Stochastic Optimal Control with Linearized Dynamics

Size: px
Start display at page:

Download "Stochastic Optimal Control with Linearized Dynamics"

Transcription

1 Sochic Opiml Conrol wih Linerized Dynmic Sochich opimle Regelung mi lineriieren Modellen Mer-Thei von Hny Abdulmd Tg der Einreichung: 1. Guchen: Prof. Gerhrd Neumnn 2. Guchen: Prof. Jn Peer 3. Guchen: Prof. Ulrich Konigorki

2 Sochic Opiml Conrol wih Linerized Dynmic Sochich opimle Regelung mi lineriieren Modellen Vorgelege Mer-Thei von Hny Abdulmd 1. Guchen: Prof. Gerhrd Neumnn 2. Guchen: Prof. Jn Peer 3. Guchen: Prof. Ulrich Konigorki Tg der Einreichung:

3 Erklärung zur Mer-Thei Hiermi verichere ich, die vorliegende Mer-Thei ohne Hilfe Drier nur mi den ngegebenen Quellen und Hilfmieln ngeferig zu hben. Alle Sellen, die u Quellen ennommen wurden, ind l olche kennlich gemch. Diee Arbei h in gleicher oder ähnlicher Form noch keiner Prüfungbehörde vorgelegen. Drmd, den 1. März 2016 (Hny Abdulmd)

4 Abrc Policy Serch i powerful cl for lerning opiml conrol policie of complex yem. By llowing very brod decripion of k, hey re uible for olving chllenging roboic pplicion. Alhough model-free Policy Serch pproche require he le moun of knowledge bou he environmen, hey ofen uffer from he didvnge of hving o drw lrge number of mple from he yem. Therefore, in ce where i i feible o reconruc he yem dynmic, i i dvngeou o include much prior knowledge bou he lerning eing poible. In hi work we conider hi inigh moivion for exploring model-bed Policy Serch lgorihm. A recen pproch, Guided Policy Serch, h combined he rengh of powerful model-bed rjecory opimizion echnique, Sochic Opiml Conrol, wih Relive Enropy Policy Serch o lern policie of compliced k like bipedl wlking. By lerning beween linerizing he yem dynmic nd opimizing locl policie, i follow he min cheme of ierive mehod like Differenil Dynmic Progrming nd Ierive Liner Qudric Guin. The novely i, however, he inroducion of relive enropy bound on he rjecory diribuion in order o preerve he locliy of he linerizion nd improve he robune of convergence. In hi work we will exmine nd reformule Guided Policy Serch in order o highligh i min conribuion. We will how h he bound on he rjecory diribuion i equivlen o bound on he chnge of he policy. Moreover, we will moive nd propoe new conrin h would ricly bound he e diribuion beween ierion, nd furher enure he vlidiy of he linerizion, while llowing u o preform lrger ep on he policy upde. In ddiion, we will inroduce bound on he enropy of he policy, which llow o conrol he biliy he conroller o explore he cion pce nd preven premure convergence. We will preen reul nd compre ll vrin of he propoed lgorihm on highly non-liner yem, uch wing-up k on orque- nd ngle-conrined double nd qud pendulum. A upplemenry meril, we will provide full nd deiled mhemicl derivion of our mehod. i

5 Acknowledgmen I would epecilly like o hnk Prof. Gerhrd Neumnn, Hed of he Compuionl Lerning nd Auonomou Syem (CLAS) group, for inroducing me he o ide covered in hi hei nd for hi pien uperviion, open-door policy nd he counle hour of hi ime, h hve reuled in mny informive dicuion for me. I lo hnk M.Sc. Oleg Arenz, who co-upervied me nd lwy ook he ime o hre hi inigh nd experience. I owe deb of griude o Prof. Jn Peer, Hed of he Inelligen Auonomou Syem (IAS) group, nd ll IAS nd CLAS member, who connly engge nd moive heir uden. During my ime IAS nd CLAS, I ve hd he pleure of working cloely wih Alexndro Prcho nd Simone Prii. I m deeply greful for heir help nd uppor. Finlly, I hnk Prof. Ulrich Konigorki nd M.Sc. Zhongyi Gong from he Iniu für Regelungechnik und Mechronik (RTM) he Elecricl Engineering Deprmen, who greed o co-upervie me nd howed inere in my work. ii

6 Conen 1. Inroducion Locliy nd Vlidiy of Linerizion Reinforcemen Lerning v. Moion Plnning Preliminrie Mrkov Deciion Proce Sochic Opiml Conrol Informion Theoreic Bound Differenil Enropy Relive Enropy Reled Work Ierive Locl Mehod for Non-Liner Syem Differenil Dynmic Progrmming Ierive Liner Qudric Guin Relive Enropy Policy Serch Guided Policy Serch Opimizion Problem Dul Problem Policy Dependen Rewrd Implemenion Se-Acion Bound Policy Serch Opimizion Problem Dul Problem Se-Acion Dependen Rewrd Implemenion Circulr Dependency of V () nd µ () Block Decen over V () nd µ () Grdien Decen over α Block Coordine Decen Enropy Se-Acion Bound Policy Serch Opimizion Problem Dul Problem Augmened Rewrd Implemenion Evluion Double Pendulum Tk Qud Pendulum Tk Dicuion iii

7 7. Fuure Work Sepre Bound on Se nd Acion Comprion o Full Grdien Decen Principled Conrol of Policy Enropy Reformulion for Deerminiic Policie Furher Evluion on Lrger nd Rel Syem Concluion 26 Reference 27 A. Derivion of Guided Policy Serch 29 B. Derivion of Se-Acion Bound Policy Serch 38 C. Derivion of Enropy Se-Acion Bound Policy Serch 43 iv

8 Figure nd Tble Li of Figure 6.1. Double Pendulum Tk: The ol expeced rewrd of GPS, SAPS nd ESAPS in comprion during wing-up k. Ech lerner i given 25 ierion per ril o find he be policy. To ccoun for he ochiciy of he eup, 10 ril were preformed nd verged. The hyperprmeer of ech lerner were opimized eprely o reflec i be performnce Double Pendulum Tk: The mximum chnge in he policy for ech ierion of GPS, SAPS nd ESAPS. GPS h conn ep h i equl i KL-bound. SAPS ke ignificnly bigger ep while minining he upper bound on he e-cion diribuion. ESAPS i ble o ke he lrge ep due o i biliy o minin lrger vrince Qud Pendulum Tk: The expeced rewrd of GPS nd ESAPS. Ech lerner i given 50 ierion. For iicl men of he expeced rewrd, 10 ril were preformed nd verged. The hyperprmeer of ech lerner were opimized eprely o reflec i be performnce. The finl reul how ESAPS ouperforming GPS ignificnly Qud Pendulum Tk: The mximum ep in he policy pce for ech ierion of GPS nd ESAPS. The ep of GPS, per definiion, i conn nd equl i KL-bound. ESAPS, however, module he mximum ep ize bed on he e-cion bound Li of Algorihm 1. Guided Policy Serch in Peudo-Code Se-Acion Policy Serch: Dul Block Decen over V () nd µ () in Peudo-Code Se-Acion Policy Serch: Dul Grdien Decen over α in Peudo-Code Se-Acion Policy Serch: Dul Coordine Decen in Peudo-Code Enropy Se-Acion Policy Serch: Dul Coordine Decen in Peudo-Code v

9 Abbreviion Li of Abbreviion Noion DDP DP ESAPS GPS ilqg KLD LQG MDP REPS RL SAPS SOC Decripion Differenil Dynmic Progrmming Dynmic Progrmming Enropy Se-Acion Bound Policy Serch Guided Policy Serch Ierive Liner Qudric Guin Kullbck-Leibler Divergence Liner Qudric Guin Mrkov Deciion Proce Relive Enropy Policy Serch Reinforcemen Lerning Se-Acion Bound Policy Serch Sochic Opiml Conrol 1

10 1 Inroducion Recen dvncemen in he field of roboic hve reuled in coniderble growh in roboic pplicion nd k. The inroducion of new plform uch high dimenionl humnoid nd high velociy/orque mnipulor give he promie of mking hedwy in olving mjor k like bipedl locomoion nd grping. However, wih hi progre come hrp rie in he complexiy nd nonlineriy of he dynmicl yem in queion, which poe everl chllenge from conrol nd plnning poin of view. Trjecory Opimizion mehod e ou o olve Opiml Conrol problem under generl ime, energy nd pcil conrin. Sochic Opiml Conrol (SOC) wih linerized dynmic, in priculr, i powerful pproch o obin opiml conrol lw for non-liner yem. Fundmenl work on Sochic Opiml Conrol include Differenil Dynmic Progrmming (DDP) (Myne, 1966) (Jcobon nd Myne, 1970), Ierive Liner Qudric Guin (Todorov nd Li, 2005) (T e l., 2012), Approxime Inference Conrol (AICO) (Touin, 2009) (Rwlik e l., 2010) nd Robu Policy Upde for Sochic Opiml Conrol (RSOC) (Ruecker e l., 2014). 1.1 Locliy nd Vlidiy of Linerizion Sochic Opiml Conrol lgorihm implemen n ierive cheme uing linerized dynmic o loclly opimize he curren rjecory. A key elemen in he biliy of uch procedure i mechnim o conrol he ep ize of he upde of he conroller in principled mnner. The linerized dynmic re only ccure in he viciniy of he linerizion poin. Soluion h ry oo fr from hi linerizion poin hve o be voided, hey my cue ocillion or even inbiliie. A recen pproch, Guided Policy Serch (GPS) (Levine nd Kolun, 2014) (Levine nd Abbeel, 2014), ddree hi iue by inroducing relive enropy bound on he upde of he rjecory diribuion beween ierion. In he coure of hi hei, we will evlue he foremenioned pproch nd exend i by propoing new bound. Therefore, we will rgue for n explici bound on he e diribuion, ined of he rjecory diribuion, i i crucil o he linerizion. Thi bound hould provide ronger gurnee for he vlidiy of he linerizion beween ierion, hence, llowing more ggreive upde of he policy. Moreover, we will ugge n enropy conrin h would llow u o conrol he explorion re of he policy, hu prevening premure convergence iue h hve been oberved in GPS. 1.2 Reinforcemen Lerning v. Moion Plnning A hi poin i i necery o drw n imporn diincion beween wo cegorie of Opiml Conrol mehod. Nmely, Moion Plnning lgorihm nd Reinforcemen Lerning mehod (RL) (Suon nd Bro, 1998). In Moion Plnning, complee model of he environmen, mpping from yem dynmic o rewrd, i vilble nd cn exploied o opimize he expeced reurn of he rjecory. Se-of-he-r lgorihm in hi re re CHOMP (Rliff e l., 2009), STOMP (Klkrihnn e l., 2011) nd TRJOPT (Schulmn e l., 2013). Where, in Reinforcemen Lerning eing uch model re eiher lerned online, in PILCO (Deienroh nd Rmmuen, 2011) nd GPS (Levine nd Abbeel, 2014), or compleely circumvened, in REPS (Peer e l., 2010), in he proce of finding he opiml policy. The focu of hi work will be devoed o model-bed Reinforcemen Lerning lgorihm wih e-of-he-r GPS he cener piece. 2

