Orthogonal and Biorthogonal FIR Hexagonal Filter Banks with Sixfold Symmetry

Size: px
Start display at page:

Download "Orthogonal and Biorthogonal FIR Hexagonal Filter Banks with Sixfold Symmetry"

Transcription

1 IEEE TRANS. SIGNAL PROC. VOL. 56 NO DEC. 008 Orthogonl n Biorthogonl FIR Hxgonl Filtr Bns with Sixol Symmtry Qingtng Jing Astrt Rntly hxgonl img prossing hs ttrt ttntion. Th hxgonl ltti hs svrl vntgs in omprison with th rtngulr ltti th onvntionlly us ltti or img smpling n prossing. For xmpl hxgonl ltti ns wr smpling points; it hs ttr onsistnt onntivity; it hs highr symmtry; its strutur is plusil to humn vision systms. Th multirsolution nlysis mtho hs n us or hxgonl img prossing. Sin th hxgonl ltti hs high gr o symmtry it is sirl tht th hxgonl ltr ns sign or multirsolution hxgonl img prossing lso hv high orr o symmtry whih is prtinnt to th symmtry strutur o th hxgonl ltti. Th orthogonl or prt ronstrution (PR) hxgonl ltr ns whih r vill in th litrtur hv only -ol symmtry. In this ppr w invstigt th onstrution o orthogonl n PR FIR hxgonl ltr ns with 6-ol symmtry. W otin lo struturs o -siz rnmnt (-hnnl -D) orthogonl n PR FIR hxgonl ltr ns with 6-ol rottionl symmtry. -rnmnt orthogonl n iorthogonl wvlts s on ths lo struturs r onstrut. In this ppr w lso onsir FIR hxgonl ltr ns with xil (lin) symmtry n w prsnt lo strutur o FIR hxgonl ltr ns with psuo 6-ol xil symmtry. Inx Trms Hxgonl ltti hxgonl img ltr n with 6-ol symmtry orthogonl hxgonl ltr n iorthogonl hxgonl ltr n -rnmnt wvlt -siz rnmnt multirsolution omposition/ronstrution. EDICS Ctgory: MRP-FBNK I. INTRODUCTION Img prossing is ommonly rri out on th rtngulr ltti sin imgs r onvntionlly smpl on suh ltti. Img prossing on th hxgonl ltti hs ttrt ttntion rntly. S squr n hxgonl lttis in th lt n right prts o Fig.. Th hxgonl ltti hs svrl vntgs in omprison with th rtngulr ltti. For xmpl hxgonl ltti ns wr smpling points; it hs ttr onsistnt onntivity; it hs highr symmtry; its strutur is plusil to humn vision systms ]-8]. Thus th hxgonl ltti hs n us in mny rs suh s g ttion 9] 0] n pttrn rognition ]-5]. It hs lso n us in gosin 6]-9]. Whn hxgonl ltti L is us or img smpling h no (sit) on L rprsnts smll hxgonl ll ll Mnusript riv Mrh 008; rvis Jun This wor ws support y UM Rsrh Bor 0/05 n UMSL Rsrh Awr 0/06. Th ssoit itor oorinting th rviw o this mnusript n pproving it or pulition ws Dr. Alpr Erogn. Th uthor is with th Dprtmnt o Mthmtis n Computr Sin Univrsity o Missouri St. Louis St. Louis MO 6 USA -mil: jingq@umsl.u w: jing. Fig.. Squr ltti (lt) n hxgonl ltti (right) th lmntry ll. A no n th hxgonl lmntry ll (show) it rprsnts r shown in Fig.. All th hxgonl lmntry lls orm hxgonl tsslltion o th pln (s Fig. ). W ll this tsslltion to th hxgonl tsslltion ssoit with L. Fig.. Hxgonl ltti n ssoit hxgonl tsslltion It ws shown in 0] ] tht hxgonl ltti llows thr intrsting rnmnts (suivisions): 4-siz (4-rnh) -siz (-rnh) n -siz (-rnh) rnmnts. As n xmpl w sri -siz rnmnt ( -rnmnt) low. In th lt prt o Fig. th nos o th unit rgulr hxgonl ltti G r not y l ots n th nos with irls orm nw ltti whih is ll th -siz (-rnh) sultti o G hr n it is not y G. G is lso rgulr hxgonl ltti. From G to G th nos r ru y tor. So G is ors ltti o G n G is rnmnt o G. Sin G is lso rgulr hxgonl ltti w n rpt th sm prour to G n w thn hv highorr (ors) rgulr hxgonl ltti with wr nos thn G. Rpting this prour w hv st o lttis with wr n wr nos. This st o lttis orm pyrmi or tr whr high-orr ltti hs wr nos thn its prssor y tor o. Th hxgonl tsslltion (with thi hxgon gs) ssoit with G is shown in th right prt o Fig. whr th hxgonl tsslltion (with thin hxgon gs) ssoit with G is lso provi to giv us pitur on how ths two tsslltions r rlt to h othr. Th suivisions ssoit with 4-siz -siz n - siz rnmnts r ll rsp. th yi (-to-4 split) n rnmnts in th r o Computr Ai Gomtry Dsign ]-9] whil thy r ll prtur 4 prtur

2 IEEE TRANS. SIGNAL PROC. VOL. 56 NO DEC. 008 Fig.. Hxgonl ltti G n its -siz sultti G (lt) n hxgonl tsslltions ssoit with G n G (right) n prtur (rnmnts) in isrt glol gri systms in 9]. Th rnmnts o th hxgonl ltti llow th multirsolution (multisl) nlysis mtho to us to pross hxgonlly smpl t. Th 4-siz rnmnt is th most ommonly us rnmnt or multirsolution img prossing s.g. ] ] 0] or multirsolution hxgonl img prossing pplitions n 0]-6] or th onstrution o hxgonl ltr ns. Th -siz rnmnt is most ppling mong ths rnmnts sin th -siz rnmnt gnrts mor rsolutions n hn givs pplitions mor rsolutions rom whih to hoos. Compr with 4- siz n -siz rnmnts th -siz rnmnt is not so ppling or multirsolution prossing sin this rnmnt rsults in rution in rsolution y tor whih is ors. Howvr osrv rom th right pitur o Fig. tht th hxgonl lmntry lls (with thin hxgon gs) ssoit with G n ggrgt in groups o svn to orm ojts whih r lmost th ors-rsolution hxgonl lls (with thi hxgon gs) ssoit with G whil nithr G 4 nor G hs suh proprty. Thror th - siz rnmnt ws wily us in plnr multirsolution n hxgon-s gri s 9]. On th othr hn though th - siz rnmnt multirsolution img prossing is onsir (s.g. ]) th -tp orthogonl ltr ns in 8] r th only -siz rnmnt orthogonl/iorthogonl ltr ns vill in th litrtur. Ths ltrs wr onstrut or th purpos o img oing n thir ssoit wvlts r not ontinuous whih mns tht thos ltrs r not suitl or multirsolution img prossing sin rtin smoothnss o wvlts is rquir whn th ltrs r us or multirsolution img prossing pplitions. Thror th onstrution/sign o -siz rnmnt hxgonl ltr ns srvs our invstigtion. A rgulr hxgonl ltti hs 6-ol symmtry whil squr ltti hs 4-ol symmtry. Th tur o highr symmtry or th hxgonl ltti ms img prossing mor urt s ]. Th symmtry o hxgonl ltr ns whih is losly rlt to th symmtry strutur o th hxgonl ltti is lso importnt or img prossing. For xmpl th symmtry o th hxgonl ltr ns in 0] ls to simplr lgorithms n int omputtions s 0]. Thror or th hxgonl ltti it is sirl tht th ltr ns long it lso hv 6-ol symmtry. Th lowpss ltrs onsir in 0]-] o hv 6-ol symmtry ut th nit impuls rspons (FIR) ltr ns onstrut in ths pprs r not prt ronstrution ltr ns. Th ltr ns onstrut in ]-6] r orthogonl or prt ronstrution ltr ns ut thy hv only -ol symmtry. In our stuy o -siz rnmnt ltr ns w n tht it is possil to onstrut -siz rnmnt orthogonl FIR hxgonl ltr ns with 6-ol symmtry whil on n h irtly tht it is impossil to onstrut 6-ol symmtri 4-siz or -siz rnmnt orthogonl FIR ltr ns with rsonl lrg ltr lngth. Th min ojtiv o this ppr is to onstrut -siz rnmnt orthogonl n iorthogonl FIR hxgonl ltr ns with 6-ol symmtry. This ppr is orgniz s ollows. In Stion II w provi -siz rnmnt multirsolution omposition n ronstrution lgorithms n som si rsults on th orthogonlity/iorthogonlity o -siz rnmnt ltr ns. In Stion III w prsnt lo strutur o FIR ltr ns with 6- ol rottionl symmtry. Th onstrution o orthogonl n iorthogonl FIR ltr ns o 6-ol rottionl symmtry r isuss in Stions IV n V rsp. Finlly in Stion VI w onsir FIR ltr ns with 6-ol xil symmtry. W provi onition or ltr n to hv 6-ol xil symmtry. W n it is hr to otin lo strutur o orthogonl or iorthogonl ltr ns with 6-ol xil symmtry. Bus o this w onsir in Stion VI nothr typ o symmtry ll psuo 6-ol xil symmtry n otin lo strutur o FIR ltr ns with suh symmtry. In this ppr w us th ollowing nottions. For positiv intgr n I n nots th n n intity mtrix. For mtrix M w us M to not its onjugt trnspos M T n or nonsingulr mtrix M M T nots (M ) T. W us ol- lttrs suh s x ω to not lmnts o IR. x y nots th ot (innr) prout x T y o x = x x ] T y = y y ] T IR. For x = x x ] T IR not x = x x n or untion on IR ˆ nots its Fourir trnsorm: ˆ(ω) = (x) IR ix ω x. II. MULTIRESOLUTION IMAGE PROCESSING WITH -SIZE REFINEMENT FILTER BANKS In this stion w provi -siz rnmnt multirsolution omposition n ronstrution lgorithms n prsnt som si rsults on th orthogonlity/iorthogonlity o -siz rnmnt ltr ns. A. -siz rnmnt multirsolution lgorithms Rll tht G is th ors ltti o G tr on -siz rnmnt itrtion whr G is th unit rgulr hxgonl ltti givn y G = {n v + n v : (n n ) Z } whr v = 0] T v = ]T. In gnrl lt G n not th ors ltti tr n stps o -siz rnmnt itrtions. For n (input) img smpl on G th nos o G n n onsir s th smpling points o th susmpl img whn th multirsolution omposition lgorithm is ppli n tims to th input img. To provi th multirsolution img omposition n ronstrution

