapter 07 Series-Parallel Circuits The Series-Parallel Network Complex circuits May be separated both series and/or parallel elements Combinations which are neither series nor parallel To analyze a circuit

More information

Tutorial #4: Bias Point Analysis in Multisim

Tutorial #4: Bias Point Analysis in Multisim SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #4: Bias Point Analysis in Multisim INTRODUCTION When BJTs

More information

3.1 Superposition theorem

3.1 Superposition theorem Many electric circuits are complex, but it is an engineer s goal to reduce their complexity to analyze them easily. In the previous chapters, we have mastered the ability to solve networks containing independent

More information

Chapter 10 AC Analysis Using Phasors

Chapter 10 AC Analysis Using Phasors Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this

More information

COOKBOOK KVL AND KCL A COMPLETE GUIDE

COOKBOOK KVL AND KCL A COMPLETE GUIDE 1250 COOKBOOK KVL AND KCL A COMPLETE GUIDE Example circuit: 1) Label all source and component values with a voltage drop measurement (+,- ) and a current flow measurement (arrow): By the passive sign convention,

More information

Kirchhoff's Laws and Maximum Power Transfer

Kirchhoff's Laws and Maximum Power Transfer German Jordanian University (GJU) Electrical Circuits Laboratory Section Experiment Kirchhoff's Laws and Maximum Power Transfer Post lab Report Mahmood Hisham Shubbak / / 8 Objectives: To learn KVL and

More information

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above EE-201, Review Probs Test 1 page-1 Spring 98 EE-201 Review Exam I Multiple Choice (5 points each, no partial credit.) 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6)

More information

4/27 Friday. I have all the old homework if you need to collect them.

4/27 Friday. I have all the old homework if you need to collect them. 4/27 Friday Last HW: do not need to turn it. Solution will be posted on the web. I have all the old homework if you need to collect them. Final exam: 7-9pm, Monday, 4/30 at Lambert Fieldhouse F101 Calculator

More information

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 10.1 10.2 10.3 10.4 10.5 10.6 10.9 Basic Approach Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin & Norton Equivalent Circuits

More information

Notes for course EE1.1 Circuit Analysis TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS

Notes for course EE1.1 Circuit Analysis TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS Notes for course EE1.1 Circuit Analysis 2004-05 TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS OBJECTIVES 1) To introduce the Source Transformation 2) To consider the concepts of Linearity and Superposition

More information

mywbut.com Mesh Analysis

mywbut.com Mesh Analysis Mesh Analysis 1 Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide more general and powerful circuit analysis tool based on Kirchhoff s voltage law (KVL) only.

More information

ELECTRONICS E # 1 FUNDAMENTALS 2/2/2011

ELECTRONICS E # 1 FUNDAMENTALS 2/2/2011 FE Review 1 ELECTRONICS E # 1 FUNDAMENTALS Electric Charge 2 In an electric circuit it there is a conservation of charge. The net electric charge is constant. There are positive and negative charges. Like

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Resistive Touchscreen - expanding the model

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Resistive Touchscreen - expanding the model EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 13 13.1 Resistive Touchscreen - expanding the model Recall the physical structure of the simple resistive touchscreen given

More information

Electric Circuits I. Midterm #1

Electric Circuits I. Midterm #1 The University of Toledo Section number s5ms_elci7.fm - Electric Circuits I Midterm # Problems Points. 3 2. 7 3. 5 Total 5 Was the exam fair? yes no The University of Toledo Section number s5ms_elci7.fm

More information

Ver 6186 E1.1 Analysis of Circuits (2015) E1.1 Circuit Analysis. Problem Sheet 2 - Solutions

Ver 6186 E1.1 Analysis of Circuits (2015) E1.1 Circuit Analysis. Problem Sheet 2 - Solutions Ver 8 E. Analysis of Circuits (0) E. Circuit Analysis Problem Sheet - Solutions Note: In many of the solutions below I have written the voltage at node X as the variable X instead of V X in order to save