11 1.3 Preliminrie Mrkov Deciion Proce A Mrkov Deciion Proce (MDP) i mhemicl model for equenil deciion mking in Moion Plnning or Reinforcemen Lerning eing. An MDP equence i ime dicree nd cn rech over finie or infinie ime horizon. MPD derive heir nme from he Mrkov propery, which ipule h in Mrkovin yem, he diribuion over he fuure e of he environmen depend only on he curren e nd nex cion. The rniion o fuure e i governed by he ochic yem dynmic P (, ). Becue deciion mking h o be rionlized by ome qunifible meure, MDP lo pecify rewrd funcion R (, ), h re he quliy of e-cion pir (, ). Since we re inereed in ime-conrined rjecorie, we will, for he reminder of hi hei, lwy conider finie-horizon MDP. Furhermore, we ume he dynmic o be of liner-guin nure wih imevrin qudric rewrd funcion, P (, ) = N ( A + b + c, Σ ), R (, ) = T M + T H. We dub hee condiion on he dynmic nd rewrd funcion he LQG umpion Sochic Opiml Conrol Sochic Opiml Conrol objecive i o find conrol policy π ( ) h mximize rewrd meure R (, ) long rjecory. Generl oluion re rre nd rericed o mll cl of yem. Aide from dicree yem, he mo imporn excepion re yem wih liner-guin dynmic. I h be hown, h he opiml conroller for yem dhering o he LQG umpion cn be compued in cloed-form by pplying Dynmic Progrmming (DP) (Bellmn, 1957). DP inroduce he concep of e vlue funcion V () nd e-cion vlue funcion Q (, ). V () i defined he expeced rewrd-o-go under cerin policy π ( ) ring from e, where Q (, ) i he expeced rewrd-o-go fer execuing n cion nd ubequenly following policy π ( ). DP implemen bckwrd inducion lgorihm, h recurively compue boh vlue funcion ring from he end ime poin T, where V () = R T (). The Bellmn equion, here given in coninuou form, define he relion beween V () nd Q (, ) follow Q (, ) = R (, ) + V () = P (, )V +1 ( )d, π ( )Q (, )d. Following hee definiion, deermining he opiml policy π ( ) i reduced o finding funcion h mximize he e-cion vlue funcion Q (, ) ech ime ep of he rjecory π ( ) = rgmx Q (, ) Informion Theoreic Bound In hi ecion we inroduce he heoreicl bckground o he enropy nd relive enropy bound h we will encouner in he coure of hi hei. 3

12 Differenil Enropy The enropy of diribuion p over rndom vrible i meure of he vrince of h diribuion nd, hu, lo meure of he verge moun of informion embedded in i. Relevn o hi work i he enropy of probbiliy diribuion over coninuou rndom vrible, lo clled differenil enropy. In h ce he enropy H of diribuion p() i defined H = p() log p()d. We will ue he enropy meure of he ochiciy of he conrol policy, which in urn would llow u o judge nd conrol i cpbiliy in exploring he e-cion pce. Relive Enropy The relive enropy, lo known he Kullbck-Leibler divergence, D KL (p q) beween wo probbiliy diribuion p() nd q(), i non negive meure of informion lo when p() i ued o pproxime q() nd i defined D KL (p() q()) = p() log p() q() d. The relive enropy of wo condiionl p( ) nd q( ), or heir expeced KL divergence, i defined nlogouly D KL (p( ) q( )) = p() p( ) log p( ) q( ) dd. The meure of relive enropy i cenrl o he ide of hi work. We will ue i o define bound over differen diribuion wih he im of limiing heir chnge beween ierion, hu enuring he biliy of he lgorihm. 4

13 2 Reled Work 2.1 Ierive Locl Mehod for Non-Liner Syem In our inroducion of Sochic Opiml Conrol, we hve dicued he limiion of i frmework, in which rcble oluion re excluive o dicree nd liner yem. Thee rericion my eem o compleely elimine he poibiliy of pplying Sochic Opiml Conrol o non-liner yem. However, i i poible o pply SOC in n ierive cheme wih he following rucure, Sring from n iniil e, pply n iniil conrol equence o he non-liner dynmic o obin finie e equence. Linerize he dynmic round ech poin of he rerieved rjecory nd qudrize he rewrd funcion. Formule nd olve locl LQG problem wih repec o e-cion deviion o ge new loclly opiml policy. Execue he new policy on he non-liner yem o obin new rjecory. In he coming ecion we will inroduce Differenil Dynmic Progrmming (DDP) nd Ierive Liner Qudric Guin (ilqg), wo lgorihm h follow hi ierive cycle Differenil Dynmic Progrmming Differenil Dynmic Progrming w inroduced in (Myne, 1966) (Jcobon nd Myne, 1970). I follow he min cheme decribed bove. Sring from he objecive of mximizing he expeced rewrd long he rjecory τ = { 1, 1,..., T, T } J( 1, A) = R (, ) + R T (). =0 Mximizing J i equivlen o finding he opiml e vlue funcion V () h mximize he rewrdo-go for ech e nd ime ep V () mx A J( 1, A). By eing V T () = R T () nd pplying Dynmic Progrming, we cn reduce he mximizion over he whole conrol equence o equence of mximizion over ingle conrol V () = mx [R ( ) + P (, )V +1 ( )] = mx [R (, ) + V +1 (P (, ))], where P (, ) re he linerized dynmic ech ime ep of he curren rjecory. By moving o noion h decribe he perurbion round ech e-cion pir (, ), we re ble o reformule he rgumen of he mximizion problem Q (δ, δ) = R ( + δ, + δ) R (, ) + V +1 (P ( + δ, + δ)) V +1 (P (, )). 5

14 Afer expnding o econd order, he Jcobin nd Hein of he dynmic cn be deermined. The ubcrip denoe he derivive wih repec o e nd cion Q, = R, + P T, V,+1, Q, = R, + P T, V,+1, Q, = R, + P T, V,+1P, + V,+1 P,, Q, = R, + P T, V,+1P, + V,+1 P,, Q, = R, + P T, V,+1P, + V,+1 P,. For he opiml locl conrol equence δ, we mximize he funcion Q (δ, δ) nd ge policy π (δ δ) h reemble liner conroller δ = rgmx Q (δ, δ) δ = Q 1, (Q, + Q, δ) = k + K δ. Subiuing he policy π (δ δ) ino Q (δ, δ) led o qudric vlue funcion V = 1 2 Q,Q 1, Q,, V, = Q, Q, Q 1, Q,, V, = Q, Q, Q 1, Q,. Applying he new policy o he non-liner yem o ge new rjecory complee one cycle of DDP. The min problem wih hi formulion, i h i greedily exploi he locl dynmic nd produce policie h be cn be rbirrily differen beween ierion, undermining he locliy nd vlidiy of he linerizion. In mo ce hi led o divergence or ocillion. The uhor ddreed hi iue by inroducing regulrizion o he cion-rewrd Hein Q, = Q, + µi. which i equivlen o dding rewrd for ying cloe o he l policy nd no rying. Thi regulrizion i helpful under he umpion h mll chnge in he policy imply mll chnge in he e pce nd, hu, preerve he vlidiy of he linerizion Ierive Liner Qudric Guin Ierive Liner Qudric Guin e ou o correc he horcoming of DDP by offering everl improvemen on he regulrizion nd line erch lgorihm. In (T e l., 2012) he uhor preen new regulrizion on he e rewrd, h would force he new rjecory o be y cloe o he l one nd reul in modified e nd cion Hein mrice Q, = R, + P T, (V,+1 + µi)p, + V,+1 P,, Q, = R, + P T, (V,+1 + µi)p, + V,+1 P,. which lo reul in new qudric vlue funcion h ke ino ccoun he new regulrizion V = 1 2 kt Q 1, k + k T Q,, V, = Q, K T Q 1, k + K T Q, + Q T, k, V, = Q, K T Q 1, K + K T Q, + Q T, K. 6

15 Furhermore, wih im of bounding he rjecory chnge even more, nd prevening highly non-liner yem from diverging, he uhor lo inroduce cler α o he policy prmeer â = + αk + K δ. Thi cler i opimized by line erch mehod bed on he expeced improvemen of he rewrd. 2.2 Relive Enropy Policy Serch Relive Enropy Policy Serch (REPS) i model-free Reinforcemen Lerning pproch (Peer e l., 2010). The novely of REPS i he inroducion of new ype of bound, h cn be impoed beween upde. The bound reemble relive enropy meure, or Kullbck-Leibler divergence, on he ecion diribuion. In Reinforcemen Lerning environmen hi conrin i crucil o convergence, i preerve he experience conined in he l policy nd l e diribuion, h h developed over muliple ierion nd conrin he lgorihm from jumping rbirrily o new unexplored region of he e pce. The opimizion problem under REPS i given rgmx π( )µ().. R(, )µ()π( ),,, µ()π( ) log µ()π( ) ε, q(, ), µ( )Φ( ) = µ()π( )P(, )Φ( ), µ()π( ) = 1., (2.5) (2.5b) (2.5c) (2.5d) where he objecive 2.5 mximize he rewrd wih repec o he join diribuion over he e µ() nd condiionl cion π( ) nd Equion 2.5c enure h he e-cion diribuion µ()π( ) y cloe he old one q(, ). Under hi formulion he opiml policy i normlized exponenil 1 π( ) exp η log q(, ) + R(, ) + η P(, )θ T Φ( ) θ T Φ(). The prmeer θ nd η re he Lgrngin muliplier correponding o Equion 2.5b nd 2.5c nd cn be opimized by grdien decen mehod. 7

