ECE 2100 Circuit Analysis


 Darren Harrell
 3 years ago
 Views:
Transcription
1
2 ECE 2100 Circuit Analysis Lesson 3 Chapter 2 Ohm s Law Network Topology: nodes, branches, and loops Daniel M. Litynski, Ph.D.
3
4 esistance ESISTANCE = Physical property of materials that resists flow of electricity = (in ohms) For a cylinder of length l & cross section area A: Where: resistivity of material in ohmmeters Table 2.1 in text shows resistivity of common materials over 20 orders of magnitude
5 2.1 Ohms Law (1) Ohm s law states that the voltage across a resistor is directly proportional to the current I flowing through the resistor. Mathematical expression for Ohm s Law is as follows: v i Two extreme possible values of : 0 (zero) and (infinite) are related with two basic circuit concepts: short circuit and open circuit. 5
6
7
8
9
10
11
12 2.1 Ohms Law (2) Conductance is the ability of an element to conduct electric current; it is the reciprocal of resistance and is measured in mhos or siemens. i G 1 v The power dissipated by a resistor: p vi i 2 2 v 12
13
14
15 2.2 Nodes, Branches and Loops (1) A branch represents a single element such as a voltage source or a resistor. A node is the point of connection between two or more branches. A loop is any closed path in a circuit. A network with b branches, n nodes, and l independent loops will satisfy the fundamental theorem of network topology: b l n 1 15
16 Example Nodes, Branches and Loops (2) Original circuit Equivalent circuit How many branches, nodes and loops are there? 16
17
18
19 Nodes, Branches, & Loops Branches: 5 (a5ohmb, a10vb, b2ohmc, b 3ohmc, b2ac) Nodes: 3 (a, b, c) Loops: 6 (3 independent) (a5ohmb2ohmc10va)  independent (a5ohmb3ohmc10va)  independent (a5ohmb2ac10va)  independent (c2ohmb3ohmc)  dependent (c2ohmb2ac)  dependent (c3ohmb2ac)  dependent Fundamental Theorem: b=l+n1 5 = = 5 Check!
20 How many branches, nodes and loops are there?
21
22 How many branches, nodes and loops are there?
23
24 2.2 Nodes, Branches and Loops (3) Example 2 Should we consider it as one branch or two branches? How many branches, nodes and loops are there? 24
25 Nodes, Branches, & Loops Branches: 7 (12 ohm, 8 ohm, 5 ohm, 2 ohm, 6 ohm, 3 ohm, 13.7 A) Nodes: 4 (a, b, c, d) Loops: 10 (4 independent) Fundamental Theorem: b=l+n1 7 = = 7 Check!
26 Nodes, Branches, & Loops Network: An interconnection of elements and devices Circuit: A network providing one or more closed paths Short Circuit: A circuit element with resistance approaching zero Open circuit: A circuit element with resistance approaching infinity Branch: A single element such as a voltage source or resistor Series elements: Exclusively share a single node; carry the same current Parallel elements: connected to the same two nodes; have same voltage across them Node: A point of connection between two or more branches Loop: Any closed path in a circuit A loop is independent if it contains at least one branch that is not part of any other independent loop.
27 ECE 2100 Circuit Analysis Lesson 3 Chapter 2 Ohm s Law Network Topology: nodes, branches, and loops Daniel M. Litynski, Ph.D.