3 Q. JIANG: ORTHOGONAL AND BIORTHOGONAL FIR HEXAGONAL FILTER BANKS WITH SIXFOLD SYMMETRY lgorithms w n to hoos mtrix N ll th iltion mtrix suh tht it mps th hxgonl ltti G j onto its ors ltti G j nmly NG j = G j whr NG j = {Ng : g G j }. On my hoos N to mtrix tht mps A = {v v v +v v v v v } onto B = {V V V +V V V V V } whr V = v v V = v + v. (A n B r susts o G n G rsp. with thir lmnts orming hxgons.) Thr r svrl hois or suh mtrix N. For xmpl w my hoos N to on o th mtris: ] ] N = 5 5 N =. () As sts oth N G j n N G j r th ors ltti G j. But onsiring th lmnts o N G j n N G j on osrvs tht N G j ps th orinttion ut is rott lowis out 9. with rspt to th xs o G j (s th lt prt o Fig. 4 whr r th imgs o with N ) whil th xs o N G j r rott n rt rom thos o G j (s th right prt o Fig. 4 whr r th imgs o with N ). On lso osrvs tht th xs o (N ) G j r th sm s thos o G j sin (N ) is I. In 9] th susmpling with N (N rsp.) is ll th spirling (toggling rsp.) susmpling. For -siz rnmnt multirsolution hxgonl img prossing on hooss on o suh iltion mtris (n thn ps using this mtrix uring th prour o multirsolution prossing). It shoul up to on's spi pplition to us N N or nothr iltion mtrix. Fig. 4. Hxgonl ltti with spirling rnmnt (lt) n hxgonl ltti with toggling rnmnt (right) For squn {H g } g G o rl numrs ssoit with G lt H(ω) not th ltr with its impuls rspons oints ing H g (hr tor / is or onvnin): H(ω) = (/) g G H g ig ω. Suh ltr is ll hxgonl ltr. For -siz rnmnt multirsolution img prossing lowpss hxgonl ltr P (ω) hs 6 ssoit highpss ltrs Q () (ω) Q (6) (ω). Lt N iltion mtrix whih mps G j onto G j. I w us on ltr n {P Q () Q (6) } s th nlysis ltr n n us nothr ltr n { P Q () Q (6) } s th synthsis ltr n thn th multirsolution (sun) omposition lgorithm with iltion mtrix N or n input img C g0 g G smpl on G is { Chj+ = (/ ) g G P g NhC gj D (l) hj+ = (/ ) g G Q(l) g Nh C gj with l = 6 h G or j = 0 J whr J is positiv intgr; n th ronstrution lgorithm is Ĉ gj = ( P g Nh Ĉ hj+ + Q (l) g Nh D(l) hj+ ) h G l 6 h G or j = J J 0 whr ĈhJ = C hj. I Ĉ gj = C gj 0 j J or ny input img C g0 g G thn w sy tht {P Q () Q (6) } n { P Q () Q (6) } r prt ronstrution ltr ns (PR) or tht thy r iorthogonl ltr ns. W sy ltr n {P Q () Q (6) } to orthogonl i it is iorthogonl to itsl. Assum tht {P Q () Q (6) } n { P Q () Q (6) } r two FIR hxgonl ltr ns. Lt Φ n Φ th sling untions (with iltion mtrix N) ssoit with lowpss ltrs P (ω) n P (ω) rsp. nmly Φ Φ stisy th rnmnt (two-sl) qutions: Φ(x) = g G P g Φ(Nx g) Φ(x) = g G P g Φ(Nx g). () Lt Ψ (l) Ψ (l) l 6 th untions n y Ψ (l) (x) = g G Q(l) g Φ(Nx g) Ψ (l) (x) = (l) g G Q g Φ(Nx g). I {P Q () Q (6) } n { P Q () Q (6) } r iorthogonl to h othr thn unr rtin mil onitions (s th nxt sustion) Φ n Φ r iorthogonl uls: Φ(x) Φ(x g) x = δ IR g g G whr δ g is th ronr-lt squn: δ g = i g = (0 0) n δ g = 0 i g (0 0). In this s Ψ (l) Ψ (l) l 6 r iorthogonl wvlts nmly {Ψ (l) jg : l 6 j Z g G} n (l) { Ψ jg : l 6 j Z g G} r Risz ss o L (IR ) n thy r iorthogonl to h othr: Ψ (l) jg (x) Ψ (l ) j g (x)x = δ j j δ l l δ g g IR () or j j Z l l 6 g g G whr Ψ (l) jg (x) = j Ψ (l) (N j x g) Ψ (l) jg (x) = j Ψ(l) (N j x g). For th -siz rnmnt on n otin iorthogonlity onition or th sling untions Φ Φ n orthogonlity/iorthogonlity onitions or hxgonl ltr ns. Th rr rrs to 0] 40] or th iorthogonlity onitions or 4-siz rnmnt hxgonl ltr ns. Consiring tht most multirsolution nlysis thory n lgorithms or img prossing r vlop long th squr ltti Z n tht most popl r mor milir with ltr ns on th squr ltti in th nxt sustion w giv iorthogonlity onitions or pir o Φ n Φ n or pir o -siz rnmnt hxgonl ltr ns tr w trnsorm thm into sling untions φ φ n ltr ns long Z. In th rst o this sustion w giv th nitions o th symmtris o ltr ns onsir in this ppr. Dnition : A hxgonl ltr n {P Q () Q (6) } is si to hv 6-ol rottionl symmtry i its lowpss ltr P (ω) is invrint unr π π π 4π 5π rottions n its