16 3 Guided Policy Serch Guided Policy Serch (GPS) w developed over muliple publicion (Levine nd Kolun, 2013, 2014; Levine nd Abbeel, 2014). The ide preened in (Levine nd Kolun, 2013) i o inroduce e of guiding rjecorie genered under loclly opiml Differenil Dynmic Progrmming (DDP) nd weighed by Impornce Smpling (IS) o exploi region in he e pce wih high rewrd nd o "guide" nd peed-up convergence. In (Levine nd Kolun, 2014) he lgorihm w furher modified o enure he uefulne of he guiding rjecorie. Thi improvemen i done by lerning beween opimizing e of rjecorie for high rewrd (Trjecory Opimizion), while conrining he policy o mch he cion in ech rjecory hu conrining he policy upde from rying ino unexplored region of he e pce (Policy Serch). While he conribuion in (Levine nd Kolun, 2013, 2014) re inereing in heir own nding, hi hei will concenre on he core of Guided Policy Serch in i le nd mo refined verion preened in (Levine nd Abbeel, 2014), which impoe KLdivergence bound on he rjecory diribuion beween ierion. 3.1 Opimizion Problem In heir work he uhor dop rjecory-bed noion (Levine nd Abbeel, 2014) rgmx p(τ).. τ τ R(τ)p(τ)dτ, p(τ) log p(τ) dτ ε, q(τ) (3.1b) T 1 p(τ) = p( 1 ) P (, )π ( ). (3.1) (3.1c) where he objecive 3.1 mximize he rewrd R(τ) long rjecory τ = { 1, 1,..., T, T }, while Equion 3.1b provide he KL-bound on he curren nd l rjecory diribuion p(τ) nd q(τ). Equion 3.1c propge he e long he rjecory under he locl liner dynmic P(, ) nd he Guin policy π( ) ring from he e diribuion p( 1 ). We find hi noion o be omewh uncler, herefore we rnform he problem o i ep-bed equivlen. Thu, we re ble o how h he KL-divergence bound impoed on he rjecory diribuion p(τ) cn be, in fc, implified o bound e on he policy π( ). For he purpoe of clriy we preform hi rnformion explicily. By ubiuing he dynmic conrin 3.1c ino he KL-bound 3.1b nd replcing rjecorie τ wih e-cion pir (, ) we cn rewrie he inegrl in 3.1b D KL (p(τ) q(τ)) = p(τ) log p( 1) T 1 P (, )π ( ) τ p( 1 ) T 1 P dτ (3.2) (, )q ( ) = p (, ) log π ( ) q ( ) dd (3.2b) = p () π ( ) log π ( ) q ( ) dd. (3.2c) 8

17 From Equion 3.2c, i i cler h KL-bound on he rjecory diribuion i equivlen o n expeced bound on he policy ech ime ep. A hi poin we re ble o rewrie he whole problem wih our new e-cion-pir noion rgmx π ( ) T-1 R (, )µ ()π ( )dd + µ T ()R T ()d, (3.3).., > 1 < T < T, µ () µ 1 ()π 1 ( )P 1 (, )dd = µ ( ), (3.3b) π ( ) log π ( ) dd ε, q ( ) (3.3c) π ( )d = 1, (3.3d) µ 1 () = p 1 (). (3.3e) where he rewrd R(, ) i o be mximized wih repec o he e-cion diribuion, given by he policy π ( ) nd i induced e diribuion µ (), while under he yem dynmic conrin 3.3b, h propge he iniil e diribuion hrough ime nd i referred o forwrd p. Equion 3.3c i conrin on he expeced KL-bound on he policy for ech ime ep, where Equion 3.3d enure he policy i diribuion, nd Equion 3.3e pecifie he iniil e diribuion µ 1 (). 3.2 Dul Problem For he purpoe of hi hei we produce complee derivion of he cloed-form oluion of Guided Policy Serch under he umpion of liner dynmic, Guin noie nd qudric rewrd, ee Appendix A. We r by pplying he mehod of Lgrngin muliplier o formule he o clled priml problem, which inroduce new Lgrngin muliplier per conrin nd ime ep. The edependen Lgrngin muliplier V () re ocied wih he dynmic conrin 3.3b nd will ler reemble he e vlue funcion, while α re ocied wih he KL-bound given in Equion 3.3c. By olving for he opiml policy π ( ) we obin normlized exponenil of he e-cion vlue funcion Q (, ) 1 π ( ) exp α q ( ) + R (, ) + V +1 ( )P (, )d. (3.4) α By plugging Equion 3.4 ino he priml problem we rrive he Lgrngin dul L(µ, V, α ) T L(µ, V, α ) = µ T ()R T ()d + V 1 ()p 1 ()d V ( )µ ( )d + α ε 1 + α µ () log q ( ) exp R (, ) + V +1 ( )P (, )d dd. α (3.5) The dul L i funcion of he e diribuion µ () nd he Lgrngin muliplier V () nd α. By exploiing he duliy of hi opimizion, we re ble o mximize he priml problem by minimizing he dul funcion (Boyd nd Vndenberghe, 2009). Therefore, we ke he pril derivive of L nd pply dul decen in heir repecive direcion, 9

18 = µ = V R T () V T () V () α log exp α log q ( ) + R (, ) + V +1 ( )P (, ) α µ () ŝ p 1 () µ 1 (), = 1 π 1( ŝ)µ 1 (ŝ)p 1 ( ŝ, )ddŝ, > 1 = ε µ () π ( ) log π ( ) α q ( ) dd., = T, < T, (3.6), (3.6b) (3.6c) Seing he derivive in Equion 3.6 nd 3.6b o zero deliver wo opimliy condiion for he e vlue funcion V () nd he e diribuion µ (), h correpond o bckwrd p (bckwrd propgion of fuure rewrd) nd forwrd p (forwrd propgion of he e diribuion) repecively V () = µ () = R T () α log exp α log q ( ) + R (, ) + V +1 ( )P (, ) α ŝ p 1 (), = 1 π 1( ŝ)µ 1 (ŝ)p 1 ( ŝ, )ddŝ, > 1, = T, < T, (3.7). (3.7b) Under he LQG umpion, hee pe cn be compued in cloed form, where α hve o be opimized by grdien decen. Conidering he pril derivive of L wih repec o α, i i worh noing, h he opiml poin, he KL-conrin given in Equion 3.3c i me excly he bound ε, becue he grdien in Equion 3.6c become zero. Finlly, by plugging Equion 3.7 nd 3.7b ino Equion 3.8 he dul implifie o L(µ, V, α ) = V 1 ()µ 1 ()d + α ε. (3.8) 3.3 Policy Dependen Rewrd An inereing inigh ino he e vlue funcion V (), which nd for he expeced rewrd-o-go nd i defined in Equion 3.7, i he emergence of new erm h ugmen he immedie rewrd o include policy-reled erm q ( ) in ddiion o he ndrd e-cion rewrd provided by ime-vrin funcion R (, ) in eing nlog o DDP nd ilqg r (, ) = R (, ) + α log q ( ). (3.9) Under liner-guin dynmic P (, ) = N ( A + b + c, Σ ) nd qudric rewrd R (, ) = (z ) T M (z ) + T H, we how h he overll rewrd r (, ) i lo qudric r (, ) = T R. + T R. + T R T. + T R. + T r. + T r. + r 0,. (3.10) 10

19 R, = M α 2 (Kq )T (Σ q, ) 1 K q, (3.11) R, = H α 2 (Σq, ) 1, (3.11b) R, = α 2 (Kq )T (Σ q, ) 1, (3.11c) r, = α (K q )T (Σ q, ) 1 k q 2M z, (3.11d) r, = α (Σ q, ) 1 k q, r 0, = z T M z α log 2πΣ q, (3.11e) α 2 (kq )T (Σ q, ) 1 k q. (3.11f) A qudric rewrd funcion r (, ), by definiion, force qudric e vlue funcion V () V () = T V + T v + v. (3.12) In urn nd by conidering Equion 3.4, qudric e vlue funcion give rie o ime-vrin liner-guin opiml policy π ( ) = N ( k π + Kπ, Σπ, ). (3.13) 3.4 Implemenion In hi ecion we decribe he rucure of our verion of Guided Policy Serch we hve implemened i. For he purpoe of breviy, we do no conider he proce of linerizion. Generlly, linerizion i done by mpling full rjecorie from he non-liner yem under he curren policy nd fiing liner- Guin dynmic ech ime ep. The implemenion dicued here, focue on he opimizion ep, nd preuppoe he exience of he linerized dynmic. Bed on he derivion of he dul funcion from he previou ecion, we hve rnformed he problem ino convex minimizion problem over hree prmeer per ime ep V (), µ () nd α. However, ince Equion 3.7 nd 3.7b deliver cloed-form oluion o he opiml e vlue funcion V () nd e diribuion µ () funcion of α, he problem i reduced o minimizion of he dul wih repec o α nd cn be ierively olved by grdien decen cheme. In hi ce, he whole procedure cn be een bch-coordine-decen opimizion wih repec o V (), µ () nd α. Algorihm 1 how he ep by ep equence of he minimizion. Alhough grdien decen implemenion i righ forwrd procedure, i i recommended o ue more ophiiced opimizer provided by Mhwork MATLAB or Non-Liner Opimizion Librry (NLop) (Johnon, 2016), becue hey provide dvnced heuriic of moduling he ep ize long he grdien nd numericl eime of he econd degree derivive (Hein), generlly leding o fer convergence nd le compuion co. For reon reled o compuionl biliy nd efficiency, ll our lgorihm will be implemened in he frmework of he Armdillo Liner Algebr Librry (Snderon, 2010). 11

20 inpu : T ; /* ime horizon */ P (, ) ; /* linerized dynmic */ µ 1 () ; /* iniil e diribuion */ q ( ) ; /* l policy */ M, H, z ; /* rewrd mrice nd gol e */ oupu: π ( ) ; /* opiml policy */ V () ; /* opiml e vlue funcion */ µ () ; /* e diribuion under opiml policy */ α ; /* opiml Lgrngin prmeer α */ iniilize α ; /* iniil gue of α */ /* minimizing he dul by grdien decen */ while L(µ, V, α ) no minimum do /* compue ugmened rewrd funcion uing Equion 3.10 */ r (, ) overll_rewrd(m, H, z, q ( ), α ); /* compue vlue funcion nd policy uing Equion 3.7 nd 3.4 */ [V (), π ( )] bckwrd_p(r (, ), P (, ), α ); /* compue he e diribuion uing Equion 3.7b */ µ () forwrd_p(µ 1 (), π ( ), P (, )); /* upde Lgrnge dul vlue wih Equion 3.8 */ L(µ, V, α ) upde_dul(v 1 (), µ 1 (), α, ε); /* compue Lgrnge dul grdien wih repec o α uing Equion 3.6c */ dul_lph_grdien(µ (), π ( ), q ( ), ε); α /* upde α long he grdien wih ep λ */ α = α λ α ; Algorihm 1: Guided Policy Serch in Peudo-Code 12