28 ECE 2100 Circuit Analysis Lesson 2 Chapter 1 Basic Concepts Prof Daniel M. Litynski, Ph.D.
29 Basic Concepts  Chapter Systems of Units. 1.2 Electric Charge. 1.3 Current. 1.4 Voltage. 1.5 Power and Energy. 1.6 Circuit Elements. 29
30 1.1 System of Units (1) Six basic units Quantity Basic unit Symbol Length meter m Mass kilogram Kg Time second s Electric current ampere A Thermodynamic temperature kelvin Luminous intensity candela cd K 30
31 1.1 System of Units (2) The derived units commonly used in electric circuit theory Decimal multiples and submultiples of SI units 31
32
33
34
35 1.2 Electric Charges Charge is an electrical property of the atomic particles of which matter consists, measured in coulombs (C). The charge e on one electron is negative and equal in magnitude to C which is called as electronic charge. The charges that occur in nature are integral multiples of the electronic charge. Law of conservation of charge Neither create nor destroy, only transfer 35
36 1.3 Current (1) Electric current i = dq/dt. The unit of ampere can be derived as 1 A = 1C/s. A direct current (dc) is a current that remains constant with time. An alternating current (ac) is a current that varies sinusoidally with time. (reverse direction) 36
37 1.3 Current (2) The direction of current flow Positive ions Negative ions 37
38
39
40 1.3 Current (3) Example 1 A conductor has a constant current of 5 A. How many electrons pass a fixed point on the conductor in one minute? 40
41 1.3 Current (4) Solution Total no. of charges pass in 1 min is given by 5 A = (5 C/s)(60 s/min) = 300 C/min Total no. of electrons pass in 1 min is given 300 C/min x x10 C/electron electrons/min 41
42
43 1.4 Voltage (1) Voltage (or potential difference) is the energy required to move a unit charge through an element, measured in volts (V). Mathematically, v dw/ ab dq (volt) w is energy in joules (J) and q is charge in coulomb (C). v ab = voltage at a with respect to b = v a  v b = v a0 v b0 Electric voltage, v ab, is always across the circuit element or between two points in a circuit. v ab > 0 means the potential of a is higher than potential of b. v ab < 0 means the potential of a is lower than potential of b. 43
44
45 1.5 Power and Energy (1) Power is the time rate of expending or absorbing energy, measured in watts (W). Mathematical expression: (instantaneous power) i p dw dt dw dq i dq dt vi + v + v Passive sign convention p = +vi p = vi 45 absorbing power supplying power
46
47 1.5 Power and Energy (2) The law of conservation of energy w requires the sum of power in a circuit at any instant of time must = 0: p 0 Energy is the capacity to do work, measured in joules (J). t (energy absorbed or supplied by an element) Mathematical expression w pdt vidt 0 t0 t t 47
48 1.6 Circuit Elements (1) Active Elements Passive Elements Independent sources Dependant sources A dependent source is an active element in which the source quantity is controlled by another voltage or current. They have four different types: VCVS, CCVS, VCCS, CCCS. Keep in minds the signs of dependent sources. 48
49
50
51
52 1.6 Circuit Elements (2) Example 2 Obtain the voltage v in the branch shown in Figure 2.1.1P for i 2 = 1A. Figure 2.1.1P 52
53 1.6 Circuit Elements (3) Solution Voltage v is the sum of the currentindependent 10V source and the currentdependent voltage source v x. Note that the factor 15 multiplying the control current carries the units Ω. Therefore, v = 10 + v x = (1) = 25 V 53
54
55 2.3 Kirchhoff s Laws (1) Kirchhoff s current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero. Mathematically, N n1 i n 0 55
56 Example Kirchhoff s Laws (2) Determine the current I for the circuit shown in the figure below. I + 4(3)2 = 0 I = 5A We can consider the whole enclosed area as one node. This indicates that the actual current for I is flowing in the 56 opposite
