ECE 1311: Electric Circuits. Chapter 2: Basic laws


 Susan Skinner
 2 years ago
 Views:
Transcription
1 ECE 1311: Electric Circuits Chapter 2: Basic laws
2 Basic Law Overview Ideal sources series and parallel Ohm s law Definitions open circuits, short circuits, conductance, nodes, branches, loops Kirchhoff's law Voltage divider and series resistors Current divider and parallel resistors WyeDelta transformations
3 Ideal Voltage Source Ideal voltage source in series can be added Ideal voltage source in parallel = NO GOOD ecall: ideal voltage source guarantee the voltage between two terminals is at the specified potential (voltage) BOOM
4 Ideal Current Source Ideal current source cannot be connected in series Ideal current source in parallel can be added ecall: ideal current guarantee the current flowing through source is at the specified value ecall: Current entering a circuit must be equal to the current leaving the circuit BOOM
5 esistance All material resist the flow of current given by l A = resistance of an element in ohms p = resistivity of material in ohmmeters l = length of material in meters A = cross sectional area of material in meter 2
6 Ohm s Law (1) Ohm s law states that the voltage across a resistor is directly proportional to the current flowing through the resistor. v i Only material with linear relationship satisfy Ohm s law (note the PSC)
7 Ohm s Law (2) Two extreme possible values of : 0 (zero) and (infinite) are related with two basic circuit concepts: short circuit and open circuit. Conductance is the ability of an element to conduct electric current; it is the reciprocal of resistance and is measured in mhos or siemens. i G 1 v The power dissipated by a resistor: p vi 2 v Power absorbed by is always positive i 2
8 Practice 2.1
9 Short circuit An element (or wire) with = 0 is called a short circuit An ideal voltage source with V = 0 is equivalent to a short circuit Since v = i and = 0, v = 0 regardless of i ecall: cannot connect voltage source to a short circuit
10 Open circuit An element with = is called the open circuit Often represented by a wire with an open connection An ideal current source I = 0A is also equivalent to an open circuit ecall: cannot connect current source to an open circuit
11 Formalization For this course, networks and circuits will be used interchangeably Networks are composed of nodes, branches and loops
12 Nodes, Branches and Loops A branch represents a single element such as a voltage source or a resistor. A node is the point of connection between two or more branches. A loop is any closed path in a circuit. A network with b branches, n nodes, and l independent loops will satisfy the fundamental theorem of network topology: b l n 1
13 Practice 2.2 How many branches, nodes and independent loops are there?
14 Practice 2.3 How many branches, nodes and loops are there?
15 Overview on Kirchhoff s Law It s the foundation of circuit analysis There are two  Kirchhoff s current law (KCL) and Kirchhoff s voltage law (KVL) It tell us how the voltage and current are related within a circuit element are related
16 Kirchhoff s Current Law (1) Kirchhoff s current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero. i.e. the sum entering a node is equal to the sum leaving a node based on the law on conservation charge
17 Kirchhoff s Current Law (2) KCL also apply at the boundary
18 Practice 2.4 Given that essential node is the point between 3 or more branches,
19 Kirchhoff s Voltage Law (1) Kirchhoff s voltage law (KVL) states that the algebraic sum of all voltages around a closed path (or loop) is zero. Based on the conservation of energy
20 Practice 2.5
21 Practice 2.6 Apply KVL to find the value I
22 Summary on Ohm s Law, KCL and KVL Ohm s Law KCL KVL v i I V n n 0 0 These law alone are sufficient to analyze many circuits
23 Practice 2.7 Find v 2, v 6 and v I
24 Practice 2.8 Find i 0 and v 0
25 Practice 2.9
26 esistor Circuit Overview esistors in series esistors in parallel Voltage dividers Current dividers WyeDelta transformation
27 esistors in series
28 esistors in Parallel (1)
29 esistors in Parallel (2)
30 Voltage Divider
31 Current Divider
32 esistor Network Knowing equivalent and parallel equivalents of resistors is not enough
33 WyeDelta Transformation (1) ) ( 1 c b a c b ) ( 2 c b a a c ) ( 3 c b a b a a b c Delta > Y Y > Delta
34 WyeDelta Transformation (2)
35 Practice 2.10
36 Practice 2.11
37 Practice 2.12
Kirchhoff's Laws and Circuit Analysis (EC 2)
Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,
More informationCircuit Theory I Basic Laws