4 4 IEEE TRANS. SIGNAL PROC. VOL. 56 NO DEC. 008 v highpss ltrs Q () Q (6) r π π π 4π n 5π (ntilowis) rottions o th highpss ltr Q () rsp. Som untions suh s -irtion ox-splins B v v v v v v v v ] long th hxgonl ltti G hv 6-ol xil (lin) symmtry nmly thy r symmtri roun xs S 0 S 5 in G shown in Fig. 5 (s th symmtry o -irtion ox-splins in 4] t p.4-6 whr 6-ol xil symmtry is ll th ull st o symmtris). It is nturl tht on onsirs th onstrution o sling untions with suh symmtry. To this rgr w onsir hxgonl ltr ns with 6-ol xil symmtry. Fig. 5. v S 5 6 xs (lins) o symmtry in rgulr hxgonl ltti Dnition : A hxgonl ltr n {P Q () Q (6) } is si to hv 6-ol xil symmtry or 6-ol lin symmtry i its lowpss ltr P (ω) is symmtri roun S 0 S 5 n its highpss ltr Q () is symmtri roun th xis S 0 n othr v highpss ltrs Q () Q (6) r π π π 4π n 5π (ntilowis) rottions o highpss ltr Q() rsp. W n tht i {P Q () Q (6) } hs 6-ol xil symmtry thn it hs 6-ol rottionl symmtry s Stion VI. W lso n tht it is hr to otin mily o orthogonl or iorthogonl ltr ns with 6-ol xil symmtry. Bus o this w onsir in Stion VI nothr typ o symmtry ll psuo 6-ol xil symmtry n provi mily o FIR ltr ns with suh symmtry. B. Trnsorming th hxgonl ltti to th squr ltti Z Lt U th mtrix n y U = v S 0 S 4 0 ] S S S. (4) Thn U trnsorms th rgulr unit hxgonl ltti G into th squr ltti Z. For hxgonl ltr H(ω) = g G H g ig ω tr th trnsormtion with th mtrix U w hv orrsponing ltr h(ω) = Z h i ω or squrly smpl t with its impuls rspons h = H U. Convrsly or squr ltr (ltr on th squr ltti) h(ω) = Z h i ω w hv orrsponing hxgonl ltr H(ω) = g G H g ig ω with H g = h Ug. Th mtrix U lso trnsorms th sling untions n wvlts long th hxgonl ltti to thos long th squr ltti Z. Mor prisly suppos {P Q () Q (6) } n { P Q () Q (6) } r pir o FIR hxgonl ltr ns. Lt Φ n Φ th sling untions (with iltion mtrix N) ssoit with P (ω) n P (ω) rsp. n Ψ (l) n Ψ (l) l 6 r th untions n y (). Lt {p q () q (6) } n { p q () q (6) } th orrsponing squr ltr ns. Dn φ(x) = Φ(U x) ψ (l) (x) = Ψ (l) (U x) φ(x) = Φ(U x) ψ(l) (x) = Ψ (l) (U x). Thn φ n φ r sling untions stisying th ollowing rnmnt qutions: φ(x) = p φ(mx ) φ(x) = p φ(mx ) (6) Z Z n ψ (l) ψ (l) l 6 r givn y ψ (l) (x) = Z q(l) φ(mx ) ψ (l) (x) = Z q(l) φ(mx ) whr p p q (l) q(l) r xtly th impuls rspons o- ints o p(ω) p(ω) q (l) (ω) q (l) (ω) rsp. n M = UNU. Osrv tht or iltion mtris N n N n y () th iltion mtris M = UN U n M = UN U or φ n φ r intgr mtris: ] ] M = M =. (8) Equtions (6) r th stnr (tritionl) rnmnt qutions or sling untions long th ommonly us intgr ltti Z with (gnrl) intgr iltion mtrix M n () r th stnr ormuls to n th orrsponing wvlts. For pir o squr ltr ns {p q () q (6) } n { p q () q (6) } th tritionl multirsolution omposition n ronstrution lgorithms with iltion mtrix M or n input squrly smpl img 0 r (rr to 4]) { nj+ = (/ ) Z p Mn j (l) nj+ = (/ ) Z q(l) Mn j with l = 6 n Z or j = 0 J n ĉ j = ( p Mn ĉ nj+ + n Z l 6 n Z q (l) Mn (l) (5) () nj+ ) with Z or j = J J 0 whr ĉ nj = nj. W sy squr ltr ns {p q () q (6) } n { p q () q (6) } to PR ltr ns i ĉ j = j 0 j J or ny input squrly smpl img 0. Clrly {P Q () Q (6) } n { P Q () Q (6) } r PR ltr ns (with N) i n only i thir ountrprts {p q () q (6) } n { p q () q (6) } r PR ltr ns (with M = UNU ). From th intgr-shit invrint multirsolution nlysis thory w n otin tht {p q () q (6) } n { p q () q (6) } r PR ltr ns i n only i p(ω + πm T η ) p(ω + πm T η ) = (9) p(ω + πm T η ) q (l) (ω + πm T η ) = 0 (0) q (l ) (ω + πm T η ) q (l) (ω + πm T η ) = δ l l ()

5 Q. JIANG: ORTHOGONAL AND BIORTHOGONAL FIR HEXAGONAL FILTER BANKS WITH SIXFOLD SYMMETRY 5 or l l 6 ω IR whr η j 0 j 6 r th rprsnttivs o th group Z /(M T Z ) with η 0 = 0 0] T. Whn M is th iltion mtrix M or M in (8) η j j 6 r η = ] T η = 0 ] T η = 0] T η 4 = ] T η 5 = 0 ] T η 6 = 0] T. () Squr ltr ns {p q () q (6) } n { p q (6) } r ommonly si to iorthogonl i thy stisy (9)-(); n ltr n {p q () q (6) } is ommonly rrr to orthogonl i it stiss (9)-() with p = p q (l) = q (l) l 6. Z p i ω lt For n FIR lowpss ltr p(ω) = T p not its trnsition oprtor mtrix (with iltion mtrix M): T p = A M j ] j KK] () whr A j = (/) n Z p n jp n n K is suitl positiv intgr pning on th ltr lngth o p n th iltion mtrix M. W sy tht T p stiss Conition E i is its simpl ignvlu n ll othr ignvlus λ o T p stisy λ <. From th intgr-shit invrint multirsolution nlysis thory (s.g. 4] 44] 4]) i {p q () q (6) } n { p q () q (6) } r iorthogonl to h othr n th trnsition oprtor mtris T p n Tp ssoit with p n p stisy Conition E thn φ n φ r iorthogonl uls: φ(x) φ(x ) x = δ IR Z ; n ψ (l) ψ (l) l 6 n y () r iorthogonl wvlts nmly {ψ (l) j : l 6 j Z Z (l) } n { ψ j : l 6 j Z Z } r iorthogonl ss o L (IR ) whr ψ (l) j (x) = j ψ (l) (M j x ) ψ(l) j (x) = j ψ(l) (M j x ). From th ov isussion w now tht to sign orthogonl/iorthogonl hxgonl ltr ns w n only to onstrut squr ltr ns {p q () q (6) } n { p q () q (6) } suh tht thy stisy (9)-(). As onsqun {P Q () Q (6) } n { P Q () Q (6) } with impuls rsponss P g = p Ug Q (l) g = q (l) Ug P (l) g = p Ug Q g = r orthogonl/iorthogonl hxgonl ltr ns. Furthrmor i th trnsition oprtor mtris T p n Tp ssoit with th squr lowpss ltrs p n p stisy Conition E (n hn sling untions φ φ ssoit with p(ω) p(ω) orm iorthogonl uls n ψ (l) ψ (l) l 6 n y () gnrt iorthogonl wvlts systms) thn th hxgonl sling untions Φ Φ ssoit with P (ω) P (ω) orm iorthogonl uls n Ψ (l) Ψ (l) l 6 n y () gnrt iorthogonl wvlt systms. In ition i on wnts to sign hxgonl ltrs suh tht th orrsponing (hxgonl) sling untions Φ Φ n wvlts Ψ (l) Ψ (l) l 6 hv sirl rtin proprtis suh s pproximtion powr smoothnss n ni tim-rquny loliztions thn on ns only to onsir suh proprtis or th sling untions φ φ n wvlts ψ (l) ψ (l) l 6 ssoit with squr ltrs sin thy r rlt s in (5). Rmr : Sin Z /M T Z n Z /M T Z hv th sm rprsnttivs η j 0 j 6 i {p q () q (6) } n { p q () q (6) } r iorthogonl with on o M M sy M thn thy r lso iorthogonl to h othr with th q (l) Ug othr iltion mtrix M. Consquntly i pir o hxgonl ltr ns r iorthogonl with on o iltion mtris N N thn thy r lso iorthogonl to h othr with th othr iltion mtrix. In th ollowing stions w onsir onstrution o orthogonl/iorthogonl ltr ns with 6-ol symmtry. From Rmr w n only to onsir on o th iltion mtris M M. In th rst o this ppr without loss o gnrlity w hoos M to M. III. FILTER BANKS WITH 6-FOLD ROTATIONAL SYMMETRY In this stion w onsir ltr ns with ] 6-ol rottionl os θ sin θ symmtry. Lt R(θ) = not th rottion sin θ os θ mtrix. Dnot R = R( π ) Rj = ( R ) j j 5. (4) In othr wors R R 5 r th (lowis) rottion mtris o π π π 4π 5π rsp. Thn 6-ol rottionl symmtry o ltr n {P Q () Q (6) } mns tht P = P Rjg g Q (j+) g = Q () j 5 g G. (5) R j g For hxgonl ltr n {P Q () Q (6) } lt {p q () q (6) } its orrsponing squr ltr n y th trnsormtion with th mtrix U in (4). Nmly th impuls rsponss p q (l) o p(ω) q (l) (ω) l 6 r P U Q (l) U rsp. Lt R R R 5 not th mtris U R U U R U U R 5 U rsp. Mor prisly ] ] 0 R = R = 0 (6) R = I R 4 = R R 5 = R. Thn on n show tht P Q () Q (6) stisy (5) i n only i p q () q (6) stisy p Rj = p q (j+) = q () R j j 5 Z. () To summriz w hv th ollowing proposition. Proposition : Lt {P Q () Q (6) } hxgonl ltr n n {p q () q (6) } its orrsponing squr ltr n. Thn {P Q () Q (6) } hs 6-ol rottionl symmtry i n only i {p q () q (6) } stiss (). In th ollowing or onvnin w sy squr ltr n {p q () q (6) } hs 6-ol rottionl symmtry i it stiss (). Clrly () is quivlnt to p(r T j ω) = p(ω) q (j+) (ω) = q () (R T j ω) j 5. This n th ts tht R j = R j j 5 n R6 = I imply th ollowing proposition. Proposition : A ltr n {p q () q (6) } hs 6-ol rottionl symmtry i n only i it stiss p q () q (6)] T (R T ω) = M 0 p(ω) q () (ω) q (6) (ω) ] T (8)