57 2.3 Kirchhoff s Laws (3) Kirchhoff s voltage law (KVL) states that the algebraic sum of all voltages around a closed path (or loop) is zero. M v n m1 Mathematically, 0 57
58 Example Kirchhoff s Laws (4) Applying the KVL equation for the circuit of the figure below. v a v 1 v b v 2 v 3 = 0 V 1 = I 1 v 2 = I 2 v 3 = I 3 v a v b = I( ) I v v a b
59 2.4 Series esistors and Voltage Division (1) Series: Two or more elements are in series if they are cascaded or connected sequentially and consequently carry the same current. The equivalent resistance of any number of resistors connected in a series is the sum of the individual resistances. eq 1 The voltage divider can be expressed as 2 N N n1 n v n 1 2 n N v 59
60 2.4 Series esistors and Voltage Division (1) Example 3 10V and 5W are in series 60
61 2.5 Parallel esistors and Current Division (1) Parallel: Two or more elements are in parallel if they are connected to the same two nodes and consequently have the same voltage across them. The equivalent resistance of a circuit with N resistors in parallel is: 1 eq 1 2 N The total current i is shared by the resistors in inverse proportion to their resistances. The current divider can be expressed as: v i in n eq n 61
62 2.5 Parallel esistors and Current Division (1) Example 4 2W, 3W and 2A are in parallel 62
63 WyeDelta Transformations ) ( 1 c b a c b ) ( 2 c b a a c ) ( 3 c b a b a a b c Delta > Star Star > Delta
ECE 1311: Electric Circuits. Chapter 2: Basic laws
ECE 1311: Electric Circuits Chapter 2: Basic laws Basic Law Overview Ideal sources series and parallel Ohm s law Definitions open circuits, short circuits, conductance, nodes, branches, loops Kirchhoff's
More informationBFF1303: ELECTRICAL / ELECTRONICS ENGINEERING
BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING Introduction Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang Introduction BFF1303 ELECTRICAL/ELECTRONICS
More informationENGR 2405 Class No Electric Circuits I
ENGR 2405 Class No. 48056 Electric Circuits I Dr. R. Williams Ph.D. rube.williams@hccs.edu Electric Circuit An electric circuit is an interconnec9on of electrical elements Charge Charge is an electrical
More information2. Basic Components and Electrical Circuits
1 2. Basic Components and Electrical Circuits 2.1 Units and Scales The International System of Units (SI) defines 6 principal units from which the units of all other physical quantities can be derived
More informationBasic Electrical Circuits Analysis ECE 221
Basic Electrical Circuits Analysis ECE 221 PhD. Khodr Saaifan http://trsys.faculty.jacobsuniversity.de k.saaifan@jacobsuniversity.de 1 2 Reference: Electric Circuits, 8th Edition James W. Nilsson, and
More informationDC Circuits: Basic Concepts Dr. Hasan Demirel
DC Circuits: Basic Concepts Dr. Hasan Demirel An electric circuit is an interconnection of electrical elements. A simple electric circuit Electric circuit of a radio receiver Six basic SI units and one
More informationKirchhoff's Laws and Circuit Analysis (EC 2)
Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,
More informationES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws
ES250: Electrical Science HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws Introduction Engineers use electric circuits to solve problems that are important to modern society, such as: 1.
More informationFundamental of Electrical circuits
Fundamental of Electrical circuits 1 Course Description: Electrical units and definitions: Voltage, current, power, energy, circuit elements: resistors, capacitors, inductors, independent and dependent
More informationLecture #3. Review: Power
Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is