Circuit Theory I Basic Laws Assistant Professor Suna BOLAT Eastern Mediterranean University Electric and electronic department ef2: Anant Agarwaland Jeffrey Lang, course materials for 6.002 Circuits and
More informationECE 2100 Circuit Analysis
ECE 2100 Circuit Analysis Lesson 3 Chapter 2 Ohm s Law Network Topology: nodes, branches, and loops Daniel M. Litynski, Ph.D. http://homepages.wmich.edu/~dlitynsk/ esistance ESISTANCE = Physical property
More informationLecture #3. Review: Power
Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is
More informationSeries & Parallel Resistors 3/17/2015 1
Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the singleloop circuit as shown in figure. The two resistors are in series, since the same current i flows in both
More informationChapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
More informationResistor. l A. Factors affecting the resistance are 1. Crosssectional area, A 2. Length, l 3. Resistivity, ρ
Chapter 2 Basic Laws. Ohm s Law 2. Branches, loops and nodes definition 3. Kirchhoff s Law 4. Series resistors circuit and voltage division. 5. Equivalent parallel circuit and current division. 6. WyeDelta
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module 2 DC Circuit Lesson 5 Nodevoltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s
More informationCircuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer
Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer J. McNames Portland State University ECE 221 Circuit Theorems Ver. 1.36 1
More informationENGR 2405 Class No Electric Circuits I
ENGR 2405 Class No. 48056 Electric Circuits I Dr. R. Williams Ph.D. rube.williams@hccs.edu Electric Circuit An electric circuit is an interconnec9on of electrical elements Charge Charge is an electrical
More informationVoltage Dividers, Nodal, and Mesh Analysis
Engr228 Lab #2 Voltage Dividers, Nodal, and Mesh Analysis Name Partner(s) Grade /10 Introduction This lab exercise is designed to further your understanding of the use of the lab equipment and to verify
More informationEXPERIMENT THREE DC CIRCUITS
EXEMET THEE DC CCUT EQUMET EEDED: ) DC ower upply ) DMM 3) esistors 4) EL THEOY Kirchhoff's Laws: Kirchhoff's oltage Law: The algebraic sum of the voltages around any closed path is zero. v i i 0 3. Kirchhoff's
More informationBasic Laws. Bởi: Sy Hien Dinh
Basic Laws Bởi: Sy Hien Dinh INTRODUCTION Chapter 1 introduced basic concepts such as current, voltage, and power in an electric circuit. To actually determine the values of this variable in a given circuit
More informationElectric Current. Note: Current has polarity. EECS 42, Spring 2005 Week 2a 1
Electric Current Definition: rate of positive charge flow Symbol: i Units: Coulombs per second Amperes (A) i = dq/dt where q = charge (in Coulombs), t = time (in seconds) Note: Current has polarity. EECS
More informationReview of Circuit Analysis
Review of Circuit Analysis Fundamental elements Wire Resistor Voltage Source Current Source Kirchhoff s Voltage and Current Laws Resistors in Series Voltage Division EE 42 Lecture 2 1 Voltage and Current
More informationEE40 KVL KCL. Prof. Nathan Cheung 09/01/2009. Reading: Hambley Chapter 1
EE40 KVL KCL Prof. Nathan Cheung 09/01/2009 Reading: Hambley Chapter 1 Slide 1 Terminology: Nodes and Branches Node: A point where two or more circuit elements are connected Branch: A path that connects
More informationElectrical Technology (EE101F)
Electrical Technology (EE101F) Contents Series & Parallel Combinations KVL & KCL Introduction to Loop & Mesh Analysis Frequently Asked Questions NPTEL Link SeriesParallel esistances 1 V 3 2 There are
More informationSirindhorn International Institute of Technology Thammasat University at Rangsit
Sirindhorn International Institute of Technology Thammasat University at Rangsit School of Information, Computer and Communication Technology COURSE : ECS 304 Basic Electrical Engineering Lab INSTRUCTOR
More informationElectric Circuits I. Nodal Analysis. Dr. Firas Obeidat
Electric Circuits I Nodal Analysis Dr. Firas Obeidat 1 Nodal Analysis Without Voltage Source Nodal analysis, which is based on a systematic application of Kirchhoff s current law (KCL). A node is defined
More informationParallel Circuits. Chapter
Chapter 5 Parallel Circuits Topics Covered in Chapter 5 51: The Applied Voltage V A Is the Same Across Parallel Branches 52: Each Branch I Equals V A / R 53: Kirchhoff s Current Law (KCL) 54: Resistance
More informationIntroductory Circuit Analysis
Introductory Circuit Analysis CHAPTER 6 Parallel dc Circuits OBJECTIVES Become familiar with the characteristics of a parallel network and how to solve for the voltage, current, and power to each element.