21 4 Se-Acion Bound Policy Serch A he beginning of hi hei we inroduced he generl cheme of pplying Sochic Opiml Conrol o non-liner yem. The min chllenge i he bence of heoreicl gurnee on he improvemen of he induced rjecory fer ech ierion. Thi horcoming i due o he rericed vlidiy of he locl dynmic o mll region round he linerizion poin. A greedy exploiion of he linerized dynmic my led o policie h force he non-liner yem ino region of he e pce h re "fr wy" from wh i expeced under he linerized model mking he opimizion ep under he model meningle. Therefore, i i crucil o minin bound on he e diribuion beween ierion in order o enure he vlidiy of he loclly opimized conroller. Ierive Liner Qudric Guin (ilqg) rie o olve hi problem by inroducing clr o he policy prmeer which i opimized by bckrcking line-erch cheme h incree or reduce he ep ize bed on he improvemen in he expeced rewrd. Guided Policy Serch follow imilr logic; by inroducing relive enropy bound on he chnge of he ochic policy, he induced e diribuion become implicily bounded. However, for highly dynmicl yem hi condiion would require impoing very mll ep on he policy, which migh drmiclly low down convergence nd co coniderble exr moun of mple on he rel yem. In hi chper we im o ddre hi iue. We propoe he inroducion of n explici relive enropy bound on he e-cion diribuion nd e ou o how h uch bound would llow king lrger ep in he policy pce while prevening he e diribuion from diverging, hu reducing he number of needed ierion nd overll mple. 4.1 Opimizion Problem We ke imilr formulion o Guided Policy Serch, bu replce he KL-bound on he policy diribuion by bound on he e-cion diribuion rgmx π ( ) T-1 R (, )µ ()π ( )dd + µ T ()R T ()d, (4.1).., > 1 < T, < T µ 1 ()π 1 ( )P 1 (, )dd = µ ( ), (4.1b) µ ()π ( ) log µ ()π ( ) dd ε, q (, ) π ( )d = 1, (4.1c) (4.1d), = 1 µ 1 () = p 1 (). (4.1e) The objecive in 4.1 eek o mximize he rewrd under he finl e-cion diribuion p (, ) = µ ()π ( ), while 4.1b keep he e diribuion µ () under he conrin of he linerized yem dynmic. Our novely e-cion bound i inroduced in 4.1c, wih q (, ) repreening he ecion diribuion of he l linerizion. The remining conrin 4.1d nd 4.1e enure h he policy i diribuion nd pecify he iniil e diribuion repecively. 13

22 4.2 Dul Problem A in our derivion of Guided Policy Serch in Chper 3, we pply he mehod of Lgrngin muliplier o formule he priml problem wih one Lgrngin muliplier per conrin nd ime ep. The full derivion under he LQG umpion i lied in Appendix B. In hi ce, he opiml policy i lo normlized exponenil of he e-cion vlue funcion Q (, ) 1 π ( ) exp α log q (, ) + R (, ) + V +1 ( )P (, )d. (4.2) α We obin he Lgrngin dul funcion L(µ, V, α ) by ubiuing he opiml policy Equion 4.2 ino he priml problem L = µ T ()R T ()d + V 1 ()p 1 ()d V T ( )µ T ( )d V ( )µ ( )d + α ε α µ () log µ ()d (4.3) 1 + α µ () log exp α log q (, ) + R (, ) + V +1 ( )P (, )d dd. α According o he principle of duliy, minimizing he dul funcion i equivlen o mximizing he priml problem (Boyd nd Vndenberghe, 2009). Therefore, we minimize L by king i pril derivive R T () V T (), = T = µ V () α log exp α log q (, ) α log µ () α + R (, ) + V +1 ( )P (, ), (4.4) α, < T = V µ () ŝ p 1 () µ 1 (), = 1 π 1( ŝ)µ 1 (ŝ)p 1 ( ŝ, )ddŝ, > 1, (4.4b) = ε µ ()π ( ) log µ ()π ( ) dd. (4.4c) α q (, ) A he opiml poin of L he pril derivive re equl o zero, which cn be een opimliy condiion for he e vlue funcion V () nd he e diribuion µ () R T (), = T V () = α log exp α log q (, ) α log µ () α + R (, ) + V +1 ( )P (, ) α p 1 (), = 1 µ () = π ŝ 1( ŝ)µ 1 (ŝ)p 1 ( ŝ, )ddŝ, > 1, < T, (4.5). (4.5b) Anlog o Guided Policy Serch in Chper 3, he opimliy condiion reemble bckwrd p nd forwrd p h cn be compued in cloed-form in n LQG environmen. Furhermore, he KLconrin 4.1c i being me excly he bound ε due o Equion 4.4c becoming equl o zero he opiml poin. Alo, uing Equion 4.5 nd 4.5b, we cn furher implify he Lgrnge dul L(µ, V, α ) L(µ, V, α ) = V 1 ()µ 1 ()d + α (ε + 1). (4.6) 14

23 4.3 Se-Acion Dependen Rewrd The inroducion of he e-cion conrin 4.1c reul in n ugmened rewrd funcion. The new erm no only ccoun for dince o he l policy q ( ), bu lo weigh he dince beween µ (), he curren e diribuion, nd q (), he e diribuion under he l policy round which he yem w linerized r (, ) = R (, ) + α log q (, ) α log µ () α = R (, ) + α log q ( ) + α log q () α log µ () α. (4.7) By ubiuing liner-guin dynmic P(, ) = N ( τ q,, Σq, ), Guin e-cion diribuion q (, ) = N (, τ q,,, Σq,, ) nd qudric rewrd funcion R (, ) = (z ) T M (z ) + T H, he overll rewrd r (, ) become lo qudric r (, ) = T R, + T R, + T R T, + T R, + T r, + T r, + r 0,, (4.8) R, = M α 2 (Kq )T (Σ q, ) 1 K q α 2 (Σq, ) 1 + α 2 (Σp, ) 1, (4.8b) R, = H α 2 (Σq, ) 1, (4.8c) R, = α 2 (Kq )T (Σ q, ) 1, (4.8d) r, = α (K q )T (Σ q, ) 1 k q + α (Σ q, ) 1 τ q, α (Σ p, ) 1 τ p, 2M z, (4.8e) r, = α (Σ q, ) 1 k q, r 0, = z T M z α 2 log 2πΣ q, (4.8f) α 2 (kq )T (Σ q, ) 1 k q (4.8g) α 2 log 2πΣq, α 2 (τq, )T (Σ q, ) 1 τ q, α (4.8h) + α log 2πΣ p, 2 + (τp, )T (Σ p, ) 1 τ p,. (4.8i) 4.4 Implemenion In hi ecion we preen he implemenion of Se-Acion Bound Policy Serch (SAPS). We ignore he linerizion ep nd focu on he convex minimizion problem of he dul L(µ, V, α ) preened in he previou ecion Circulr Dependency of V () nd µ () The equion of he bckwrd p 4.5 nd forwrd p 4.5b inroduce new lgorihmic chllenge h did no occur under Guided Policy Serch. The emergence of new e-diribuion-dependen erm in he ugmened rewrd funcion r (, ) of he e vlue funcion V (), genere circulr dependency beween V () nd he e diribuion µ (). Thi relion become cler when we recognize h he e diribuion µ () i funcion of he policy π ( ), Equion 4.5b, nd h π ( ) i in i elf funcion of he e vlue funcion V (), Equion Block Decen over V () nd µ () A hi poin we propoe new pproch o clcule he e vlue funcion V () nd e diribuion µ (). The Equion 4.5 nd 4.5b ill offer opimliy condiion nd cn be ued ierively in 15

24 block-decen cheme on he dul L(µ, V, α ). Sring wih n iniil nd brod gue of he e diribuion p (), we ierively pply he bckwrd p, o compue V () nd π( ), nd forwrd p, o compue µ (), nd upde p () by inerpoling in he direcion of µ () unil boh diribuion mch. Algorihm 2 provide deiled view of hi procedure. 16 inpu : T ; /* ime horizon */ P (, ) ; /* linerized dynmic */ µ 1 () ; /* iniil e diribuion */ q ( ) ; /* l policy */ q () ; /* l e diribuion */ α ; /* curren Lgrngin prmeer α */ M, H, z ; /* rewrd mrice nd gol e */ oupu: π ( ) ; /* policy under curren α */ V () ; /* e vlue funcion under curren α */ µ () ; /* e diribuion under curren α */ iniilize p () ; /* iniil gue of e diribuion */ L(µ, V, α ) ; /* iniil dul vlue */ γ ; /* inerpolion ep ize */ /* minimizing he dul wih repec o V () nd µ () */ while p () µ () do /* compue ugmened rewrd funcion uing Equion 4.7 */ r (, ) overll_rewrd(m, H, z, q ( ), q (), p (), α ); /* compue vlue funcion nd policy uing Equion 4.5 nd 4.2 */ [V (), π ( )] bckwrd_p(r (, ), P (, ), α ); /* compue he e diribuion uing Equion 4.5b */ µ () forwrd_p(µ 1 (), π ( ), P (, )); /* check KL-divergence beween p () nd µ () */ if D K L (p (), µ ()) < hrehold hen brek; /* inerpole p () in he direcion of µ () wih ep ize γ */ p () inerpole_diribuion(p (), µ ()); /* upde Lgrnge dul vlue wih Equion 4.6 */ L(µ, V, α ) upde_dul(v 1 (), p 1 (), α, ε); /* check if he dul reched lower vlue */ if L < L hen L = L; p () = p () ; ele γ = 0.5 γ ; Algorihm 2: Se-Acion Policy Serch: Dul Block Decen over V () nd µ () in Peudo-Code