More informationEECE251 Circuit Analysis I Lecture Integrated Program Set 1: Basic Circuit Concepts and Elements
EECE5 Circuit Analysis I Lecture Integrated Program Set : Basic Circuit Concepts and Elements Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca
More informationChapter 1 Basic Concepts
Dr. Waleed AlHanafy waleed alhanafy@yahoo.com Faculty of Electronic Engineering, Menoufia Univ., Egypt MSA Summer Course: Electric Circuit Analysis I (ESE 233) Lecture no. 1 July 11, 2011 Overview 1 SI
More informationResistor. l A. Factors affecting the resistance are 1. Crosssectional area, A 2. Length, l 3. Resistivity, ρ
Chapter 2 Basic Laws. Ohm s Law 2. Branches, loops and nodes definition 3. Kirchhoff s Law 4. Series resistors circuit and voltage division. 5. Equivalent parallel circuit and current division. 6. WyeDelta
More informationEngineering Fundamentals and Problem Solving, 6e
Engineering Fundamentals and Problem Solving, 6e Chapter 17 Electrical Circuits Chapter Objectives Compute the equivalent resistance of resistors in series and in parallel Apply Ohm s law to a resistive
More informationChapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
More informationElectric Current. Note: Current has polarity. EECS 42, Spring 2005 Week 2a 1
Electric Current Definition: rate of positive charge flow Symbol: i Units: Coulombs per second Amperes (A) i = dq/dt where q = charge (in Coulombs), t = time (in seconds) Note: Current has polarity. EECS
More informationCircuit Theory I Basic Laws
Circuit Theory I Basic Laws Assistant Professor Suna BOLAT Eastern Mediterranean University Electric and electronic department ef2: Anant Agarwaland Jeffrey Lang, course materials for 6.002 Circuits and
More informationBasic Laws. Bởi: Sy Hien Dinh
Basic Laws Bởi: Sy Hien Dinh INTRODUCTION Chapter 1 introduced basic concepts such as current, voltage, and power in an electric circuit. To actually determine the values of this variable in a given circuit
More informationSeries & Parallel Resistors 3/17/2015 1
Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the singleloop circuit as shown in figure. The two resistors are in series, since the same current i flows in both
More informationENGG 225. David Ng. Winter January 9, Circuits, Currents, and Voltages... 5
ENGG 225 David Ng Winter 2017 Contents 1 January 9, 2017 5 1.1 Circuits, Currents, and Voltages.................... 5 2 January 11, 2017 6 2.1 Ideal Basic Circuit Elements....................... 6 3 January
More informationCharge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter
Basic Concepts of DC Circuits Introduction An electric circuit is an interconnection of electrical elements. Systems of Units 1 Charge The most basic quantity in an electric circuit is the electric charge.
More informationNotes on Electricity (Circuits)
A circuit is defined to be a collection of energygivers (batteries) and energytakers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current
More informationChapter 1 Circuit Variables
Chapter 1 Circuit Variables 1.1 Electrical Engineering: An Overview 1.2 The International System of Units 1.3 Circuit Analysis: An Overview 1.4 Voltage and Current 1.5 The Ideal Basic Circuit Element 1.6
More informationELECTRONICS E # 1 FUNDAMENTALS 2/2/2011
FE Review 1 ELECTRONICS E # 1 FUNDAMENTALS Electric Charge 2 In an electric circuit it there is a conservation of charge. The net electric charge is constant. There are positive and negative charges. Like
More informationPhysics 1214 Chapter 19: Current, Resistance, and DirectCurrent Circuits
Physics 1214 Chapter 19: Current, Resistance, and DirectCurrent Circuits 1 Current current: (also called electric current) is an motion of charge from one region of a conductor to another. Current When
More informationSolution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.