More informationINTRODUCTION TO ELECTRONICS
INTRODUCTION TO ELECTRONICS Basic Quantities Voltage (symbol V) is the measure of electrical potential difference. It is measured in units of Volts, abbreviated V. The example below shows several ways
More informationBasic Electrical Circuits Analysis ECE 221
Basic Electrical Circuits Analysis ECE 221 PhD. Khodr Saaifan http://trsys.faculty.jacobsuniversity.de k.saaifan@jacobsuniversity.de 1 2 Reference: Electric Circuits, 8th Edition James W. Nilsson, and
More informationCOOKBOOK KVL AND KCL A COMPLETE GUIDE
1250 COOKBOOK KVL AND KCL A COMPLETE GUIDE Example circuit: 1) Label all source and component values with a voltage drop measurement (+, ) and a current flow measurement (arrow): By the passive sign convention,
More informationSolution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.
Problem 1.24 The plot in Fig. P1.24 displays the cumulative charge q(t) that has entered a certain device up to time t. Sketch a plot of the corresponding current i(t). q 20 C 0 1 2 3 4 5 t (s) 20 C Figure
More informationChapter 10: Sinusoidal SteadyState Analysis
Chapter 10: Sinusoidal SteadyState Analysis 10.1 10.2 10.3 10.4 10.5 10.6 10.9 Basic Approach Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin & Norton Equivalent Circuits
More information1 S = G R R = G. Enzo Paterno
ECET esistie Circuits esistie Circuits:  Ohm s Law  Kirchhoff s Laws  SingleLoop Circuits  SingleNode Pair Circuits  Series Circuits  Parallel Circuits  SeriesParallel Circuits Enzo Paterno ECET
More informationDesigning Information Devices and Systems I Spring 2018 Lecture Notes Note 11
EECS 16A Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 11 11.1 Context Our ultimate goal is to design systems that solve people s problems. To do so, it s critical to understand
More informationDC CIRCUIT ANALYSIS. Loop Equations
All of the rules governing DC circuits that have been discussed so far can now be applied to analyze complex DC circuits. To apply these rules effectively, loop equations, node equations, and equivalent
More informationOutline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.
Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in
More informationDC STEADY STATE CIRCUIT ANALYSIS
DC STEADY STATE CIRCUIT ANALYSIS 1. Introduction The basic quantities in electric circuits are current, voltage and resistance. They are related with Ohm s law. For a passive branch the current is: I=
More informationELECTRICAL THEORY. Ideal Basic Circuit Element
ELECTRICAL THEORY PROF. SIRIPONG POTISUK ELEC 106 Ideal Basic Circuit Element Has only two terminals which are points of connection to other circuit components Can be described mathematically in terms
More informationPOLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems
POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this
More informationmywbut.com Mesh Analysis
Mesh Analysis 1 Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide more general and powerful circuit analysis tool based on Kirchhoff s voltage law (KVL) only.
More informationSPS Presents: A Cosmic Lunch!