6 6 IEEE TRANS. SIGNAL PROC. VOL. 56 NO DEC. 008 whr M 0 = (9) Nxt w onstrut th ltr n {p q () q (6) } s th prout o pproprit lo mtris. Assum tht w n writ p(ω) q () (ω) q (6) (ω)] T s B(M T ω)p s (ω) q s () (ω) q s (6) (ω)] T whr M is M n in (8) B(ω) is mtrix whos ntris r trigonomtri polynomils n {p s q s () q s (6) } is nothr FIR ltr n with shortr ltr lngths. I oth {p q () q (6) } n {p s q s () q s (6) } hv 6-ol rottionl symmtry thn Proposition implis tht B(ω) stiss B(M T R T ω) = M 0 B(M T ω)m 0 (0) whr M 0 is th mtrix n y (9). Dnot I 0 (ω) = i(ω +ω ) iω iω i(ω +ω ) iω iω ] T. () Thn rom R T ω = ω +ω ω ] T w hv I 0 (R T ω) = iω iω i(ω +ω ) iω iω i(ω +ω ) ] T. Thus I 0 (ω) stiss (8). Thror -tp ltr n { i(ω+ω) iω iω i(ω+ω) iω iω } hs 6- ol rottionl symmtry n it oul us s th initil ltr n with 6-ol rottionl symmtry. Dnot D(ω) = ig( i(ω +ω ) iω iω i(ω +ω ) iω iω ). () Thn D(M T ω) = ig( i(ω+ω) i(ω+ω) i(ω ω) i(ω+ω) i(ω+ω) i(ω ω) ). On th othr hn ] with M T R T = on hs tht D(M T R T ω) = ig( i(ω +ω ) i(ω ω ) i(ω +ω ) i(ω +ω ) i(ω ω) i(ω+ω) ). Thror D(ω) stiss (0) n it oul us to uil th lo mtris. Nxt w us B(ω) = BD(ω) s th lo mtrix whr B is (rl) onstnt mtrix. Bs on th ov isussion w now tht B(ω) = BD(ω) stiss (0) i n only i B stiss M 0 BM0 = B whih is quivlnt to th t tht B hs th orm: B = () Bs on th ov isussion w rh th ollowing rsult on th ltr ns with 6-ol rottionl symmtry. Thorm : I {p q () q (6) } is givn y p(ω) q () (ω) q (6) (ω)] T = (4) B n D(M T ω)b n D(M T ω) B D(M T ω)b 0 I 0 (ω) or som n Z + whr I 0 (ω) is n y () n B 0 n r onstnt mtris o th orm () thn {p q () q (6) } is n FIR ltr n with 6-ol rottionl symmtry. In th nxt two stions w show tht th lo strutur in (4) yils orthogonl n iorthogonl FIR ltr ns with 6-ol rottionl symmtry. IV. ORTHOGONAL FILTER BANKS WITH 6-FOLD ROTATIONAL SYMMETRY In this stion w stuy th onstrution o orthogonl ltr ns with 6-ol rottionl symmtry. For n FIR ltr n {p q () q (6) } not q (0) (ω) = p(ω). Lt U(ω) mtrix n y U(ω) = q (l) (ω + η j ) ] 0 lj 6 whr η 0 η η 6 r givn in (). Thn {p q () q (6) } is orthogonl i U(ω) is unitry or ll ω IR tht is it stiss U(ω)U(ω) = I ω IR. (5) Nxt w writ q (l) (ω) 0 l 6 s q (l) (ω) = ( q (l) 0 (M T ω) + q (l) (M T ω) i(ω +ω ) +q (l) (M T ω) iω + q (l) +q (l) 5 (M T ω) iω + q (l) 6 (M T ω) iω (M T ω) iω + q (l) 4 (M T ω) i(ω +ω ) ) whr q (l) (ω) r trigonomtri polynomils. Lt V (ω) not th polyphs mtrix (with iltion mtrix M) o {p(ω) q () (ω) q (6) (ω)}: V (ω) = q (l) ]0 l 6 (ω). (6) Clrly p(ω) q () (ω) q (6) (ω)] T = V (M T ω)i 0 (ω) whr I 0 (ω) is n y (). On n vriy tht th mtrix I 0 (ω + πm T η 0 ) I 0 (ω + πm T η ) I 0 (ω + πm T η 6 )] is unitry or ll ω IR whih implis tht (5) hols i n only i V (ω) is unitry or ll ω IR nmly V (ω) stiss V (ω)v (ω) = I ω IR. () Thror to onstrut n orthogonl ltr n {p q () q (6) } w n only to onstrut trigonomtri polynomil mtrix V (ω) whih stiss (). I {p q () q (6) } is givn y (4) thn its polyphs mtrix V (ω) is V (ω) = B n D(ω)B n D(ω) B D(ω)B 0. Sin D(ω) = ig( i(ω +ω ) iω iω i(ω +ω ) iω iω ) is unitry w now tht i onstnt mtris

7 Q. JIANG: ORTHOGONAL AND BIORTHOGONAL FIR HEXAGONAL FILTER BANKS WITH SIXFOLD SYMMETRY B 0 n r orthogonl thn V (ω) stiss (). Nxt w onsir th orthogonlity o mtrix B o th rom (). To this rgr lt W not th unitry mtrix: W = ( 6/6) w j] πi whr w = 6 = 0 j 5 + i. With W = ig( W ) on n gt tht whr W BW = = = 5 + ( ) i( ) 44 = + 5 ( ) i( ) 55 = = 44 =. Thus B is orthogonl i n only i ] 6 6 orthogonl n jj = j whih implis tht n jj j = 4 5 n writtn s = s 0 os θ 6 = sin θ 6 = s 0 sin θ = os θ = os γ i sin γ 44 = os ζ i sin ζ 55 = s whr s 0 = ± s = ± θ γ ζ IR. From ths qutions w hv = s 0 os θ = 6 6 sin θ = s sin θ = 6 (s os θ + os γ + os ζ) = 6 ( s os θ + os γ + sin γ os ζ + sin ζ) 4 = 6 (s os θ os γ + sin γ os ζ sin ζ) 5 = 6 ( s os θ os γ + os ζ) 6 = 6 (s os θ os γ sin γ os ζ + sin ζ) = 6 ( s os θ + os γ sin γ os ζ sin ζ). (8) Thus n orthogonl mtrix B o th orm () hs thr prmtrs. W hv thror th ollowing thorm. Thorm : Suppos {p q () q (6) } is givn y (4). I h B 0 n is o th orm () n its ntris ij r givn y (8) or som θ γ ζ thn {p q () q (6) } is n orthogonl FIR ltr n with 6-ol rottionl symmtry. Trnsorming {p q () q (6) } givn in Thorm with th mtrix U to th ltr ns long th hxgonl ltti w hv mily o orthogonl FIR hxgonl ltr ns with 6-ol rottionl symmtry n lo strutur. With suh mily o orthogonl ltr ns y slting th r prmtrs on n sign th ltrs with sirl proprtis or on's spi pplitions. For xmpl on my onsir to sign ltrs with optimum tim-rquny loliztion (rr to 45]-4] or th sign o -D mtrixvlu ltrs with optimum tim-rquny loliztion). Hr is w onsir th ltrs s on th Soolv smoothnss o th ssoit sling untions φ. For s 0 lt W s not th Soolv sp onsisting o untions (x) on IR with IR ( + ω ) s ˆ(ω) ω <. Th Soolv smoothnss o sling untion φ n givn y th ignvlus o th trnsition oprtor mtrix T p n in () whr p(ω) is th lowpss ltr ssoit with φ. Mor prisly ssum tht n FIR lowpss ltr p(ω) hs sum rul orr m (with iltion mtrix M): p(0 0) = D α Dα p(πm T η j ) = 0 j 6 (9) or ll (α α ) Z + with α +α < m whr η j j 6 r n y () D n D not th prtil rivtivs with th rst n son vrils o p(ω) rsp. Unr som onition sum rul orr is quivlnt to th pproximtion orr o φ s 48]. Lt σ σ th ignvlus o th iltion mtrix M. (Whn M is M in (8) σ = 5 + i σ = 5 i.) Dnot S m := {σ α σ α : α α Z + α + α < m} n S m := sp(t p )\ S m. Thn φ is in Soolv sp W log ρ 0 whr ρ 0 = mx{ λ : λ S m }. (0) S 49] 50] or th tils n rr to 4] or lgorithms n Mtl routins to n th Soolv smoothnss orr. Rmr : Osrv tht sum rul orr o lowpss ltr p(ω) with iltion mtrix M is hrtriz y th vlus o p(0 0) n D α Dα p(ω) t πm T η j j 6. Osrv tht {M T η j : j 6} = {M T η j : j 6}. Thus i p(ω) hs sum rul orr m with iltion mtrix M thn it lso hs sum rul orr m with iltion mtrix M. Exmpl : Lt {p q () q (6) } th orthogonl ltr n with 6-ol rottionl symmtry givn y (4) with n = 0: B 0 I 0 (ω). This is -tp ltr n. Th lowpss ltr p(ω) pns on on r prmtr θ 0. W n hoos this prmtr suh tht th rsulting p(ω) hs sum rul orr. Th nonzro oints p o th rsulting p(ω) r p 00 = p = p 0 = p 0 = p = p 0 = p 0 =. W n tht th ling ignvlus o T p (with M = M ) r σ σ. Thus ρ 0 =. With log ( ) = w now tht th orrsponing sling untion φ is in W W n lso hoos othr prmtrs γ 0 η 0 or highpss ltrs suh tht th nonzro oints q () o q () (ω) r q () 00 = q() = q () 0 = q() 0 = q() = q() 0 = q() 0 =. 6 Th rsulting sling untion φ is hrtrsiti untion o rgion with rtl ounry. φ n pproximt y φ n n y φ n (x) = Z p φ n (Mx ) n =