Problem 1.24 The plot in Fig. P1.24 displays the cumulative charge q(t) that has entered a certain device up to time t. Sketch a plot of the corresponding current i(t). q 20 C 0 1 2 3 4 5 t (s) 20 C Figure
More informationNotes on Electricity (Circuits)
A circuit is defined to be a collection of energygivers (active elements) and energytakers (passive elements) that form a closed path (or complete path) through which electrical current can flow. The
More informationDirect Current (DC) Circuits
Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be
More informationE246 Electronics & Instrumentation. Lecture 1: Introduction and Review of Basic Electronics
E246 Electronics & Instrumentation Lecture 1: Introduction and Review of Basic Electronics Course Personnel Instructor: Yi Guo Office: Burchard 207 Office Hours: Tuesday & Thursday 23pm Ph: (201) 2165658
More informationECE2262 Electric Circuits. Chapter 1: Basic Concepts. Overview of the material discussed in ENG 1450
ECE2262 Electric Circuits Chapter 1: Basic Concepts Overview of the material discussed in ENG 1450 1 Circuit Analysis 2 Lab ECE 2262 3 LN  ECE 2262 Basic Quantities: Current, Voltage, Energy, Power The
More informationElectrical Eng. fundamental Lecture 1
Electrical Eng. fundamental Lecture 1 Contact details: helhelw@staffs.ac.uk Introduction Electrical systems pervade our lives; they are found in home, school, workplaces, factories,
More informationElectric Circuits I. Nodal Analysis. Dr. Firas Obeidat
Electric Circuits I Nodal Analysis Dr. Firas Obeidat 1 Nodal Analysis Without Voltage Source Nodal analysis, which is based on a systematic application of Kirchhoff s current law (KCL). A node is defined
More informationChapter 3: Electric Current and DirectCurrent Circuit
Chapter 3: Electric Current and DirectCurrent Circuit n this chapter, we are going to discuss both the microscopic aspect and macroscopic aspect of electric current. Directcurrent is current that flows
More informationFE Review 2/2/2011. Electric Charge. Electric Energy ELECTRONICS # 1 FUNDAMENTALS
FE eview ELECONICS # FUNDAMENALS Electric Charge 2 In an electric circuit there is a conservation of charge. he net electric charge is constant. here are positive and negative charges. Like charges repel
More informationBasic Electricity. Unit 2 Basic Instrumentation
Basic Electricity Unit 2 Basic Instrumentation Outlines Terms related to basic electricitydefinitions of EMF, Current, Potential Difference, Power, Energy and Efficiency Definition: Resistance, resistivity
More informationELECTRICAL THEORY. Ideal Basic Circuit Element
ELECTRICAL THEORY PROF. SIRIPONG POTISUK ELEC 106 Ideal Basic Circuit Element Has only two terminals which are points of connection to other circuit components Can be described mathematically in terms
More informationVoltage Dividers, Nodal, and Mesh Analysis
Engr228 Lab #2 Voltage Dividers, Nodal, and Mesh Analysis Name Partner(s) Grade /10 Introduction This lab exercise is designed to further your understanding of the use of the lab equipment and to verify
More informationCircuit Analysis I (ENGR 2405) Chapter 1 Review: Charge, Current, Voltage, Power
Circuit Analysis I (ENGR 2405) Chapter 1 Review: Charge, Current, Voltage, Power What is a circuit? An electric circuit is an interconnection of electrical elements. It may consist of only two elements
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module 2 DC Circuit Lesson 5 Nodevoltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s
More informationEXPERIMENT THREE DC CIRCUITS
EXEMET THEE DC CCUT EQUMET EEDED: ) DC ower upply ) DMM 3) esistors 4) EL THEOY Kirchhoff's Laws: Kirchhoff's oltage Law: The algebraic sum of the voltages around any closed path is zero. v i i 0 3. Kirchhoff's
More informationINTRODUCTION TO ELECTRONICS
INTRODUCTION TO ELECTRONICS Basic Quantities Voltage (symbol V) is the measure of electrical potential difference. It is measured in units of Volts, abbreviated V. The example below shows several ways
More informationELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS. These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly.