More information

Simple Resistive Circuits

Simple Resistive Circuits German Jordanian University (GJU) Electrical Circuits Laboratory Section 3 Experiment Simple Resistive Circuits Post lab Report Mahmood Hisham Shubbak 7 / / 8 Objectives: To learn how to use the Unitr@in

More information

Parallel Circuits. Chapter

Parallel Circuits. Chapter Chapter 5 Parallel Circuits Topics Covered in Chapter 5 5-1: The Applied Voltage V A Is the Same Across Parallel Branches 5-2: Each Branch I Equals V A / R 5-3: Kirchhoff s Current Law (KCL) 5-4: Resistance

More information

Electric Current. Note: Current has polarity. EECS 42, Spring 2005 Week 2a 1

Electric Current. Note: Current has polarity. EECS 42, Spring 2005 Week 2a 1 Electric Current Definition: rate of positive charge flow Symbol: i Units: Coulombs per second Amperes (A) i = dq/dt where q = charge (in Coulombs), t = time (in seconds) Note: Current has polarity. EECS

More information

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws ES250: Electrical Science HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws Introduction Engineers use electric circuits to solve problems that are important to modern society, such as: 1.

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]

More information

Sinusoidal Steady State Analysis (AC Analysis) Part I

Sinusoidal Steady State Analysis (AC Analysis) Part I Sinusoidal Steady State Analysis (AC Analysis) Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Circuit Theory I Basic Laws

Circuit Theory I Basic Laws Circuit Theory I Basic Laws Assistant Professor Suna BOLAT Eastern Mediterranean University Electric and electronic department ef2: Anant Agarwaland Jeffrey Lang, course materials for 6.002 Circuits and

More information

Chapter 2 Circuit Elements

Chapter 2 Circuit Elements Chapter 2 Circuit Elements 2.1 Voltage and Current Sources 2.2 Electrical Resistance (Ohm s Law) 2.3 Construction of a Circuit Model 2.4 Kirchhoff s Laws 2.5 Analysis of a Circuit Containing Dependent

More information

Problem Set 1 Solutions (Rev B, 2/5/2012)

Problem Set 1 Solutions (Rev B, 2/5/2012) University of California, Berkeley Spring 2012 EE 42/100 Prof. A. Niknejad Problem Set 1 Solutions (Rev B, 2/5/2012) Please note that these are merely suggested solutions. Many of these problems can be

More information

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku Chapter 3, Problem 9(8). Find V x in the network shown in Fig. 3.78. Figure 3.78 Chapter 3, Solution 9(8). Consider the circuit below. 2 Ω 2 Ω -j 8 30 o I j 4 j 4 I 2 -j2v For loop, 8 30 = (2 j4)i ji 2

More information

Ohm's Law and Resistance

Ohm's Law and Resistance Ohm's Law and Resistance Resistance Resistance is the property of a component which restricts the flow of electric current. Energy is used up as the voltage across the component drives the current through

More information

Designing Information Devices and Systems II Fall 2016 Murat Arcak and Michel Maharbiz Homework 0. This homework is due August 29th, 2016, at Noon.

Designing Information Devices and Systems II Fall 2016 Murat Arcak and Michel Maharbiz Homework 0. This homework is due August 29th, 2016, at Noon. EECS 16B Designing Information Devices and Systems II Fall 2016 Murat Arcak and Michel Maharbiz Homework 0 This homework is due August 29th, 2016, at Noon. 1. Homework process and study group (a) Who else

More information

INTRODUCTION TO ELECTRONICS

INTRODUCTION TO ELECTRONICS INTRODUCTION TO ELECTRONICS Basic Quantities Voltage (symbol V) is the measure of electrical potential difference. It is measured in units of Volts, abbreviated V. The example below shows several ways

More information

09-Circuit Theorems Text: , 4.8. ECEGR 210 Electric Circuits I

09-Circuit Theorems Text: , 4.8. ECEGR 210 Electric Circuits I 09Circuit Theorems Text: 4.1 4.3, 4.8 ECEGR 210 Electric Circuits I Overview Introduction Linearity Superposition Maximum Power Transfer Dr. Louie 2 Introduction Nodal and mesh analysis can be tedious