8 8 IEEE TRANS. SIGNAL PROC. VOL. 56 NO DEC. 008 whr φ 0 is suitl omptly support untion with Z φ 0(x ) =. W show th support o φ on th lt o Fig. 6 with φ 0 (x) = χ )(x). From Rmrs n this ltr n is orthogonl with iltion mtrix M n th rsulting p(ω) hs sum rul orr with M. W h tht th ssoit sling untion not y ϕ is lso in W ϕ is hrtristi untion o rgion with rtl ounry. Th support o ϕ (x) is shown on th right o Fig.6 whr ϕ n (x) = Z p ϕ n (M x ) n = n ϕ 0 (x) = χ )(x). S 5] 5] or th rgions with rtl ounry ll rgon n twin rgon sts gnrt y th quinunx mtris. or θ 0 = tn ( ) γ 0 = π tn ( 5 ) θ = sin ( 6 ). () Thus w hv lowpss ltr p(ω) pning on on r prmtr η 0. Thn w slt this r prmtr suh tht ρ 0 in (0) s smll s possil. With η 0 = π tn ( 0 ) n θ 0 γ 0 θ givn in () w hv th (numrilly) most smooth sling untion φ whih is in W Thr r two r prmtrs γ η lt or th highpss ltrs o this orthogonl ltr n. Hr w simply st γ = η = 0. In Fig. 8 w show th piturs o th rsulting φ n ψ () Fig. 8. φ (lt) n ψ () (right) Fig. 6. Approximt support o φ with iltion M (lt) n tht o ϕ with iltion M (right) Fig.. Impuls rsponss P g (lt) n Q () g +5 (right) whil Q (j+) 6 g r πj with = = 6 rottions o Q() g j 5 Lt {P Q () Q (6) } th orrsponing orthogonl hxgonl ltr n. W pply this ltr n to hxgonlly smpl img in Fig. 9. This is prt o th hxgonl img r-smpl rom 5 5 squrly smpl img Ln y th ilinr intrpoltion in 6]. Th ompos imgs with th lowpss ltr n highpss ltrs r shown on th lt o Fig. 0 n in Fig. rsp. Ths imgs r in rott out 9. with rspt to th originl img. Th ompos img with th lowpss ltr ppli twi is shown on th right o Fig. 0. Lt {P 0 Q () 0 Q(6) 0 } th orrsponing orthogonl hxgonl ltr n. Th nonzro impuls rspons oints P g Q () g o P 0 (ω) Q () 0 (ω) r isply in Fig. whil Q (j+) g r πj rottions o Q() g j 5. Noti tht th lowpss ltr P 0 (ω) hs 6-ol xil symmtry nmly it is symmtri roun xs S 0 S 5 shown in Fig. 5 n tht Q () 0 (ω) is symmtri roun xis S 0. Thror this orthogonl ltr n hs 6-ol xil symmtry. In 8] thr -tp orthogonl hxgonl ltr ns wr onstrut or img oing with ll ltr ns hving th sm lowpss ltr whih is xtly P 0 (ω). Th highpss ltrs in 8] r irnt rom Q (l) 0 (ω) l 6. Thr o thir highpss ltrs r symmtri roun th xis S n th othr thr r nti-symmtri roun S. Exmpl : Lt {p q () q (6) } th orthogonl ltr n with 6-ol rottionl symmtry givn y (4) or n = : B D(M T ω)b 0 I 0 (ω) with s 0 s in (8) ing. Th lowpss ltr p(ω) pns on our prmtrs θ 0 γ 0 η 0 θ. By solving th qutions or sum rul orr w gt θ 0 = tn ( 6 58) γ 0 = tn ( 5 ) θ = sin ( 6 ); () Fig. 9. Originl (hxgonl) img Fig. 0. Dompos imgs with lowpss ltr P with on (lt) n two (right) itrtions W lso onsir orthogonl ltr ns givn (4) with w mor los B D(M T ω). W n tht it is hr to onstrut orthogonl sling untions