SPS Presents: A Cosmic Lunch! Who: Dr. Brown will be speaking about Evolution of the Elements: from Periodic table to Standard Model and Beyond! When: October 7 th at am Where: CP 79 (by the front office)
More informationLecture 1. Electrical Transport
Lecture 1. Electrical Transport 1.1 Introduction * Objectives * Requirements & Grading Policy * Other information 1.2 Basic Circuit Concepts * Electrical l quantities current, voltage & power, sign conventions
More informationDirect Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1
Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving
More informationAnalysis of a singleloop circuit using the KVL method
Analysis of a singleloop circuit using the KVL method Figure 1 is our circuit to analyze. We shall attempt to determine the current through each element, the voltage across each element, and the power
More informationEECE251 Circuit Analysis I Lecture Integrated Program Set 1: Basic Circuit Concepts and Elements
EECE5 Circuit Analysis I Lecture Integrated Program Set : Basic Circuit Concepts and Elements Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca
More informationChapter 2 Circuit Elements
Chapter 2 Circuit Elements 2.1 Voltage and Current Sources 2.2 Electrical Resistance (Ohm s Law) 2.3 Construction of a Circuit Model 2.4 Kirchhoff s Laws 2.5 Analysis of a Circuit Containing Dependent
More informationEngineering Fundamentals and Problem Solving, 6e
Engineering Fundamentals and Problem Solving, 6e Chapter 17 Electrical Circuits Chapter Objectives Compute the equivalent resistance of resistors in series and in parallel Apply Ohm s law to a resistive
More informationChapter 3: Electric Current and DirectCurrent Circuit
Chapter 3: Electric Current and DirectCurrent Circuit n this chapter, we are going to discuss both the microscopic aspect and macroscopic aspect of electric current. Directcurrent is current that flows
More informationLecture 3 BRANCHES AND NODES
Lecture 3 Definitions: Circuits, Nodes, Branches Kirchoff s Voltage Law (KVL) Kirchoff s Current Law (KCL) Examples and generalizations RC Circuit Solution 1 Branch: BRANCHES AND NODES elements connected
More informationLecture # 2 Basic Circuit Laws
CPEN 206 Linear Circuits Lecture # 2 Basic Circuit Laws Dr. Godfrey A. Mills Email: gmills@ug.edu.gh Phone: 026907363 February 5, 206 Course TA David S. Tamakloe CPEN 206 Lecture 2 205_206 What is Electrical
More informationThevenin Norton Equivalencies  GATE Study Material in PDF
Thevenin Norton Equivalencies  GATE Study Material in PDF In these GATE 2018 Notes, we explain the Thevenin Norton Equivalencies. Thevenin s and Norton s Theorems are two equally valid methods of reducing
More informationChapter 26 DirectCurrent and Circuits.  Resistors in Series and Parallel  Kirchhoff s Rules  Electric Measuring Instruments  RC Circuits
Chapter 26 DirectCurrent and Circuits  esistors in Series and Parallel  Kirchhoff s ules  Electric Measuring Instruments  C Circuits . esistors in Series and Parallel esistors in Series: V ax I V
More informationExercise 2: Kirchhoff s Current Law/2 Sources
Exercise 2: Kirchhoff s Current Law/2 Sources EXERCISE OBJECTIVE When you have completed this exercise, you will be able to apply Kirchhoff s current law to a circuit having two voltage sources. You will
More informationThe Steady Current Field
Electromagnetic Fields Lecture 5 The Steady Current Field What is current? Electric current: Flow of electric charge. Electric current in metals A solid conductive metal contains free electrons. When a
More informationCHAPTER FOUR CIRCUIT THEOREMS
4.1 INTRODUCTION CHAPTER FOUR CIRCUIT THEOREMS The growth in areas of application of electric circuits has led to an evolution from simple to complex circuits. To handle the complexity, engineers over
More informationANNOUNCEMENT ANNOUNCEMENT
ANNOUNCEMENT Exam : Tuesday September 25, 208, 8 PM  0 PM Location: Elliott Hall of Music (see seating chart) Covers all readings, lectures, homework from Chapters 2 through 23 Multiple choice (58 questions)
More informationE40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow. M. Horowitz, J. Plummer, R. Howe 1
E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow M. Horowitz, J. Plummer, R. Howe 1 Reading For Topics In These Slides Chapter 1 in the course reader OR A&L 1.61.7 
More informationDelta & Y Configurations, Principles of Superposition, Resistor Voltage Divider Designs
BME/ISE 3511 Bioelectronics  Test Three Course Notes Fall 2016 Delta & Y Configurations, Principles of Superposition, esistor Voltage Divider Designs Use following techniques to solve for current through
More informationTutorial #4: Bias Point Analysis in Multisim
SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #4: Bias Point Analysis in Multisim INTRODUCTION When BJTs
More informationMidterm Exam (closed book/notes) Tuesday, February 23, 2010
University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple
More informationGeneral Physics (PHY 2140)
General Physics (PHY 140) Lecture 6 lectrodynamics Direct current circuits parallel and series connections Kirchhoff s rules circuits Hours of operation: Monday and Tuesday Wednesday and Thursday Friday,