Elec 250: Linear Circuits I 5/4/08 ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly. S.W. Neville Elec 250: Linear Circuits
More information8/17/2016. Summary. Summary. Summary. Chapter 1 Quantities and Units. Passive Components. SI Fundamental Units. Some Important Electrical Units
Passive Components Chapter 1 Quantities and Units Welcome to the Principles of Electric Circuits. You will study important ideas that are used in electronics. You may already be familiar with a few of
More informationSirindhorn International Institute of Technology Thammasat University at Rangsit
Sirindhorn International Institute of Technology Thammasat University at Rangsit School of Information, Computer and Communication Technology COURSE : ECS 304 Basic Electrical Engineering Lab INSTRUCTOR
More informationElectrical Technology (EE101F)
Electrical Technology (EE101F) Contents Series & Parallel Combinations KVL & KCL Introduction to Loop & Mesh Analysis Frequently Asked Questions NPTEL Link SeriesParallel esistances 1 V 3 2 There are
More informationCHAPTER ONE. 1.1 International System of Units and scientific notation : Basic Units: Quantity Basic unit Symbol as shown in table 1
CHAPTER ONE 1.1 International System of Units and scientific notation : 1.1.1 Basic Units: Quantity Basic unit Symbol as shown in table 1 Table 1 1.1.2 Some scientific notations : as shown in table 2 Table
More informationChapter 27: Current and Resistance
Chapter 7: Current and esistance In this section of the course we will be studying the flow of electric charge, current, in a circuit. We have already seen electric current when we first discussed electric
More informationE40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow. M. Horowitz, J. Plummer, R. Howe 1
E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow M. Horowitz, J. Plummer, R. Howe 1 Reading For Topics In These Slides Chapter 1 in the course reader OR A&L 1.61.7 
More informationChapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers**
Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Conductors under dynamic conditions Current, current density, drift velocity Ohm s law Types of conductor
More informationEE0001 PEEE Refresher Course. Week 1: Engineering Fundamentals
EE000 PEEE efresher Course Week : Engineering Fundamentals Engineering Fundamentals Bentley Chapters & Camara Chapters,, & 3 Electrical Quantities Energy (work), power, charge, current Electrostatic pressure,
More informationDC CIRCUIT ANALYSIS. Loop Equations
All of the rules governing DC circuits that have been discussed so far can now be applied to analyze complex DC circuits. To apply these rules effectively, loop equations, node equations, and equivalent
More informationSinusoidal Steady State Analysis (AC Analysis) Part II
Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/
More informationmywbut.com Mesh Analysis
Mesh Analysis 1 Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide more general and powerful circuit analysis tool based on Kirchhoff s voltage law (KVL) only.
More informationPhysics 142 Steady Currents Page 1. Steady Currents
Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of
More informationChapter 18 Electric Currents
Chapter 18 Electric Currents 1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple
More informationLecture 1. Electrical Transport
Lecture 1. Electrical Transport 1.1 Introduction * Objectives * Requirements & Grading Policy * Other information 1.2 Basic Circuit Concepts * Electrical l quantities current, voltage & power, sign conventions
More informationENGI 1040: ELECTRIC CIRCUITS Winter Part I Basic Circuits
1. Electric Charge ENGI 1040: ELECTRIC CIRCUITS Winter 2018 Part I Basic Circuits atom elementary unit of a material which contains the properties of that material can be modeled as negatively charged
More informationChapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final
Chapter 6 Current, esistance, and Direct Current Circuits Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge
More informationEE292: Fundamentals of ECE
EE292: Fundamentals of ECE Fall 2012 TTh 10:0011:15 SEB 1242 Lecture 4 120906 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Voltage Divider Current Divider NodeVoltage Analysis 3 Network Analysis
More informationCHAPTER 1 ELECTRICITY
CHAPTER 1 ELECTRICITY Electric Current: The amount of charge flowing through a particular area in unit time. In other words, it is the rate of flow of electric charges. Electric Circuit: Electric circuit
More informationChapter 27. Circuits
Chapter 27 Circuits 1 1. Pumping Chagres We need to establish a potential difference between the ends of a device to make charge carriers follow through the device. To generate a steady flow of charges,
More informationAnalysis of a singleloop circuit using the KVL method
Analysis of a singleloop circuit using the KVL method Figure 1 is our circuit to analyze. We shall attempt to determine the current through each element, the voltage across each element, and the power
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide
More information10/14/2018. Current. Current. QuickCheck 30.3
Current If QCurrent is the total amount of charge that has moved past a point in a wire, we define the current I in the wire to be the rate of charge flow: The SI unit for current is the coulomb per second,
More informationLecture # 2 Basic Circuit Laws
CPEN 206 Linear Circuits Lecture # 2 Basic Circuit Laws Dr. Godfrey A. Mills Email: gmills@ug.edu.gh Phone: 026907363 February 5, 206 Course TA David S. Tamakloe CPEN 206 Lecture 2 205_206 What is Electrical
More informationELEC 103. Objectives
ELEC 103 Voltage, Current, and Resistance Objectives Define voltage and discuss its characteristics Define current and discuss its characteristics Define resistance and discuss its characteristics Identify
More informationUNIT I Introduction to DC and AC circuits
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : EMT (15A01301) Year & Sem: IIB.Tech & ISem Course & Branch: B.Tech
More informationOutline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.
Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in
More informationDC STEADY STATE CIRCUIT ANALYSIS
DC STEADY STATE CIRCUIT ANALYSIS 1. Introduction The basic quantities in electric circuits are current, voltage and resistance. They are related with Ohm s law. For a passive branch the current is: I=
More informationCircuitsOhm's Law. 1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law?
1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law? 2. A potential drop of 50 volts is measured across a 250 ohm resistor.
More informationElectricity. From the word Elektron Greek for amber
Electricity From the word Elektron Greek for amber Electrical systems have two main objectives: To gather, store, process, transport information & Energy To distribute and convert energy Electrical Engineering
More informationCircuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer
Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer J. McNames Portland State University ECE 221 Circuit Theorems Ver. 1.36 1
More informationIntroduction to Electrical and Computer Engineering. International System of Units (SI)
Introduction to Electrical and Computer Engineering Basic Circuits and Simulation Basic Circuits and Simulation (1 of 22) International System of Units (SI) Length: meter (m) Mass: kilogram (kg) Time:
More informationExperiment 2: Analysis and Measurement of Resistive Circuit Parameters
Experiment 2: Analysis and Measurement of Resistive Circuit Parameters Report Due Inclass on Wed., Mar. 28, 2018 Prelab must be completed prior to lab. 1.0 PURPOSE To (i) verify Kirchhoff's laws experimentally;
More informationWhich of these particles has an electrical charge?
Which of these particles has an electrical charge? A. Proton. B. Electron. C. Ion. D. All of the above. Which is the predominant carrier of charge in copper wire? A. Proton. B. Electron. C. Ion. D. All
More informationElectric Circuit Theory
Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 01094192320 Chapter 1 Circuit Variables Nam Ki Min nkmin@korea.ac.kr 01094192320 1.1 Electrical Engineering 3 Electrical Engineering Electrical
More informationChapter 4. Chapter 4
Chapter 4 Energy 1 n Energy, W, is the ability to do work and is measured in joules. One joule is the work done when a force of one newton is applied through a distance of one meter. The symbol for energy,
More informationScience Olympiad Circuit Lab
Science Olympiad Circuit Lab Key Concepts Circuit Lab Overview Circuit Elements & Tools Basic Relationships (I, V, R, P) Resistor Network Configurations (Series & Parallel) Kirchhoff s Laws Examples Glossary
More informationEIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1
EIT Review Electrical Circuits DC Circuits Lecturer: Russ Tatro Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 Session Outline Basic Concepts Basic Laws Methods of Analysis Circuit
More informationPHYSICS FORM 5 ELECTRICAL QUANTITES
QUANTITY SYMBOL UNIT SYMBOL Current I Amperes A Voltage (P.D.) V Volts V Resistance R Ohm Ω Charge (electric) Q Coulomb C Power P Watt W Energy E Joule J Time T seconds s Quantity of a Charge, Q Q = It
More informationElectric Current, Resistance and Resistivity. Brief otes
Electric current, resistance and restivity Electric Current, esistance and esistivity In This small ebook we will learn all we need to know about current electricity but in short and then we ll have some
More information1 S = G R R = G. Enzo Paterno
ECET esistie Circuits esistie Circuits:  Ohm s Law  Kirchhoff s Laws  SingleLoop Circuits  SingleNode Pair Circuits  Series Circuits  Parallel Circuits  SeriesParallel Circuits Enzo Paterno ECET
More informationWhat is an Electric Current?