More information

Sinusoidal Steady State Analysis (AC Analysis) Part II

Sinusoidal Steady State Analysis (AC Analysis) Part II Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Thevenin equivalent circuits

Thevenin equivalent circuits Thevenin equivalent circuits We have seen the idea of equivalency used in several instances already. 1 2 1 2 same as 1 2 same as 1 2 R 3 same as = 0 V same as 0 A same as same as = EE 201 Thevenin 1 The

More information

A tricky node-voltage situation

A tricky node-voltage situation A tricky node-voltage situation The node-method will always work you can always generate enough equations to determine all of the node voltages. The method we have outlined well in almost all cases, but

More information

Direct Current (DC): In a DC circuit the current and voltage are constant as a function of time. Power (P): Rate of doing work P = dw/dt units = Watts

Direct Current (DC): In a DC circuit the current and voltage are constant as a function of time. Power (P): Rate of doing work P = dw/dt units = Watts Lecture 1: Introduction Some Definitions: Current (I): Amount of electric charge (Q) moving past a point per unit time I dq/dt Coulombs/sec units Amps (1 Coulomb 6x10 18 electrons) oltage (): Work needed

More information

CHAPTER 4. Circuit Theorems

CHAPTER 4. Circuit Theorems CHAPTER 4 Circuit Theorems The growth in areas of application of electrical circuits has led to an evolution from simple to complex circuits. To handle such complexity, engineers over the years have developed

More information

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 EIT Review Electrical Circuits DC Circuits Lecturer: Russ Tatro Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 Session Outline Basic Concepts Basic Laws Methods of Analysis Circuit

More information

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Alternating Current Circuits : Basic Law

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Alternating Current Circuits : Basic Law BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING Alternating Current Circuits : Basic Law Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang Alternating

More information

To receive full credit, you must show all your work (including steps taken, calculations, and formulas used).

To receive full credit, you must show all your work (including steps taken, calculations, and formulas used). Page 1 Score Problem 1: (35 pts) Problem 2: (25 pts) Problem 3: (25 pts) Problem 4: (25 pts) Problem 5: (15 pts) TOTAL: (125 pts) To receive full credit, you must show all your work (including steps taken,

More information

ECE2262 Electric Circuits

ECE2262 Electric Circuits ECE2262 Electric Circuits Equivalence Chapter 5: Circuit Theorems Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 1 5. 1 Equivalence

More information

Notes on Electricity (Circuits)

Notes on Electricity (Circuits) A circuit is defined to be a collection of energy-givers (batteries) and energy-takers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current

More information

Electrical Technology (EE-101-F)

Electrical Technology (EE-101-F) Electrical Technology (EE-101-F) Contents Series & Parallel Combinations KVL & KCL Introduction to Loop & Mesh Analysis Frequently Asked Questions NPTEL Link Series-Parallel esistances 1 V 3 2 There are

More information

Sinusoids and Phasors

Sinusoids and Phasors CHAPTER 9 Sinusoids and Phasors We now begins the analysis of circuits in which the voltage or current sources are time-varying. In this chapter, we are particularly interested in sinusoidally time-varying

More information

Answer Key. Chapter 23. c. What is the current through each resistor?

Answer Key. Chapter 23. c. What is the current through each resistor? Chapter 23. Three 2.0- resistors are connected in series to a 50.0- power source. a. What is the equivalent resistance of the circuit? R R R 2 R 3 2.0 2.0 2.0 36.0 b. What is the current in the circuit?