9 Q. JIANG: ORTHOGONAL AND BIORTHOGONAL FIR HEXAGONAL FILTER BANKS WITH SIXFOLD SYMMETRY 9 Fig.. Dompos imgs with highpss ltrs Q () Q () Q () (top row rom lt) n Q (4) Q (5) Q (6) (ottom row rom lt) with high smoothnss orr. For xmpl it sms tht B D(M T ω)b D(M T ω)b 0 I 0 (ω) nnot l to n orthogonl sling untion in W. Thus to onstrut orthogonl sling n wvlts with ni smoothnss orr w n to us mor los B D(M T ω). In th nxt stion w onsir 6-ol rottionl symmtri iorthogonl ltr ns whih giv us som xility or th onstrution o PR ltr ns. V. BIORTHOGONAL FILTER BANKS WITH 6-FOLD ROTATIONAL SYMMETRY In this stion w onsir iorthogonl ltr ns with 6-ol rottionl symmtry. Suppos {p q () q (6) } n { p q () q (6) } r pir o ltr ns. Lt V (ω) n Ṽ (ω) thir polyphs mtris n s in (6). Thn on n otin s in th ov stion tht {p q () q (6) } n { p q () q (6) } r iorthogonl to h othr i n only i V (ω) n Ṽ (ω) stisy V (ω)ṽ (ω) = I ω IR. I {p q () q (6) } is th FIR ltr n givn y (4) or som rl mtris B thn V (ω) = B n D(ω)B n D(ω) B D(ω)B 0. I th onstnt mtris B 0 n r nonsingulr thn rom th t tht (D(ω) ) = D(ω) w now (V (ω) ) = Bn T D(ω)Bn T D(ω) B T D(ω)B0 T. Clrly i B hs th orm o () nmly M 0 B M0 = B thn M 0 B T M0 = B T sin M0 T = M0. Thus B T lso hs th orm o (). Hn y Proposition { p q () q (6) } givn y p(ω) q () (ω) q (6) (ω)] T = () Bn T D(M T ω) B T D(M T ω)b0 T I 0 (ω) with I 0 (ω) n y () hs 6-ol rottionl symmtry. For this ltr n { p q () q (6) } sin its polyphs mtrix Ṽ (ω) is (V (ω) ) w now it is iorthogonl to {p q () q (6) }. To summriz w hv th ollowing thorm. Thorm : Suppos tht {p q () q (6) } r th FIR ltr n givn y (4) whr B 0 n r nonsingulr onstnt mtris o th orm (). Lt { p q () q (6) } th FIR ltr n givn y (). Thn { p q () q (6) } is n FIR ltr n iorthogonl to {p q () q (6) } n it hs 6-ol rottionl symmtry. Thorm provis mily o iorthogonl FIR ltr ns with 6-ol rottionl symmtry. Compr with th orthogonl ltr ns in Thorm this mily o iorthogonl ltr ns llows or som xiility in ltr sign. Exmpl : Lt {p q () q (6) } n { p q () q (6) } th iorthogonl ltr ns with 6-ol rottionl symmtry givn y Thorm with n =. W n hoos th r prmtrs or B 0 n B suh tht th rsulting sling untions φ W.80 φ W 0.68 with th orrsponing lowpss ltrs p(ω) n p(ω) hving sum rul orrs n rsp. Th slt prmtrs r provi in Appnix A. Exmpl 4: Lt {p q () q (6) } n { p q () q (6) } th iorthogonl ltr ns with 6-ol rottionl symmtry givn y Thorm with n =. In this s w n hoos th r prmtrs or B 0 B n B suh tht th rsulting sling untions φ W.98 φ W W n lso slt othr prmtrs suh tht φ W.809 φ W 0.4 n w us Bio to not th rsulting pir o iorthogonl ltr ns. In ithr s th orrsponing lowpss ltrs p(ω) n p(ω) hving sum rul orrs n rsp. Th slt othr prmtrs or Bio r provi in Appnix B. VI. ORTHOGONAL/BIORTHOGONAL FILTER BANKS WITH PSEUDO 6-FOLD AXIAL SYMMETRY In Stions III-V w isuss th onstrution o ltr ns with 6-ol rottionl symmtry. In this stion w onsir ltr ns with 6-ol xil symmtry. Dnot ] L 0 = L = ] 0 L = 0 L = L 0 L 4 = L L 5 = L. Lt Rj j 5 th rottionl mtris n in (4). Thn 6-ol xil symmtry o {P Q () Q (6) } mns tht or 0 5 j 5 P L g = P g Q () L = Q() g 0g ] Q (j+) g = Q () g G. (4) R jg On n vriy tht R = L L0. This togthr with th t R j = ( R ) j j 5 implis tht i {P Q () Q (6) } hs 6-ol xil symmtry thn it hs 6-ol rottionl symmtry. On th othr hn rom th t tht L = R L0 L = L L0 L L = L L0 L L 4 = L 0 L L0 L 5 = L 0 L L0 w now tht th onition P L0g = P g n P Rg = P g or P (ω) is quivlnt to th onition P L g = P g 0 5. Thus w hv simplr onitions or th 6-ol xil symmtry o ltr n s summriz in th nxt proposition. Proposition : A hxgonl ltr n {P Q () Q (6) } hs 6-ol xil symmtry i n only i or j 5 g G P L0g = P Rg = P g Q () L = Q() g 0g Q (j+) g = Q () R. (5) jg

10 0 IEEE TRANS. SIGNAL PROC. VOL. 56 NO DEC. 008 For hxgonl ltr n {P Q () Q (6) } lt {p q () q (6) } th orrsponing squr ltr n y th trnsormtion with th mtrix U in (4). Lt L 0 not th mtrix U L 0 U nmly L 0 = 0 0 Thn P Q () Q (6) stisy (5) i n only i p q () q (6) stisy p L0 = p R = p q () ]. L = 0 q() or j 5 Z whih is quivlnt to q(j+) = q () R j p(l 0 ω) = p(r T ω) = p(ω) q () (L 0 ω) = q () (ω) q (j+) (ω) = q () (R T j ω) (6) or j 5. From Proposition (6) n th rltionship mong L 0 R j j 5 on n otin th ollowing proposition (th til o rivtion is omitt hr). Proposition 4: A hxgonl ltr n {P Q () Q (6) } hs 6-ol xil symmtry i n only i its orrsponing squr ltr n {p q () q (6) } stiss (8) n p q () q (6)] T (L0 ω) = () whr N 0 p(ω) q () (ω) q (6) (ω)] T N 0 = Suppos {p q () q (6) } n writtn p(ω) q () (ω) q (6) (ω)] T = C(ω)p s (ω) q () s (ω) q (6) s (ω)] T. (8) whr C(ω) is mtrix with trigonomtri polynomil ntris n {p s q s () q s (6) } is nothr FIR ltr n. I oth {p q () q (6) } n {p s q s () q s (6) } stisy (6) thn Proposition implis tht C(ω) stiss C(R T ω) = M 0 C(ω)M 0 C(L 0ω) = N 0 C(ω)N 0 (9) whr M 0 n N 0 r th mtris n y (9) n (8) rsp. For I 0 (ω) n y () w show in Stion III tht I 0 (ω) stiss (8). On th othr hn I 0 (L 0 ω) = i(ω +ω ) iω iω i(ω +ω ) iω iω ] T Thus I 0 (ω) lso stiss (). Tht is ltr n { i(ω +ω ) iω iω i(ω +ω ) iω iω } hs 6-ol xil symmtry n hn this -tp ltr n shoul us s th initil symmtri ltr n. Lt D(ω) th igonl mtrix n y (). Thn on n vriy tht D(ω) stiss (9). Thror i {p q () q (6) } is givn y p(ω) q () (ω) q (6) (ω)] T = (40) C n D(ω)C n D(ω) C D(ω)C 0 I 0 (ω) whr n Z + n h C 0 n stisy (9) or quivlntly it hs th orm o C = (4) thn {p q () q (6) } stiss (). Thror th orrsponing hxgonl ltr n hs 6-ol xil symmtry. Th prolm is tht th strutur in (40) hrly yils orthogonl or iorthogonl ltr ns. To otin i(orthogonl) ltr ns w shoul toriz p(ω) q () (ω) q (6) (ω)] T s C(M T ω)p s (ω) q s () (ω) q s (6) (ω)] T. Howvr i th si lo mtrix is C(M T ω) or som trigonomtri polynomil mtrix C(ω) thn it will hr to n simpl C(ω) suh tht C(M T ω) stiss (9). This is u to th t tht thr is 9. rottion o th xs o sultti G with rspt to th xs o G. Bus o ths iultis to onstrut lo strutur o ltr ns with 6-ol xil symmtry in th ollowing w onsir nothr typ o symmtry. Dnition : A hxgonl ltr n {P Q () Q (6) } is si to hv psuo 6-ol xil symmtry i th polyphs mtrix V (ω) o its orrsponing squr ltr n {p q () q (6) } stiss (9). Th lt prt o Fig. shows 49-tp lowpss ltr with psuo 6-ol xil symmtry whil th right prt o Fig. shows -tp lowpss ltr with 6-ol xil symmtry. Noti tht th symmtry o th 49-tp lowpss ltr is not only losly rlt to th symmtry strutur o hxgonl ltti G ut lso rlt to th strutur o sultti G. I th polyphs mtrix V (ω) o {p q () q (6) } stiss th rst qution in (9) nmly V (R T ω) = M 0 V (ω)m0 thn y th ts R T M T R T = M T n I 0 (R T ω) = M 0 I 0 (ω) w hv p q () q (6) ](R T ω) = V (M T R T ω)i 0 (R T ω) = (M 0 V (R T M T R T ω)m 0 )M 0I 0 (ω) = M 0 V (M T ω)i 0 (ω) = M 0 p q () q (6) ](ω). This togthr with Proposition implis tht {p q () q (6) } hs 6-ol rottionl symmtry. Thror w lso now tht i hxgonl ltr n hs psuo 6-ol xil symmtry thn it hs 6-ol rottionl symmtry. I th polyphs mtrix V (ω) o {p q () q (6) } is givn y th prout o C D(ω) or som C o th orm (4) thn V (ω) = V n (ω) V (ω)v 0 stiss (9). Hn th