More informationEE292: Fundamentals of ECE
EE292: Fundamentals of ECE Fall 2012 TTh 10:0011:15 SEB 1242 Lecture 4 120906 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Voltage Divider Current Divider NodeVoltage Analysis 3 Network Analysis
More informationR R V I R. Conventional Current. Ohms Law V = IR
DC Circuits opics EMF and erminal oltage esistors in Series and in Parallel Kirchhoff s ules EMFs in Series and in Parallel Capacitors in Series and in Parallel Ammeters and oltmeters Conventional Current
More informationBasic Electricity. Unit 2 Basic Instrumentation
Basic Electricity Unit 2 Basic Instrumentation Outlines Terms related to basic electricitydefinitions of EMF, Current, Potential Difference, Power, Energy and Efficiency Definition: Resistance, resistivity
More informationNetwork Graphs and Tellegen s Theorem
Networ Graphs and Tellegen s Theorem The concepts of a graph Cut sets and Kirchhoff s current laws Loops and Kirchhoff s voltage laws Tellegen s Theorem The concepts of a graph The analysis of a complex
More informationIn this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents
In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents around an electrical circuit. This is a short lecture,
More information1. Review of Circuit Theory Concepts
1. Review of Circuit Theory Concepts Lecture notes: Section 1 ECE 65, Winter 2013, F. Najmabadi Circuit Theory is an pproximation to Maxwell s Electromagnetic Equations circuit is made of a bunch of elements
More informationSymbol Offers Units. R Resistance, ohms. C Capacitance F, Farads. L Inductance H, Henry. E, I Voltage, Current V, Volts, A, Amps. D Signal shaping 
Electrical Circuits HE 13.11.018 1. Electrical Components hese are tabulated below Component Name Properties esistor Simplest passive element, no dependence on time or frequency Capacitor eactive element,
More informationE E 2320 Circuit Analysis. Calculating Resistance
E E 30 Circuit Analysis Lecture 03 Simple esistive Circuits it and Applications Calculating esistance l A 6 1.67 10 cm cu 6 al.7010 Area, A When conductor has uniform crosssection cm l 1 Temperature Coefficient
More informationUNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS
UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal
More informationPhysics 1402: Lecture 10 Today s Agenda
Physics 1402: Lecture 10 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #3: On Masterphysics : due Friday at 8:00 AM Go to masteringphysics.com
More informationPHYSICS 171. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).
PHYSICS 171 Experiment 3 Kirchhoff's Laws Equipment: Supplies: Digital Multimeter, Power Supply (020 V.). Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). A. Kirchhoff's Loop Law Suppose that
More informationMassachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Circuits & Electronics Problem Set #1 Solution
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.2: Circuits & Electronics Problem Set # Solution Exercise. The three resistors form a series connection.
More informationExperiment 2: Analysis and Measurement of Resistive Circuit Parameters
Experiment 2: Analysis and Measurement of Resistive Circuit Parameters Report Due Inclass on Wed., Mar. 28, 2018 Prelab must be completed prior to lab. 1.0 PURPOSE To (i) verify Kirchhoff's laws experimentally;
More informationR 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. CC Tsai
Chapter 07 SeriesParallel Circuits The SeriesParallel Network Complex circuits May be separated both series and/or parallel elements Combinations which are neither series nor parallel To analyze a circuit
More informationPhysics 1214 Chapter 19: Current, Resistance, and DirectCurrent Circuits
Physics 1214 Chapter 19: Current, Resistance, and DirectCurrent Circuits 1 Current current: (also called electric current) is an motion of charge from one region of a conductor to another. Current When
More informationNetwork Topology2 & Dual and Duality Choice of independent branch currents and voltages: The solution of a network involves solving of all branch currents and voltages. We know that the branch current
More informationBasics of Network Theory (PartI)
Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]
More informationDC Circuit Analysis + 1 R 3 = 1 R R 2
DC Circuit Analysis In analyzing circuits, it is generally the current that is of interest. You have seen how Ohm s Law can be used to analyze very simple circuits consisting of an EMF and single resistance.
More informationECE2262 Electric Circuits
ECE2262 Electric Circuits Equivalence Chapter 5: Circuit Theorems Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 1 5. 1 Equivalence
More informationElectrical Eng. fundamental Lecture 1
Electrical Eng. fundamental Lecture 1 Contact details: helhelw@staffs.ac.uk Introduction Electrical systems pervade our lives; they are found in home, school, workplaces, factories,
More informationES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws
ES250: Electrical Science HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws Introduction Engineers use electric circuits to solve problems that are important to modern society, such as: 1.