25 4.4.3 Grdien Decen over α inpu : T ; /* ime horizon */ P (, ) ; /* linerized dynmic */ µ 1 () ; /* iniil e diribuion */ q ( ) ; /* l policy */ q () ; /* l e diribuion */ M, H, z ; /* rewrd mrice nd gol e */ oupu: π ( ) ; /* opiml policy */ V () ; /* opiml e vlue funcion */ µ () ; /* opiml e diribuion */ iniilize α ; /* iniil gue of α */ /* minimizing he dul by grdien decen */ while L(µ, V, α ) no minimum do /* do block-decen o compue V () nd µ () */ [V (), π ( ), µ ()] block_decen(p (, ), q ( ), q (), p (), M, H, z, α ); /* upde Lgrnge dul vlue wih Equion 4.6 */ L(µ, V, α ) upde_dul(v 1 (), µ 1 (), α, ε); /* compue Lgrnge dul grdien wih repec o α uing Equion 4.4c */ dul_lph_grdien(µ (), π ( ), q ( ), q (), ε); α /* upde α long he grdien wih ep λ */ α = α λ α ; Algorihm 3: Se-Acion Policy Serch: Dul Grdien Decen over α in Peudo-Code Block Coordine Decen A ignificn drw bck of Algorihm 3 i he compuion co of preforming he block decen over V () nd µ () for every grdien-decen ep of α. Therefore, we ugge modified lgorihm, h implemen differen block-coordine-decen wih repec o V (), µ () nd α. By holding he e vlue funcion V () conn while opimizing α, nd vice ver, we re ble o opimize boh eprely nd reduce compuion ime drmiclly. However, h would require u o reconider he opimliy condiion of µ () when opimizing α. Thu, we need o reke he pril derivive of Equion 4.6 wih repec o µ (), we rrive differen cloed-form condiion for µ () µ () = N ( V (), ˆV (), α ), (4.9) where ˆV () i erm h reemble n α -dependen e vlue funcion 1 ˆV () = log exp α log q (, ) + R (, ) + V +1 ( )P (, )d d. (4.10) α A full derivion of he coordine-decen cheme cn be found in Appendix B. 17

26 inpu : T ; /* ime horizon */ P (, ) ; /* linerized dynmic */ µ 1 () ; /* iniil e diribuion */ q ( ) ; /* l policy */ q () ; /* l e diribuion */ M, H, z ; /* rewrd mrice nd gol e */ oupu: π ( ) ; /* opiml policy */ V () ; /* opiml e vlue funcion */ µ () ; /* opiml e diribuion */ iniilize α ; /* iniil gue of α */ /* minimizing he dul by coordine decen */ while L(µ, V, α ) no minimum do /* do block-decen o compue V () nd µ () */ [V (), π ( ), ] block_decen(p (, ), q ( ), q (), p (), M, H, z, α ); /* minimize Lgrnge dul wih repec o α */ while L(µ, α ) no minimum do /* compue ˆV () wih Equion 4.10 */ [ˆV (), ˆπ ()] co_decen_bckwrd_p(p (, ), V (), q ( ), q (), M, H, z, α ); /* compue e diribuion ˆµ () wih Equion 4.9 */ ˆµ () co_decen_e_diribuion(ˆv (), V (), α ); /* upde Lgrnge dul vlue wih Equion 4.3 */ L(µ, α ) upde_dul(v (), ˆV (), ˆµ (), α, ε); /* compue Lgrnge dul grdien wih repec o α uing Equion 4.4c */ dul_lph_grdien(ˆµ (), ˆπ ( ), q ( ), q (), ε); α /* upde α long he grdien wih ep λ */ α = α λ α ; Algorihm 4: Se-Acion Policy Serch: Dul Coordine Decen in Peudo-Code 18

27 5 Enropy Se-Acion Bound Policy Serch The inroducion of ochic policy o he clicl Mrkov Deciion Proce formulion of Opiml Conrol, poe chllenge imilr o problem h occur in generl Sochic Serch eing (Abdolmleki e l., 2015). Thee iue boil down o he problem of explorion v. exploiion. The ochiciy of policy dd o he biliy of n lgorihm o explore he e-cion pce. The chllenge lie in yemiclly conrolling he vrince of he policy in wy h llow for explorion bu lo converge o men conroller h mximize he expeced rewrd. Algorihm like Guided Policy Serch nd Se-Acion Bound Policy Serch cn uffer from premure convergence, becue of he nure of heir relive enropy bound. The KL-divergence c on he men nd vrince of diribuion nd my reul in he lgorihm oping o greedily mximizing i rewrd by rpidly hrinking he vrince nd brely exploring in he direcion of men cion. To counerc hi dynmic, we inroduce new conrin on he enropy of he policy h im o minin lower bound of ochiciy nd, hu, force explorion in he cion pce. 5.1 Opimizion Problem The new opimizion problem i nlog o h of Se-Acion Bound Policy Serch wih he ddiion of n enropy conrin in Equion 5.1d rgmx π ( ) T-1 R (, )µ ()π ( )dd + µ T ()R T ()d, (5.1).., > 1 < T < T, < T µ 1 ()π 1 ( )P 1 (, )dd = µ ( ), (5.1b) µ ()π ( ) log µ ()π ( ) dd ε, q (, ) µ () π ( ) log π ( )dd δ, π ( )d = 1, (5.1c) (5.1d) (5.1e), = 1 µ 1 () = p 1 (). (5.1f) The hyperprmeer δ cn be choen in uch wy, for exmple, o minin or incree he vrince or enropy of he l policy q ( ) by ome fcor. 5.2 Dul Problem Ju in GPS nd SAPS, we rnform he priml problem o i dul equivlen by olving for π ( ). The inroducion of he enropy conrin 5.1d reul in new Lgrngin vrible for ech ime ep β. A complee derivion of Enropy Se-Acion Bound Policy Serch i in Appendix C 1 π ( ) exp R (, ) + α log q (, ) + V +1 ( )P (, )d. (5.2) α + β 19

28 We ubiue π ( ) ino he priml problem o ge he dul funcion L(µ, V, α, β ) L = µ T ()R T ()d + V 1 ()p 1 ()d V T ( )µ T ( )d V ( )µ ( )d + α ε + β δ α µ () log µ ()d R (, ) + α log q (, ) + V + (α + β ) µ () log exp +1 ( )P (, )d dd. α + β For dul minimizion, we ke he pril derivive of L(µ, V, α, β ) nd e hem o zero o ge he opimliy condiion of he e vlue funcion V () nd e diribuion µ () R T () V T (), = T =, µ V () (α + β ) log exp α log q (, ) α log µ () α + R (, ) + V +1 ( )P (, ) α + β, < T (5.3) = V µ () ŝ = ε α β = δ µ () p 1 () µ 1 (), = 1 π 1( ŝ)µ 1 (ŝ)p 1 ( ŝ, )ddŝ, > 1 µ ()π ( ) log µ ()π ( ) dd q (, ) π ( ) log π ( )dd. (5.4), (5.4b) By plugging hee opimliy condiion ino Equion 5.3 we ge implified dul L(µ, V, α, β ) L(µ, V, α, β ) = (5.4c) (5.4d) V 1 ()µ 1 ()d + α (ε + 1) + β δ. (5.5) 5.3 Augmened Rewrd From Equion 5.4b nd 5.4, i i cler h he rewrd funcion r (, ) i imilr o h of he Se- ACion Bound Policy Serch in Equion 4.7. However, he emperure prmeer of he e-cion vlue funcion Q (, ) nd he weighing of he e vlue funcion V () hve he dded vlue of β Q (, ) = 1 r (, ) + P [V +1 ( )], (5.6) α + β V () =(α + β ) log exp Q (, ) d. (5.6b) In Appendix C, we do full derivion of ESAPS under liner Guin dynmic P(, ) = N ( A + b + c, Σ ) nd ime vrin qudric rewrd R (, ) = (z ) T M (z ) + T H nd how he reuling vlue funcion Q (, ) nd V () re lo qudric nd he policy π ( ) i liner-guin diribuion. 20

29 5.4 Implemenion The implemenion of ESAPS i imilr in i rucure o SAPS wih n ddiionl opimizion over β. Algorihm 5 how he deil of he coordine-decen cheme. inpu : T ; /* ime horizon */ P (, ) ; /* linerized dynmic */ µ 1 () ; /* iniil e diribuion */ q ( ) ; /* l policy */ q () ; /* l e diribuion */ M, H, z ; /* rewrd mrice nd gol e */ oupu: π ( ) ; /* opim policy */ V () ; /* opiml e vlue funcion */ µ () ; /* opiml e diribuion */ iniilize α, β ; /* iniil gue of α, β */ /* minimizing he dul by coordine decen */ while L(µ, V, α, β ) no minimum do /* do block-decen o compue V () nd µ () */ [V (), π ( ), ] block_decen(p (, ), q ( ), q (), p (), M, H, z, α, β ); /* minimize Lgrnge dul wih repec o α */ while L(µ, α ) no minimum do /* compue e vlue funcion ˆV () */ [ˆV (), ˆπ ()] co_decen_bckwrd_p(p (, ), V (), q ( ), q (), M, H, z, α, β ); /* compue e diribuion ˆµ () */ ˆµ () co_decen_e_diribuion(ˆv (), V (), α, β ); /* upde Lgrnge dul vlue wih Equion 5.3 */ L(µ, α, β ) upde_dul(v (), ˆV (), ˆµ (), α, β, ε, δ); /* compue Lgrnge dul grdien wih repec o α uing Equion 5.4c */ dul_lph_grdien(ˆµ (), ˆπ ( ), q ( ), q (), ε); α /* compue Lgrnge dul grdien wih repec o β uing Equion 5.4d */ dul_be_grdien(ˆµ (), ˆπ ( ), δ); β /* upde α β long he grdien wih ep λ nd ζ */ α = α λ ; β = β ζ α β Algorihm 5: Enropy Se-Acion Policy Serch: Dul Coordine Decen in Peudo-Code 21

30 6 Evluion 6.1 Double Pendulum Tk The double pendulum k i eup wih fully cued wo link rm under he influence of grviy. The objecive of he lerner i o do full wing up of he pendulum ring from he down-righ poiion nd ry o bilize he il of he rjecory round he up-righ poure. To mke he k hrder, we inroduce fricion o he join nd hif he cener of m owrd he end of he econd link. Furhermore, we limi he llowed orque by pplying hrp non-liner conrin. The number of mple ued for linerizion i 25 per ierion Rewrd GPS SAPS ESAPS Ierion Figure 6.1.: Double Pendulum Tk: The ol expeced rewrd of GPS, SAPS nd ESAPS in comprion during wing-up k. Ech lerner i given 25 ierion per ril o find he be policy. To ccoun for he ochiciy of he eup, 10 ril were preformed nd verged. The hyperprmeer of ech lerner were opimized eprely o reflec i be performnce. Figure 6.1 how direc comprion beween GPS, SAPS nd ESAPS fer independen opimizion of he repecive hyperprmeer. Afer 25 ierion, GPS reche he lowe rewrd nd demonre he highe re of ocillion during he l 5 ierion, which i due o he yem premurely running 22