11 Q. JIANG: ORTHOGONAL AND BIORTHOGONAL FIR HEXAGONAL FILTER BANKS WITH SIXFOLD SYMMETRY g g g g g g Fig.. Impuls rspons o lowpss ltr with psuo 6-ol xil symmtry (lt) n impuls rspons o lowpss ltr with 6-ol xil symmtry (right) n = : C D(M T ω)c 0 I 0 (ω) whr C 0 C r orthogonl mtris o th orm (4) with thir ntris givn y (4) or som ξ 0 ξ IR. With s j = 0 j or C 0 C y slting ξ 0 = ξ = w hv th (numrilly) most Soolv smooth sling untion φ whih is in W In this s th ssoit lowpss ltr p(ω) hs sum rul orr. Th ontours o th piturs o φ n ψ () r shown in Fig. whih my givn us som i out th psuo 6-ol xil symmtry. orrsponing hxgonl ltr n {P Q () Q (6) } hs psuo 6-ol xil symmtry. In ition i C 0 n r orthogonl thn {P Q () Q (6) } is orthogonl. To summriz w hv th ollowing rsult. Thorm 4: I {p q () q (6) } is givn y p(ω) q () (ω) q (6) (ω)] T = C n D(M T ω) C D(M T ω)c 0 I 0 (ω) (4) whr n Z + I 0 (ω) is n y () n C 0 n r onstnt mtris o th orm (4) thn th FIR hxgonl ltr n {P Q () Q (6) } orrsponing to {p q () q (6) } hs psuo 6-ol xil symmtry. In ition i C 0 n r orthogonl thn {P Q () Q (6) } is n orthogonl ltr n. For mtrix C o th orm (4) i it is orthogonl thn on n show irtly or rom (8) or th xprssion o orthogonl B o th orm () tht th ntris ij o C n writtn s = s 0 os ξ = 6 6 sin ξ = s sin ξ = 6 (s os ξ + s + s ) = 6 ( s os ξ + s s ) 4 = 6 (s os ξ s s ) 5 = 6 ( s os ξ s + s ) (4) whr s j = ± j = 0 n ξ IR. Th lo strutur in (4) lso yils iorthogonl FIR ltr ns with psuo 6-ol xil symmtry s shown in th nxt thorm. Thorm 5: I {p q () q (6) } n { p q () q (6) } r givn y p(ω) q () (ω) q (6) (ω)] T = C n D(M T ω) C D(M T ω)c 0 I 0 (ω) p(ω) q () (ω) q (6) (ω)] T = Cn T D(M T ω) C T D(M T ω)c0 T I 0 (ω) whr n Z + I 0 (ω) is n y () n C 0 n r nonsingulr onstnt mtris o th orm (4) thn th FIR hxgonl ltr ns {P Q () Q (6) } n { P Q () Q (6) } orrsponing to {p q () q (6) } n { p q () q (6) } rsp. r iorthogonl to h othr n oth o thm hv psuo 6-ol xil symmtry. Exmpl 5: Lt {p q () q (6) } th orthogonl ltr ns with psuo 6-ol xil symmtry givn y (4) with 0 Fig.. 0 Contours o φ (lt) n ψ () (right) 0 0 Compr with ltr ns with 6-ol rottionl symmtry ltr ns with psuo 6-ol xil symmtry hv highr symmtry n thus thy hv wr r prmtrs. Thror th ov lo strutur o orthogonl/iorthogonl ltr ns with psuo 6-ol xil symmtry ls to sling untions with lss smoothnss. Bus o this in this ppr w woul not provi mor xmpls on th sign o suh ltr ns s on th smoothnss o sling untions. APPENDIX A Slt prmtrs in Exmpl : th slt ij or B 0 r = = = = = = = = =.69455; n th slt ij or B r = = = = = = = = = APPENDIX B Slt prmtrs or Bio in Exmpl 4: th slt ij or B 0 r = = = = = = = = =.450;

12 IEEE TRANS. SIGNAL PROC. VOL. 56 NO DEC. 008 th slt ij or B r = =.9590 = = = = = = =.58090; n th slt ij or B r = =.0958 = = = = = = = Anowlgmnts. Th uthor thns Dl K. Pouns or his in hlp to rt Figs 9-. Th uthor lso thns th nonymous rviwrs or ming vlul suggstions tht signintly improv th prsnttion o th ppr. REFERENCES ] D.P. Ptrsn n D. Milton Smpling n ronstrution o wv-numr-limit untions in N-imnsionl Eulin sps Inormtion n Control vol. 5 no. 4 pp. 9- D. 96. ] R.M. Mrsru Th prossing o hxgonl smpl twoimnsionl signls Pro. IEEE vol. 6 no. 6 pp Jun. 99. ] R.C. Stunton n N. Story A omprison twn squr n hxgonl smpling mthos or piplin img prossing In Pro. o SPIE Vol. 94 Optis Illumintion n Img Snsing or Mhin Vision IV 990 pp ] G. Tirunlvli R. Goron n S. Pistorius Comprison o squr-pixl n hxgonl-pixl rsolution in img prossing in Proings o th 00 IEEE Cnin Conrn on Eltril n Computr Enginring vol. My 00 pp ] D. Vn D Vill T. Blu M. Unsr W. Philips I. Lmhiu n R. Vn Wll Hx-splins: novl splin mily or hxgonl lttis IEEE Trn. Img Pro. vol. no. 6 pp. 58 Jun ] L. Milton n J. Sivswrmy Hxgonl Img Prossing: A Prtil Approh Springr 005. ] X.J. H n W.J. Ji Hxgonl strutur or intllignt vision in Proings o th 005 First Intrntionl Conrn on Inormtion n Communition Thnologis Aug. 005 pp ] X.Q. Zhng Eint Fourir Trnsorms on Hxgonl Arrys Ph.D. Dissrttion Univrsity o Flori 00. 9] R.C. Stunton Th sign o hxgonl smpling struturs or img igitiztion n thir us with lol oprtors Img n Vision Computing vol. no. pp Aug ] L. Milton n J. Sivswrmy Eg ttion in hxgonl-img prossing rmwor Img n Vision Computing vol. 9 no. 4 pp D. 00. ] A.F. Lin S. Shulr J. Fn n W. Hu Mmmogrphi tur nhnmnt y multisl nlysis IEEE Trns. M. Imging vol. no. 4 pp D ] A.F. Lin n S. Shulr Hxgonl wvlt rprsnttions or rognizing omplx nnottions in Proings o th IEEE Conrn on Computr Vision n Pttrn Rognition Sttl WA Jun. 994 pp ] A.P. Fitz n R. Grn Fingrprint lssition using hxgonl st Fourir trnsorm Pttrn Rognition vol. 9 no. 0 pp ] S. Priswmy Dttion o mirolition in mmmogrms using hxgonl wvlts M.S. thsis Dpt. o Computr Sin Univ. o South Crolin Columi SC ] R.C. Stunton On-pss prlll hxgonl thinning lgorithm IEE Proings on Vision Img n Signl Prossing vol. 48 no. pp F ] A. Cmps J. Br I.C. Snhuj n F. Torrs Th prossing o hxgonlly smpl signls with stnr rtngulr thniqus: pplition to -D lrg prtur synthsis intrromtri riomtrs IEEE Trns. Gosin n Rmot Snsing vol. 5 no. pp Jn. 99. ] E. Antrriu P. Wltul n A. Lnns Apoiztion untions or -D hxgonlly smpl synthti prtur imging riomtrs IEEE Trns. Gosin n Rmot Snsing vol. 40 no. pp D ] D. Whit A.J. Kimrling n W.S. Ovrton Crtogrphi n gomtri omponnts o glol smpling sign or nvironmntl monitoring Crtogrphy n Gogrphi Inormtion Systms vol. 9 no. pp ] K. Shr D. Whit n A.J. Kimrling Gosi isrt glol gri systms Crtogrphy n Gogrphi Inormtion Sin vol. 0 no. pp. 4 Apr ] M.J.E. Goly Hxgonl prlll pttrn trnsormtions IEEE Trns. Computrs vol. 8 no. 8 pp. 40 Aug ] P.J. Burt Tr n pyrmi struturs or oing hxgonlly smpl inry imgs Computr Grphis n Img Pro. vol. 4 no. pp ] L. Kolt -suivision in SIGGRAPH Computr Grphis Proings pp ] U. Lsi n G. Grinr Intrpoltory -suivision Computr Grphis Forum vol. 9 no. pp. 8 Sp ] Q.T. Jing n P. Oswl Tringulr -suivision shms: th rgulr s J. Comput. Appl. Mth. vol. 56 no. pp. 4 5 Jul ] Q.T. Jing P. Oswl n S.D. Rimnshnir -suivision shms: mximl sum ruls orrs Constr. Approx. vol. 9 no. pp ] P. Oswl n P. Shrör Composit priml/ul -suivision shms Comput. Ai Gom. Dsign vol. 0 no. pp Jun. 00. ] C.K. Chui n Q.T. Jing Mtrix-vlu symmtri tmplts or intrpoltory sur suivisions I: rgulr vrtis Appl. Comput. Hrmoni Anl. vol. 9 no. pp. 0 9 Nov ] P. Oswl Dsigning omposit tringulr suivision shms Comput. Ai Gom. Dsign vol. no. pp Ot ] C.K. Chui Q.T. Jing n R.N. No Tringulr n quriltrl 5 suivision shms: rgulr s J. Mth. Anl. Appl. vol. 8 no. pp. 04 F ] E. Simonlli n E. Alson Non-sprl xtnsions o qurtur mirror ltrs to multipl imnsions Proings o th IEEE vol. 8 no. 4 pp Apr ] E.A. Alson E. Simonlli n R. Hingorni Orthogonl pyrmi trnsorms or img oing In SPIE Visul Communitions n Img Prossing II (98) vol pp ] H. Xu W.-S. Lu n A. Antoniou A nw sign o -D non-sprl hxgonl qurtur-mirror-ltr ns in Pro. CCECE Vnouvr Sp. 99 pp ] A. Cohn n J.-M. Shlnr Comptly support iimnsionl wvlts ss with hxgonl symmtry Constr. Approx. vol. 9 no. / pp Jun ] J.D. Alln Coing trnsorms or th hxgon gri Rioh Cli. Rsrh Ctr. Thnil Rport CRC-TR-985 Aug ] J.D. Alln Prt ronstrution ltr ns or th hxgonl gri In Fith Intrntionl Conrn on Inormtion Communitions n Signl Prossing 005 D. 005 pp. 6. 6] Q.T. Jing FIR ltr ns or hxgonl t prossing IEEE Trns. Img Pro. in prss. ] L. Milton n J. Sivswrmy Frmwor or prtil hxgonlimg prossing J. Eltroni Imging vol. no. pp Jn ] A.B. Wtson n A. Ahum Jr. A hxgonl orthogonl-orint pyrmi s mol o img prsnttion in visul ortx IEEE Trns. Biom. Eng. vol. 6 no. pp Jn ] A. Lunmr N. Wströmr n H. Li Hirrhil susmpl giving rtl rgion IEEE Trns. Img Pro. vol. 0 no. pp. 6 Jn ] S. Shulr n A.F. Lin Hxgonl QMF ns n wvlts hptr in Tim Frquny n Wvlts in Biomil Signl Prossing M. Ay (E.) IEEE Prss 99. 4] C. Boor K. Höllig n S. Rimnshnir Box splins Springr- Vrlg Nw Yor 99.