More information

EXPERIMENT 12 OHM S LAW

EXPERIMENT 12 OHM S LAW EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete

More information

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits 1 Current current: (also called electric current) is an motion of charge from one region of a conductor to another. Current When

More information

Thevenin Norton Equivalencies - GATE Study Material in PDF

Thevenin Norton Equivalencies - GATE Study Material in PDF Thevenin Norton Equivalencies - GATE Study Material in PDF In these GATE 2018 Notes, we explain the Thevenin Norton Equivalencies. Thevenin s and Norton s Theorems are two equally valid methods of reducing

More information

Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9

Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9 Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9 P 5.2-2 Consider the circuit of Figure P 5.2-2. Find i a by simplifying the circuit (using source transformations)

More information

V x 4 V x. 2k = 5

V x 4 V x. 2k = 5 Review Problem: d) Dependent sources R3 V V R Vx - R2 Vx V2 ) Determine the voltage V5 when VV Need to find voltage Vx then multiply by dependent source multiplier () Node analysis 2 V x V x R R 2 V x

More information

1.7 Delta-Star Transformation

1.7 Delta-Star Transformation S Electronic ircuits D ircuits 8.7 Delta-Star Transformation Fig..(a) shows three resistors R, R and R connected in a closed delta to three terminals, and, their numerical subscripts,, and, being opposite

More information

D C Circuit Analysis and Network Theorems:

D C Circuit Analysis and Network Theorems: UNIT-1 D C Circuit Analysis and Network Theorems: Circuit Concepts: Concepts of network, Active and passive elements, voltage and current sources, source transformation, unilateral and bilateral elements,

More information

4 Electric circuits. Serial and parallel resistors V 3 V 2 V Serial connection of resistors:

4 Electric circuits. Serial and parallel resistors V 3 V 2 V Serial connection of resistors: 4 lectric circuits PHY67 Spring 006 Serial and parallel resistors Serial connection of resistors: As the current I through each of serially connected resistors is the same, one can use Ohm s law and write...

More information

Lecture # 2 Basic Circuit Laws

Lecture # 2 Basic Circuit Laws CPEN 206 Linear Circuits Lecture # 2 Basic Circuit Laws Dr. Godfrey A. Mills Email: gmills@ug.edu.gh Phone: 026907363 February 5, 206 Course TA David S. Tamakloe CPEN 206 Lecture 2 205_206 What is Electrical

More information

Electricity & Magnetism

Electricity & Magnetism Electricity & Magnetism D.C. Circuits Marline Kurishingal Note : This chapter includes only D.C. In AS syllabus A.C is not included. Recap... Electrical Circuit Symbols : Draw and interpret circuit diagrams

More information

ECE2262 Electric Circuits. Chapter 5: Circuit Theorems

ECE2262 Electric Circuits. Chapter 5: Circuit Theorems ECE2262 Electric Circuits Chapter 5: Circuit Theorems 1 Equivalence Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 2 5. 1 Equivalence

More information

Exercise 2: Kirchhoff s Current Law/2 Sources

Exercise 2: Kirchhoff s Current Law/2 Sources Exercise 2: Kirchhoff s Current Law/2 Sources EXERCISE OBJECTIVE When you have completed this exercise, you will be able to apply Kirchhoff s current law to a circuit having two voltage sources. You will

More information

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch:

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch: UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ECE 1270 HOMEWORK #6 Solution Summer 2009 1. After being closed a long time, the switch opens at t = 0. Find i(t) 1 for t > 0. t = 0 10kΩ

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide

More information

Look over Chapter 26 sections 1-7 Examples 3, 7. Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9,

Look over Chapter 26 sections 1-7 Examples 3, 7. Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9, Look over Chapter 26 sections 1-7 Examples 3, 7 Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9, 1)How to find a current in a wire. 2)What the Current Density and Draft Speed are. 3)What

More information

DC CIRCUIT ANALYSIS. Loop Equations

DC CIRCUIT ANALYSIS. Loop Equations All of the rules governing DC circuits that have been discussed so far can now be applied to analyze complex DC circuits. To apply these rules effectively, loop equations, node equations, and equivalent

More information

Parallel Resistors (32.6)

Parallel Resistors (32.6) Parallel Resistors (32.6) Resistors connected at both ends are called parallel resistors The important thing to note is that: the two left ends of the resistors are at the same potential. Also, the two

More information

Chapter 7. Chapter 7

Chapter 7. Chapter 7 Chapter 7 Combination circuits Most practical circuits have combinations of series and parallel components. You can frequently simplify analysis by combining series and parallel components. An important

More information