More informationD C Circuit Analysis and Network Theorems:
UNIT1 D C Circuit Analysis and Network Theorems: Circuit Concepts: Concepts of network, Active and passive elements, voltage and current sources, source transformation, unilateral and bilateral elements,
More informationHomework 1 solutions
Electric Circuits 1 Homework 1 solutions (Due date: 2014/3/3) This assignment covers Ch1 and Ch2 of the textbook. The full credit is 100 points. For each question, detailed derivation processes and accurate
More informationPHY102 Electricity Course Summary
TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional
More informationDiscussion Question 6A
Discussion Question 6 P212, Week 6 Two Methods for Circuit nalysis Method 1: Progressive collapsing of circuit elements In last week s discussion, we learned how to analyse circuits involving batteries
More informationPhy301 Circuit Theory
Phy301 Circuit Theory Solved Mid Term MCQS and Subjective with References. Question No: 1 ( Marks: 1 )  Please choose one If we connect 3 capacitors in series, the combined effect of all these capacitors
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide
More informationElectricity & Magnetism
Electricity & Magnetism D.C. Circuits Marline Kurishingal Note : This chapter includes only D.C. In AS syllabus A.C is not included. Recap... Electrical Circuit Symbols : Draw and interpret circuit diagrams
More informationNotes on Electricity (Circuits)
A circuit is defined to be a collection of energygivers (batteries) and energytakers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current
More information4 Electric circuits. Serial and parallel resistors V 3 V 2 V Serial connection of resistors:
4 lectric circuits PHY67 Spring 006 Serial and parallel resistors Serial connection of resistors: As the current I through each of serially connected resistors is the same, one can use Ohm s law and write...
More informationChapter 5. Department of Mechanical Engineering
Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation
More informationChapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final
Chapter 6 Current, esistance, and Direct Current Circuits Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge
More informationCURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS
CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below EXAMPLE 2 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS
More informationLecture Notes on DC Network Theory
Federal University, NdufuAlike, Ikwo Department of Electrical/Electronics and Computer Engineering (ECE) Faculty of Engineering and Technology Lecture Notes on DC Network Theory Harmattan Semester by
More informationKirchhoff's Laws I 2 I 3. junc. loop. loop IR +IR 2 2 V P I V I R R R R R C C C. eff R R R C C C. eff 3.0
V Kirchhoff's Laws junc j 0 1 2 3  V + +V  + loop V j 0 2 2 V P V  + loop eff 1 2 1 1 1 eff 1 2 1 1 1 C C C eff C C C eff 1 2 1 2 3.0 Charges in motion Potential difference V + E Metal wire crosssection
More informationReview of Ohm's Law: The potential drop across a resistor is given by Ohm's Law: V= IR where I is the current and R is the resistance.
DC Circuits Objectives The objectives of this lab are: 1) to construct an Ohmmeter (a device that measures resistance) using our knowledge of Ohm's Law. 2) to determine an unknown resistance using our
More informationCome & Join Us at VUSTUDENTS.net
Come & Join Us at VUSTUDENTS.net For Assignment Solution, GDB, Online Quizzes, Helping Study material, Past Solved Papers, Solved MCQs, Current Papers, EBooks & more. Go to http://www.vustudents.net and
More informationECE2262 Electric Circuits. Chapter 5: Circuit Theorems
ECE2262 Electric Circuits Chapter 5: Circuit Theorems 1 Equivalence Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 2 5. 1 Equivalence
More informationQUIZ 1 SOLUTION. One way of labeling voltages and currents is shown below.
F 14 1250 QUIZ 1 SOLUTION EX: Find the numerical value of v 2 in the circuit below. Show all work. SOL'N: One method of solution is to use Kirchhoff's and Ohm's laws. The first step in this approach is
More informationChapter 3 Methods of Analysis: 1) Nodal Analysis
Chapter 3 Methods of Analysis: 1) Nodal Analysis Dr. Waleed AlHanafy waleed alhanafy@yahoo.com Faculty of Electronic Engineering, Menoufia Univ., Egypt MSA Summer Course: Electric Circuit Analysis I (ESE
More informationChapter 28. Direct Current Circuits
Chapter 28 Direct Current Circuits Electromotive Force An electromotive force device, or emf device, is a source of constant potential. The emf describes the work done per unit charge and has units of
More informationPhysics Circuits: Series
FACULTY OF EDUCATION Department of Curriculum and Pedagogy Physics Circuits: Series Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement Fund 20122013 Series
More informationQUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)
QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) NOTE: FOR NUMERICAL PROBLEMS FOR ALL UNITS EXCEPT UNIT 5 REFER THE EBOOK ENGINEERING CIRCUIT ANALYSIS, 7 th EDITION HAYT AND KIMMERLY. PAGE NUMBERS OF
More informationChapter 7. Chapter 7
Chapter 7 Combination circuits Most practical circuits have combinations of series and parallel components. You can frequently simplify analysis by combining series and parallel components. An important
More informationCapacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery
Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape
More information