31 ino he orque limi. SAPS nd ESAPS boh ou preform GPS by reching he me rewrd level fer only hve he number of ierion or le GPS SAPS ESAPS Mx Policy Sep Ierion Figure 6.2.: Double Pendulum Tk: The mximum chnge in he policy for ech ierion of GPS, SAPS nd ESAPS. GPS h conn ep h i equl i KL-bound. SAPS ke ignificnly bigger ep while minining he upper bound on he e-cion diribuion. ESAPS i ble o ke he lrge ep due o i biliy o minin lrger vrince Figure 6.2 illure he mximum KL-divergence of he policy fer ech ierion. The reul vlide our umpion, h by bounding he e-cion diribuion in SAPS nd ESAPS, we re ble ke lrger ep in he policy pce wihou he rik of leving he viciniy of he linerized dynmic. Alo, by minining ignificn porion of i enropy, ESAPS i cpble of king lrger ep in he direcion of he men cion. 6.2 Qud Pendulum Tk The qud pendulum k i imilr o h of he double pendulum, lbei wih much higher complexiy in he dynmic. The pendulum i fully cued nd h o be wung-up nd bilized in he up-righ poiion. We only pecify he end-poin of he rjecory for bilizion nd forgo he pecificion of ny oher vi-poin. The number of mple ued for linerizion i 100 per ierion. Figure 6.3 offer comprion of he ol expeced rewrd of ESAPS gin GPS. The hyperprmeer of boh lgorihm were opimized independenly. I i cler h ESAPS ouperform GPS by very lrge mrgin, reching imilr rewrd level fer only 25 ierion compred o 50 ierion for GPS. A juificion for hi difference in performnce i found in Figure 6.4, h compre he mximum policy ep h boh lgorihm cn ke wihou riking divergence. ESAPS cn, le for ome ime ep, ke ep 6-7 ime he ep of GPS wihou compromiing he inegriy of he linerizion. 6.3 Dicuion Bed on he reul we hve preened, i i cler h our umpion hve been vlided o ome exen. In direc comprion o GPS, we were ble o how he impc of bounding he e diribuion o preerve he vlidiy of he linerizion, i llowed u o execue lrger ep in he policy pce nd ignificnly reduce he number of ierion nd mple. Alo, he exience of he n enropy lower bound h conribued o minining explorion nd, hu, reching beer end policie. 23

32 Rewrd GPS ESAPS Ierion Figure 6.3.: Qud Pendulum Tk: The expeced rewrd of GPS nd ESAPS. Ech lerner i given 50 ierion. For iicl men of he expeced rewrd, 10 ril were preformed nd verged. The hyperprmeer of ech lerner were opimized eprely o reflec i be performnce. The finl reul how ESAPS ouperforming GPS ignificnly GPS ESAPS Mx Policy Sep Ierion Figure 6.4.: Qud Pendulum Tk: The mximum ep in he policy pce for ech ierion of GPS nd ESAPS. The ep of GPS, per definiion, i conn nd equl i KL-bound. ESAPS, however, module he mximum ep ize bed on he e-cion bound 24

33 7 Fuure Work In hi chper we ugge poible li of improvemen nd re of furher reerch, bed on he encourging reul we hve preened. 7.1 Sepre Bound on Se nd Acion Our min conribuion in hi hei h been he inroducion of n upper bound on he chnge of e diribuion in ierive Sochic Opiml Conrol mehod. We hve choen o chieve h by bounding he e-cion diribuion. However, i i conceivble h wo epre bound, one on he policy nd one he e diribuion, my crry ome dvnge, uch being ble o e independen upper or lower bound on he policy chnge. 7.2 Comprion o Full Grdien Decen In our derivion we hve hown h we re ble o compue he opiml vlue funcion nd e diribuion in cloed-form bed on wo opimliy condiion from he dul pril derivive. Thi formulion reduce he minimizion of he dul funcion o grdien decen problem over he Lgrngin muliplier ocied wih relive enropy conrin. In he fuure we pln o nlyze he poibiliy of pplying full grdien decen on he vlue funcion nd e diribuion nd compring he erch direcion o h of he opimliy condiion. 7.3 Principled Conrol of Policy Enropy By dding he enropy conrin on he policy in Enropy Bound Se Acion Policy Serch, we were ble o preven he decy of he policy vrince, llowing u o explore he cion pce for lrger number of ierion. A poible exenion i he inroducion of ome heuriic h would no only minin he vrince bu lo incree i. Such biliy o mnipule he enropy would help in ecping hllow locl minim h migh reul of ub-opiml iniilizion of he policy. 7.4 Reformulion for Deerminiic Policie By concenring on he formulion of Guided Policy Serch, we re limied o cl of lgorihm h ry o opimize ochic policy. However, he originl formulion of he Mrkov Deciion Proce doe no necerily require uch policy. In fc, i e h he opiml policy i deerminiic conroller. Bed on hi inigh, i my be inereing o reformule he problem long he line of Differenil Dynmic Progrmming nd Ierive Qudric Guin nd exploring equivlen regulrizion h correpond o wh we hve inroduce in hi hei. 7.5 Furher Evluion on Lrger nd Rel Syem Alhough our reul re promiing, furher comprion o oher e-of-he-r lgorihm re ill needed for ronger vlidion. Alo he pplicion on high dimenionl nd rel yem would help u undernd he clbiliy of compuion ime nd feibiliy in regrd o he number of mple. 25

34 8 Concluion Sochic Opiml Conrol wih linerized dynmic i powerful echnique for lerning opiml conrol policie of highly non-liner yem. In hi hei we hve inveiged nd inroduced everl vriion of e-of-he-r lgorihm in hi field. In our inroducion we hve dicued mjor iue in hi cl of lgorihm, which i i dependency on he vlidiy of he model round he linerizion poin. Hence, i i crucil o provide gurnee h would preven greedy exploiion of he locl dynmic. In Chper 3, we wen on o nlyze recen pproch, Guided Policy Serch, h ddree hi iue, by forcing relive enropy bound on he rjecory diribuion beween ierion. We ucceeded in reformuling GPS nd were ble o how h i propoed conrin i equivlen o bounding he policy upde ech ime ep. We hve lo rgued h uch n pproch only implicily bound he e diribuion round which he yem i linerized. Thu, o void divergence in highly dynmicl yem, he lgorihm i limied o very mll upde on he policy, which would, in urn, incree he number of ierion nd mple needed. In Chper 4, relying on hee inigh, we propoed new conrin h explicily impoe relive enropy bound on he e diribuion by bounding he e-cion diribuion ined of he policy. Thi ddiion h reuled in number of new lgorihmic chllenge, which we were ble o del wih. The min iue w he emergence of new rewrd erm h encode he dince beween he curren nd l e diribuion, which h led o circulr dependency beween he vlue funcion nd e diribuion, which we were ble o olve by pplying block-coordine-decen cheme. By concenring on cl of lgorihm h require ochic policy nd due o he nure of he relive enropy bound we hve inroduced, we were inevibly confroned wih problem of rde-off beween explorion nd exploiion. We ddreed hi iue, in Chper 5, hrough n ddiionl conrin on he differenil enropy of he policy, hu, llowing u o conrol he ochiciy of policy he lgorihm dvnce fer ech ierion. A proof of concep of our conribuion, we hve compred our lgorihm wih GPS by preforming wing-up k on he highly non-liner double nd qud pendulum. The reul vlide our view, h bound on he e-cion diribuion llow for more ggreive upde of he policy, while eing n upper bound on he divergence of he e diribuion. Finlly, we hve dicued wy o improve nd exend our conribuion, uch inroducing epre bound on he e nd cion, developing principled pproch for mnipuling he enropy of he policy nd preforming evluion on higher dimenionl nd rel yem. 26

Chapter 2: Evaluative Feedback

Chapter 2: Evaluative Feedback Chper 2: Evluive Feedbck Evluing cions vs. insrucing by giving correc cions Pure evluive feedbck depends olly on he cion ken. Pure insrucive feedbck depends no ll on he cion ken. Supervised lerning is

More information

Optimality of Myopic Policy for a Class of Monotone Affine Restless Multi-Armed Bandit

Optimality of Myopic Policy for a Class of Monotone Affine Restless Multi-Armed Bandit Univeriy of Souhern Cliforni Opimliy of Myopic Policy for Cl of Monoone Affine Rele Muli-Armed Bndi Pri Mnourifrd USC Tr Jvidi UCSD Bhkr Krihnmchri USC Dec 0, 202 Univeriy of Souhern Cliforni Inroducion

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

Feature Extraction for Inverse Reinforcement Learning

Feature Extraction for Inverse Reinforcement Learning Feure Exrcion for Invere Reinforcemen Lerning Feure-Exrkion für Invere Reinforcemen Lerning Mer-Thei von Oleg Arenz u Wiebden Tg der Einreichung: 1. Guchen: 2. Guchen: 3. Guchen: Feure Exrcion for Invere

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

GEOMETRIC EFFECTS CONTRIBUTING TO ANTICIPATION OF THE BEVEL EDGE IN SPREADING RESISTANCE PROFILING

GEOMETRIC EFFECTS CONTRIBUTING TO ANTICIPATION OF THE BEVEL EDGE IN SPREADING RESISTANCE PROFILING GEOMETRIC EFFECTS CONTRIBUTING TO ANTICIPATION OF THE BEVEL EDGE IN SPREADING RESISTANCE PROFILING D H Dickey nd R M Brennn Solecon Lbororie, Inc Reno, Nevd 89521 When preding reince probing re mde prior

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

Recent Enhancements to the MULTIFAN-CL Software

Recent Enhancements to the MULTIFAN-CL Software SCTB15 Working Pper MWG-2 Recen Enhncemen o he MULTIFAN-CL Sofwre John Hmpon 1 nd Dvid Fournier 2 1 Ocenic Fiherie Progrmme Secreri of he Pcific Communiy Noume, New Cledoni 2 Oer Reerch Ld. PO Box 2040

More information

Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso

Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso Sph3u Prcice Uni Te: Kinemic (Soluion) LoRuo Nme: Tuey, Ocober 3, 07 Ku: /45 pp: /0 T&I: / Com: Thi i copy of uni e from 008. Thi will be imilr o he uni e you will be wriing nex Mony. you cn ee here re