13 Q. JIANG: ORTHOGONAL AND BIORTHOGONAL FIR HEXAGONAL FILTER BANKS WITH SIXFOLD SYMMETRY 4] C.K. Chui n Q.T. Jing Multivrit ln vtor-vlu rnl untions in Morrn Dvlopmnt in Multivrit Approximtion ISNM 45 Birhhäusr Vrlg Bsl 00 pp. 0. 4] A. Cohn n I. Duhis A stility ritrion or iorthogonl wvlt ss n thir rlt sun oing shm Du Mth. J. vol. 68 no. pp ] R.Q. Ji Convrgn o vtor suivision shms n onstrution o iorthogonl multipl wvlts In Avns in Wvlts Springr- Vrlg Singpor 999 pp ] Q.T. Jing Orthogonl multiwvlts with optimum tim rquny rsolution IEEE Trns. Signl Pro. vol. 46 no. 4 pp Apr ] Q.T. Jing On th sign o multiltr ns n orthonorml multiwvlt ss IEEE Trns. Signl Pro. vol. 46 no. pp. 9 0 D ] T. Xi n Q.T. Jing Optiml multiltr ns: sign rlt symmtri xtnsion trnsorm n pplition to img omprssion IEEE Trns. Signl Pro. vol. 4 no Jul ] R.Q. Ji Approximtion proprtis o multivrit wvlts Mth. Comp. vol. 6 no. pp Apr ] R.Q. Ji n S.R. Zhng Sptrl proprtis o th trnsition oprtor ssoit to multivrit rnmnt qution Linr Algr Appl. vol. 9 no. pp My ] R.Q. Ji n Q.T. Jing Sptrl nlysis o trnsition oprtors n its pplitions to smoothnss nlysis o wvlts SIAM J. Mtrix Anl. Appl. vol. 4 no. 4 pp ] J. Kovvić n M. Vttrli Nonspprl multiimnsionl prt ronstrution ltr ns n wvlt ss or IR n IEEE Trns. Inorm. Thory vol. 8 no. pp ] K. Gröhnig n W.R. Myh Multirsolution nlysis Hr ss n sl-similr tilings o IR n IEEE Trns. Inorm. Thory vol. 8 no. pp PLACE PHOTO HERE Qingtng Jing riv th B.S. n M.S. grs rom Hngzhou Univrsity Hngzhou Chin in 986 n 989 rsptivly n th Ph.D. gr rom Ping Univrsity Bijing Chin in 99 ll in mthmtis. H ws with Ping Univrsity rom 99 to 995. H ws n NSTB postotorl llow n thn rsrh llow t th Ntionl Univrsity o Singpor rom 995 to 999. Bor h join th Univrsity o Missouri-St. Louis in 00 h hl visiting positions t Univrsity o Alrt Cn n Wst Virgini Univrsity Morgntown. H is now Prossor in th Dprtmnt o Mth n Computr Sin Univrsity o Missouri-St. Louis. His urrnt rsrh intrsts inlu timrquny nlysis wvlt thory n its pplitions ltr n sign signl lssition img prossing n sur suivision.

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Mode switching in modal domain models of overhead lines and underground cables

Mode switching in modal domain models of overhead lines and underground cables Mo swithing in mol omin mols o ovrh lins n unrgroun ls I. Zltunić, S. Voopij, R. Goić Astrt- This ppr prsnts ri rviw o irnt mthos or lultion o ignvlus n ignvtors or pplition in th mol trnsmission lin thory.

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

WORKSHOP 6 BRIDGE TRUSS

WORKSHOP 6 BRIDGE TRUSS WORKSHOP 6 BRIDGE TRUSS WS6-2 Workshop Ojtivs Lrn to msh lin gomtry to gnrt CBAR lmnts Bom fmilir with stting up th CBAR orinttion vtor n stion proprtis Lrn to st up multipl lo ss Lrn to viw th iffrnt

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

Fractional Wavelet Transform Using an Unbalanced Lifting Structure

Fractional Wavelet Transform Using an Unbalanced Lifting Structure Frtionl Wvlt Trnsorm sing n nln Liting Strutur Y. Hkn Hioğlu, Kivn Kos n A. Enis Çtin Dprtmnt o Eltril n Eltronis Enginring Bilknt nivrsity Bilknt,, Ankr, Turky ABSTRACT In this rtil, w introu th onpt

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

Polygons POLYGONS.

Polygons POLYGONS. Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM Fr Est Journl o Mthtil Sins (FJMS) Volu 6 Nur Pgs 8- Pulish Onlin: Sptr This ppr is vill onlin t http://pphjo/journls/jsht Pushp Pulishing Hous DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF MATRICES

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Compression. Compression. Compression. This part of the course... Ifi, UiO Norsk Regnesentral Vårsemester 2005 Wolfgang Leister

Compression. Compression. Compression. This part of the course... Ifi, UiO Norsk Regnesentral Vårsemester 2005 Wolfgang Leister Kurs INF5080 Ifi, UiO Norsk Rgnsntrl Vårsmstr 2005 Wolfgng Listr This prt of th ours...... is hl t Ifi, UiO... (Wolfgng Listr) n t ontins mtril from Univrsity Collg Krlsruh (Ptr Ol, Clmns Knorzr) Informtion

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

New challenges on Independent Gate FinFET Transistor Network Generation

New challenges on Independent Gate FinFET Transistor Network Generation Nw hllngs on Inpnnt Gt FinFET Trnsistor Ntwork Gnrtion Viniius N. Possni, Anré I. Ris, Rnto P. Ris, Flip S. Mrqus, Lomr S. Ros Junior Thnology Dvlopmnt Cntr, Frl Univrsity o Plots, Plots, Brzil Institut

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE Y.Fujit 1*, T. Kurshii 1, H.Ymtsu 1, M. Zo 2 1 Dpt. o Mngmnt

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

arxiv: v1 [math.mg] 5 Oct 2015

arxiv: v1 [math.mg] 5 Oct 2015 onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv:1510.01186v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington

More information

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M ISSN 5-353 APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS S.M.Khirnr, R.M.Pi*, J.N.Slun** Dprtmnt o Mthmti Mhrhtr

More information

Layout Decomposition for Triple Patterning Lithography

Layout Decomposition for Triple Patterning Lithography Lyout Domposition or Tripl Pttrning Lithogrphy Bi Yu, Kun Yun, Boyng Zhng, Duo Ding, Dvi Z. Pn ECE Dpt. Univrsity o Txs t Austin, Austin, TX USA 7871 Cn Dsign Systms, In., Sn Jos, CA USA 9514 Emil: {i,

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information