Electric Circuits NTODUCTON: Electrical circuits are part of everyday human life. e.g. Electric toasters, electric kettle, electric stoves All electrical devices need electric current to operate. n this
More informationCLASS X ELECTRICITY
Conductor Insulator: Materia Materials through which electric current cannot pass are called insulators. Electric Circuit: A continuous a CLASS X ELECTRICITY als through which electric current can pass
More informationElectrical Quantities, Circuit Elements, KCL. EE40, Summer 2004 Alessandro Pinto
Electrical Quantities, Circuit Elements, KCL EE40, Summer 2004 Alessandro Pinto apinto@eecs.berkeley.edu Announcements New schedule has been posted online Office hours moved in 463 Cory Hall No discussions
More informationDirectCurrent Circuits. Physics 231 Lecture 61
DirectCurrent Circuits Physics 231 Lecture 61 esistors in Series and Parallel As with capacitors, resistors are often in series and parallel configurations in circuits Series Parallel The question then
More informationPhy301 Circuit Theory
Phy301 Circuit Theory Solved Mid Term MCQS and Subjective with References. Question No: 1 ( Marks: 1 )  Please choose one If we connect 3 capacitors in series, the combined effect of all these capacitors
More informationObjective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge,
Objective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge, current, voltage, and energy. Chapter 2.22.4 Define resistance
More informationBasic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 914, 2011
Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 914, 2011 Presented By Gary Drake Argonne National Laboratory drake@anl.gov
More informationCurrent and Resistance
Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 21 Electric current 22
More informationELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?
ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,
More informationChapter 33  Electric Fields and Potential. Chapter 34  Electric Current
Chapter 33  Electric Fields and Potential Chapter 34  Electric Current Electric Force acts through a field An electric field surrounds every electric charge. It exerts a force that causes electric charges
More informationTest Review Electricity
Name: Date: 1. An operating television set draws 0.71 ampere of current when connected to a 120volt outlet. Calculate the time it takes the television to consume 3.0 10 5 joules of electric energy. [Show
More informationENGR 2405 Chapter 6. Capacitors And Inductors
ENGR 2405 Chapter 6 Capacitors And Inductors Overview This chapter will introduce two new linear circuit elements: The capacitor The inductor Unlike resistors, these elements do not dissipate energy They
More informationClosed loop of moving charges (electrons move  flow of negative charges; positive ions move  flow of positive charges. Nucleus not moving)
Unit 2: Electricity and Magnetism Lesson 3: Simple Circuits Electric circuits transfer energy. Electrical energy is converted into light, heat, sound, mechanical work, etc. The byproduct of any circuit
More informationCapacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery
Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape
More informationM.S. SUKHIJA Formerly, Founder Principal Guru Nanak Dev Engineering College Bidar, Karnataka
M.S. SUKHIJA Formerly, Founder Principal Guru Nanak Dev Engineering College Bidar, Karnataka T.K. NAGSARKAR Formerly, Professor and Head Department of Electrical Engineering Punjab Engineering College
More informationTopic 5.2 Heating Effect of Electric Currents
Topic 5.2 Heating Effect of Electric Currents Kari Eloranta 2017 Jyväskylän Lyseon lukio International Baccalaureate February 14, 2017 Topic 5.2 Heating Effect of Electric Currents In subtopic 5.2 we study
More information48520 Electronics & Circuits: Web Tutor
852 Electronics & Circuits: Web Tutor Topic : Resistive Circuits 2 Help for Exercise.: Nodal Analysis, circuits with I, R and controlled sources. The purpose of this exercise is to further extend Nodal
More informationElectric Circuits. June 12, 2013
Electric Circuits June 12, 2013 Definitions Coulomb is the SI unit for an electric charge. The symbol is "C". Electric Current ( I ) is the flow of electrons per unit time. It is measured in coulombs per
More information