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

Physics 2A HW #3 Solutions

Physics 2A HW #3 Solutions Chper 3 Focus on Conceps: 3, 4, 6, 9 Problems: 9, 9, 3, 41, 66, 7, 75, 77 Phsics A HW #3 Soluions Focus On Conceps 3-3 (c) The ccelerion due o grvi is he sme for boh blls, despie he fc h he hve differen

More information

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445 CS 445 Flow Nework lon Efr Slide corey of Chrle Leieron wih mll chnge by Crol Wenk Flow nework Definiion. flow nework i direced grph G = (V, E) wih wo diingihed erice: orce nd ink. Ech edge (, ) E h nonnegie

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

can be viewed as a generalized product, and one for which the product of f and g. That is, does

can be viewed as a generalized product, and one for which the product of f and g. That is, does Boyce/DiPrim 9 h e, Ch 6.6: The Convoluion Inegrl Elemenry Differenil Equion n Bounry Vlue Problem, 9 h eiion, by Willim E. Boyce n Richr C. DiPrim, 9 by John Wiley & Son, Inc. Someime i i poible o wrie

More information

Machine Learning Reinforcement Learning

Machine Learning Reinforcement Learning Mchine Lerning Reinforcemen Lerning Leon 2 Mchine Lerning Mchine Lerning Supervied Lerning Techer ell lerner wh o remember Reinforcemen Lerning Environmen provide hin o lerner Unupervied Lerning Lerner

More information

5. Network flow. Network flow. Maximum flow problem. Ford-Fulkerson algorithm. Min-cost flow. Network flow 5-1

5. Network flow. Network flow. Maximum flow problem. Ford-Fulkerson algorithm. Min-cost flow. Network flow 5-1 Nework flow -. Nework flow Nework flow Mximum flow prolem Ford-Fulkeron lgorihm Min-co flow Nework flow Nework N i e of direced grph G = (V ; E) ource 2 V which h only ougoing edge ink (or deinion) 2 V

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

f t f a f x dx By Lin McMullin f x dx= f b f a. 2 Accumulion: Thoughs On () By Lin McMullin f f f d = + The gols of he AP* Clculus progrm include he semen, Sudens should undersnd he definie inegrl s he ne ccumulion of chnge. 1 The Topicl Ouline includes

More information

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples. Improper Inegrls To his poin we hve only considered inegrls f(x) wih he is of inegrion nd b finie nd he inegrnd f(x) bounded (nd in fc coninuous excep possibly for finiely mny jump disconinuiies) An inegrl

More information

ARTIFICIAL INTELLIGENCE. Markov decision processes

ARTIFICIAL INTELLIGENCE. Markov decision processes INFOB2KI 2017-2018 Urech Univeriy The Neherland ARTIFICIAL INTELLIGENCE Markov deciion procee Lecurer: Silja Renooij Thee lide are par of he INFOB2KI Coure Noe available from www.c.uu.nl/doc/vakken/b2ki/chema.hml

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors Trnformion Ordered e of number:,,,4 Emple:,,z coordine of p in pce. Vecor If, n i i, K, n, i uni ecor Vecor ddiion +w, +, +, + V+w w Sclr roduc,, Inner do roduc α w. w +,.,. The inner produc i SCLR!. w,.,

More information

3. Renewal Limit Theorems

3. Renewal Limit Theorems Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

t s (half of the total time in the air) d?

t s (half of the total time in the air) d? .. In Cl or Homework Eercie. An Olmpic long jumper i cpble of jumping 8.0 m. Auming hi horizonl peed i 9.0 m/ he lee he ground, how long w he in he ir nd how high did he go? horizonl? 8.0m 9.0 m / 8.0

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

CSC 373: Algorithm Design and Analysis Lecture 9

CSC 373: Algorithm Design and Analysis Lecture 9 CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

1.0 Electrical Systems

1.0 Electrical Systems . Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,

More information

2/5/2012 9:01 AM. Chapter 11. Kinematics of Particles. Dr. Mohammad Abuhaiba, P.E.

2/5/2012 9:01 AM. Chapter 11. Kinematics of Particles. Dr. Mohammad Abuhaiba, P.E. /5/1 9:1 AM Chper 11 Kinemic of Pricle 1 /5/1 9:1 AM Inroducion Mechnic Mechnic i Th cience which decribe nd predic he condiion of re or moion of bodie under he cion of force I i diided ino hree pr 1.

More information

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m PHYS : Soluions o Chper 3 Home Work. SSM REASONING The displcemen is ecor drwn from he iniil posiion o he finl posiion. The mgniude of he displcemen is he shores disnce beween he posiions. Noe h i is onl

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

Chapter Direct Method of Interpolation

Chapter Direct Method of Interpolation Chper 5. Direc Mehod of Inerpolion Afer reding his chper, you should be ble o:. pply he direc mehod of inerpolion,. sole problems using he direc mehod of inerpolion, nd. use he direc mehod inerpolns o

More information

Probability, Estimators, and Stationarity

Probability, Estimators, and Stationarity Chper Probbiliy, Esimors, nd Sionriy Consider signl genered by dynmicl process, R, R. Considering s funcion of ime, we re opering in he ime domin. A fundmenl wy o chrcerize he dynmics using he ime domin

More information

Factorized Decision Forecasting via Combining Value-based and Reward-based Estimation

Factorized Decision Forecasting via Combining Value-based and Reward-based Estimation Fcorized Decision Forecsing vi Combining Vlue-bsed nd Rewrd-bsed Esimion Brin D. Ziebr Crnegie Mellon Universiy Pisburgh, PA 15213 bziebr@cs.cmu.edu Absrc A powerful recen perspecive for predicing sequenil

More information

Average & instantaneous velocity and acceleration Motion with constant acceleration

Average & instantaneous velocity and acceleration Motion with constant acceleration Physics 7: Lecure Reminders Discussion nd Lb secions sr meeing ne week Fill ou Pink dd/drop form if you need o swich o differen secion h is FULL. Do i TODAY. Homework Ch. : 5, 7,, 3,, nd 6 Ch.: 6,, 3 Submission

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) QUESTION BANK 6 SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddhrh Ngr, Nrynvnm Rod 5758 QUESTION BANK (DESCRIPTIVE) Subjec wih Code :Engineering Mhemic-I (6HS6) Coure & Brnch: B.Tech Com o ll Yer & Sem:

More information

Solutions to assignment 3

Solutions to assignment 3 D Sruure n Algorihm FR 6. Informik Sner, Telikeplli WS 03/04 hp://www.mpi-.mpg.e/~ner/oure/lg03/inex.hml Soluion o ignmen 3 Exerie Arirge i he ue of irepnie in urreny exhnge re o rnform one uni of urreny

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Math Week 12 continue ; also cover parts of , EP 7.6 Mon Nov 14

Math Week 12 continue ; also cover parts of , EP 7.6 Mon Nov 14 Mh 225-4 Week 2 coninue.-.3; lo cover pr of.4-.5, EP 7.6 Mon Nov 4.-.3 Lplce rnform, nd pplicion o DE IVP, epecilly hoe in Chper 5. Tody we'll coninue (from l Wednedy) o fill in he Lplce rnform ble (on

More information

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008)

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008) MATH 14 AND 15 FINAL EXAM REVIEW PACKET (Revised spring 8) The following quesions cn be used s review for Mh 14/ 15 These quesions re no cul smples of quesions h will pper on he finl em, bu hey will provide

More information

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment Mgneosics Br Mgne As fr bck s 4500 yers go, he Chinese discovered h cerin ypes of iron ore could rc ech oher nd cerin mels. Iron filings "mp" of br mgne s field Crefully suspended slivers of his mel were

More information

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x) Properies of Logrihms Solving Eponenil nd Logrihmic Equions Properies of Logrihms Produc Rule ( ) log mn = log m + log n ( ) log = log + log Properies of Logrihms Quoien Rule log m = logm logn n log7 =

More information

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t)

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t) /0/ dmin lunch oday rading MX LOW PPLIION 0, pring avid Kauchak low graph/nework low nework direced, weighed graph (V, ) poiive edge weigh indicaing he capaciy (generally, aume ineger) conain a ingle ource

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

A new model for limit order book dynamics

A new model for limit order book dynamics Anewmodelforlimiorderbookdynmics JeffreyR.Russell UniversiyofChicgo,GrdueSchoolofBusiness TejinKim UniversiyofChicgo,DeprmenofSisics Absrc:Thispperproposesnewmodelforlimiorderbookdynmics.Thelimiorderbookconsiss

More information

A continuous-time approach to constraint satisfaction: Optimization hardness as transient chaos

A continuous-time approach to constraint satisfaction: Optimization hardness as transient chaos A coninuou-ime pproch o conrin ifcion: Opimizion hrdne rnien cho PN-II-RU-TE--- Finl Sineic Repor Generl im nd objecive of he projec Conrin ifcion problem (uch Boolen ifibiliy) coniue one of he hrde cle

More information

Applications of Prüfer Transformations in the Theory of Ordinary Differential Equations

Applications of Prüfer Transformations in the Theory of Ordinary Differential Equations Irih Mh. Soc. Bullein 63 (2009), 11 31 11 Applicion of Prüfer Trnformion in he Theory of Ordinry Differenil Equion GEORGE CHAILOS Abrc. Thi ricle i review ricle on he ue of Prüfer Trnformion echnique in

More information

Reinforcement Learning. Markov Decision Processes

Reinforcement Learning. Markov Decision Processes einforcemen Lerning Mrkov Decision rocesses Mnfred Huber 2014 1 equenil Decision Mking N-rmed bi problems re no good wy o model sequenil decision problem Only dels wih sic decision sequences Could be miiged

More information

Exponential Decay for Nonlinear Damped Equation of Suspended String

Exponential Decay for Nonlinear Damped Equation of Suspended String 9 Inernionl Symoium on Comuing, Communicion, nd Conrol (ISCCC 9) Proc of CSIT vol () () IACSIT Pre, Singore Eonenil Decy for Nonliner Dmed Equion of Suended Sring Jiong Kemuwn Dermen of Mhemic, Fculy of

More information

Temperature Rise of the Earth

Temperature Rise of the Earth Avilble online www.sciencedirec.com ScienceDirec Procedi - Socil nd Behviorl Scien ce s 88 ( 2013 ) 220 224 Socil nd Behviorl Sciences Symposium, 4 h Inernionl Science, Socil Science, Engineering nd Energy

More information

Making Complex Decisions Markov Decision Processes. Making Complex Decisions: Markov Decision Problem

Making Complex Decisions Markov Decision Processes. Making Complex Decisions: Markov Decision Problem Mking Comple Decisions Mrkov Decision Processes Vsn Honvr Bioinformics nd Compuionl Biology Progrm Cener for Compuionl Inelligence, Lerning, & Discovery honvr@cs.ise.edu www.cs.ise.edu/~honvr/ www.cild.ise.edu/

More information

Price Discrimination

Price Discrimination My 0 Price Dicriminion. Direc rice dicriminion. Direc Price Dicriminion uing wo r ricing 3. Indirec Price Dicriminion wih wo r ricing 4. Oiml indirec rice dicriminion 5. Key Inigh ge . Direc Price Dicriminion

More information

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses Hindwi Advnce in Mhemicl Phyic Volume 207, Aricle ID 309473, pge hp://doi.org/0.55/207/309473 Reerch Aricle The Generl Soluion of Differenil Equion wih Cpuo-Hdmrd Frcionl Derivive nd Noninnneou Impule

More information

Maximum Flow. Flow Graph

Maximum Flow. Flow Graph Mximum Flow Chper 26 Flow Grph A ommon enrio i o ue grph o repreen flow nework nd ue i o nwer queion ou meril flow Flow i he re h meril move hrough he nework Eh direed edge i ondui for he meril wih ome

More information

u(t) Figure 1. Open loop control system

u(t) Figure 1. Open loop control system Open loop conrol v cloed loop feedbac conrol The nex wo figure preen he rucure of open loop and feedbac conrol yem Figure how an open loop conrol yem whoe funcion i o caue he oupu y o follow he reference

More information

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1 COMP28: Decision, Compuion nd Lnguge Noe These noes re inended minly s supplemen o he lecures nd exooks; hey will e useful for reminders ou noion nd erminology. Some sic noion nd erminology An lphe is

More information

Reinforcement Learning

Reinforcement Learning Reiforceme Corol lerig Corol polices h choose opiml cios Q lerig Covergece Chper 13 Reiforceme 1 Corol Cosider lerig o choose cios, e.g., Robo lerig o dock o bery chrger o choose cios o opimize fcory oupu

More information

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

PHYSICS 1210 Exam 1 University of Wyoming 14 February points PHYSICS 1210 Em 1 Uniersiy of Wyoming 14 Februry 2013 150 poins This es is open-noe nd closed-book. Clculors re permied bu compuers re no. No collborion, consulion, or communicion wih oher people (oher

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems Swiss Federl Insiue of Pge 1 The Finie Elemen Mehod for he Anlysis of Non-Liner nd Dynmic Sysems Prof. Dr. Michel Hvbro Fber Dr. Nebojs Mojsilovic Swiss Federl Insiue of ETH Zurich, Swizerlnd Mehod of

More information

1 jordan.mcd Eigenvalue-eigenvector approach to solving first order ODEs. -- Jordan normal (canonical) form. Instructor: Nam Sun Wang

1 jordan.mcd Eigenvalue-eigenvector approach to solving first order ODEs. -- Jordan normal (canonical) form. Instructor: Nam Sun Wang jordnmcd Eigenvlue-eigenvecor pproch o solving firs order ODEs -- ordn norml (cnonicl) form Insrucor: Nm Sun Wng Consider he following se of coupled firs order ODEs d d x x 5 x x d d x d d x x x 5 x x

More information

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1.

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1. Answers o Een Numbered Problems Chper. () 7 m s, 6 m s (b) 8 5 yr 4.. m ih 6. () 5. m s (b).5 m s (c).5 m s (d) 3.33 m s (e) 8. ().3 min (b) 64 mi..3 h. ().3 s (b) 3 m 4..8 mi wes of he flgpole 6. (b)

More information

2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information.

2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information. Nme D Moion WS The equions of moion h rele o projeciles were discussed in he Projecile Moion Anlsis Acii. ou found h projecile moes wih consn eloci in he horizonl direcion nd consn ccelerion in he ericl

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM Elecronic Journl of Differenil Equions, Vol. 208 (208), No. 50, pp. 6. ISSN: 072-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE

More information

Flow Networks. Ma/CS 6a. Class 14: Flow Exercises

Flow Networks. Ma/CS 6a. Class 14: Flow Exercises 0/0/206 Ma/CS 6a Cla 4: Flow Exercie Flow Nework A flow nework i a digraph G = V, E, ogeher wih a ource verex V, a ink verex V, and a capaciy funcion c: E N. Capaciy Source 7 a b c d e Sink 0/0/206 Flow

More information

Procedia Computer Science

Procedia Computer Science Procedi Compuer Science 00 (0) 000 000 Procedi Compuer Science www.elsevier.com/loce/procedi The Third Informion Sysems Inernionl Conference The Exisence of Polynomil Soluion of he Nonliner Dynmicl Sysems

More information

Reminder: Flow Networks

Reminder: Flow Networks 0/0/204 Ma/CS 6a Cla 4: Variou (Flow) Execie Reminder: Flow Nework A flow nework i a digraph G = V, E, ogeher wih a ource verex V, a ink verex V, and a capaciy funcion c: E N. Capaciy Source 7 a b c d

More information

S Radio transmission and network access Exercise 1-2

S Radio transmission and network access Exercise 1-2 S-7.330 Rdio rnsmission nd nework ccess Exercise 1 - P1 In four-symbol digil sysem wih eqully probble symbols he pulses in he figure re used in rnsmission over AWGN-chnnel. s () s () s () s () 1 3 4 )

More information

DC Miniature Solenoids KLM Varioline

DC Miniature Solenoids KLM Varioline DC Miniure Solenoi KLM Vrioline DC Miniure Solenoi Type KLM Deign: Single roke olenoi pulling n puhing, oule roke n invere roke ype. Snr: Zinc ple (opionl: pine / nickel ple) Fixing: Cenrl or flnge mouning.

More information

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = =

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = = Mi i fd l Phsic 3 Lecure 4 Min poins of od s lecure: Emple: ddiion of elociies Trjecories of objecs in dimensions: dimensions: g 9.8m/s downwrds ( ) g o g g Emple: A foobll pler runs he pern gien in he

More information

Solutions to Problems from Chapter 2

Solutions to Problems from Chapter 2 Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5

More information

Chapter Introduction. 2. Linear Combinations [4.1]

Chapter Introduction. 2. Linear Combinations [4.1] Chper 4 Inrouion Thi hper i ou generlizing he onep you lerne in hper o pe oher n hn R Mny opi in hi hper re heoreil n MATLAB will no e le o help you ou You will ee where MATLAB i ueful in hper 4 n how

More information

Image-based localization for mobile robots in dynamic environments

Image-based localization for mobile robots in dynamic environments Univeriy of Pdu Fculy of Engineering Imge-bed loclizion for mobile robo in dynmic environmen Supervior: Prof. Enrico Pgello Co-upervior: Prof. Sefn Wermer Suden: Nicol Belloo Lure in ELECTRONIC ENGINEERING

More information

Discussion Session 2 Constant Acceleration/Relative Motion Week 03

Discussion Session 2 Constant Acceleration/Relative Motion Week 03 PHYS 100 Dicuion Seion Conan Acceleraion/Relaive Moion Week 03 The Plan Today you will work wih your group explore he idea of reference frame (i.e. relaive moion) and moion wih conan acceleraion. You ll

More information

Max-flow and min-cut

Max-flow and min-cut Mx-flow nd min-cu Mx-Flow nd Min-Cu Two imporn lgorihmic prolem, which yield euiful duliy Myrid of non-rivil pplicion, i ply n imporn role in he opimizion of mny prolem: Nework conneciviy, irline chedule

More information

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR j IAN KNOWLES 1. Inroducion Consider he forml differenil operor T defined by el, (1) where he funcion q{) is rel-vlued nd loclly

More information

T-Match: Matching Techniques For Driving Yagi-Uda Antennas: T-Match. 2a s. Z in. (Sections 9.5 & 9.7 of Balanis)

T-Match: Matching Techniques For Driving Yagi-Uda Antennas: T-Match. 2a s. Z in. (Sections 9.5 & 9.7 of Balanis) 3/0/018 _mch.doc Pge 1 of 6 T-Mch: Mching Techniques For Driving Ygi-Ud Anenns: T-Mch (Secions 9.5 & 9.7 of Blnis) l s l / l / in The T-Mch is shun-mching echnique h cn be used o feed he driven elemen

More information

DEVELOPMENT OF A DISCRETE-TIME AERODYNAMIC MODEL FOR CFD- BASED AEROELASTIC ANALYSIS

DEVELOPMENT OF A DISCRETE-TIME AERODYNAMIC MODEL FOR CFD- BASED AEROELASTIC ANALYSIS AIAA-99-765 DEVELOPENT OF A DISCRETE-TIE AERODYNAIC ODEL FOR CFD- BASED AEROELASTIC ANALYSIS Timohy J. Cown * nd Andrew S. Aren, Jr. echnicl nd Aeropce Engineering Deprmen Oklhom Se Univeriy Sillwer, OK

More information

SOME USEFUL MATHEMATICS

SOME USEFUL MATHEMATICS SOME USEFU MAHEMAICS SOME USEFU MAHEMAICS I is esy o mesure n preic he behvior of n elecricl circui h conins only c volges n currens. However, mos useful elecricl signls h crry informion vry wih ime. Since

More information

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba Lecure 3 Mondy - Deceber 5, 005 Wrien or ls upded: Deceber 3, 005 P44 Anlyicl Mechnics - I oupled Oscillors c Alex R. Dzierb oupled oscillors - rix echnique In Figure we show n exple of wo coupled oscillors,

More information

Graduate Algorithms CS F-18 Flow Networks

Graduate Algorithms CS F-18 Flow Networks Grue Algorihm CS673-2016F-18 Flow Nework Dvi Glle Deprmen of Compuer Siene Univeriy of Sn Frnio 18-0: Flow Nework Diree Grph G Eh ege weigh i piy Amoun of wer/eon h n flow hrough pipe, for inne Single

More information

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 10, No. 2, 2017, 335-347 ISSN 1307-5543 www.ejpm.com Published by New York Business Globl Convergence of Singulr Inegrl Operors in Weighed Lebesgue

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

Max-flow and min-cut

Max-flow and min-cut Mx-flow nd min-cu Mx-Flow nd Min-Cu Two imporn lgorihmic prolem, which yield euiful duliy Myrid of non-rivil pplicion, i ply n imporn role in he opimizion of mny prolem: Nework conneciviy, irline chedule

More information