A Kalman filtering simulation


 Arlene Harvey
 6 years ago
 Views:
Transcription
1 A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer predic he rjecory when he moion is long srigh line, while he ler should work beer in cse of winding ph. Model A: consn elociy Consider onedimensionl cse. A moion wih consn elociy is ruled by he following lw: ) cons ( where () is he posiion of he body ime, is he sring posiion of he sysem nd he consn elociy. Considering discree sysem, he dynmicl model becomes where is he ime spn beween wo epochs. For he ske of simpliciy, ssume so h In oher words, defining he se ecor of he discree sysem s X he rnsiion mri resuls T so h X T X Gien he iniil se X (which howeer hs o be modelled s rndom rible), posiions nd elociies eery ime re sricly deermined by his dynmicl model. In order o inroduce higher leel of fleibiliy, i is ssume h he elociy cn slighly chnge from one epoch o noher. This is obined by dding, epoch by epoch, whie noise o he elociy. All in ll, he dynmics of he sysem cn be represened s follows X X T X ε X ε
2 where X is he men lue of he iniil seecor nd he model error ε cn be sochsiclly described s { } E ε, { } ε E ε ε ' δ C ' Noe h for > he noise cs only on he elociy, i.e. σ ε ε C > while for een he posiion hs o rndomly modelled, i.e. C σ σ ε ε As for he obserions y, ypiclly only posiions re ilble (bsed on GPS/GLONASS sysem), i.e. y ν or in mri noion Y H X ν where he design mri H (from he se o he oupu of he sysem) is gien by H nd he obserion noise ν cn be sochsiclly described s { } ν E ν, E { ν ν } δ C ' ' Since he obserion process is no reled o he eoluion of he sysem, he wo error ypes cn be considered independen, i.e. E { ε ν } ' I could be ineresing o underline h he sysem dynmics cn be epressed only in erms of posiions, in fc ε From he firs equion, i holds
3 nd similrly Using he second equion of he sysem, he dynmics cn be wrien s ε The preious model cn be esily generlized o he wodimensionl cse (e.g. moion on plne), wih se ecor X,,,, rnsiion mri T nd design mri H Model B: consn ccelerion Consider onedimensionl cse. Repeing he sme resoning of he preious model, bu ssuming now h he ccelerion is consn (pr from n dded whie noise), he sysem dynmics cn be modelled s follows ε or in mri noion ε ε X X T X X where he se ecor is defined s
4 X nd he rnsiion mri is gien by T Only posiions re supposed o be mesured, i.e. Y H X ν wih design mri H Agin i is possible o epress he dynmics in erms of posiions only. Wih some lgebr, i holds 3 ε ε 3 ( ) ε In he wodimensionl cse (e.g. moion on plne), he se ecor becomes X,,,,,,
5 while he rnsiion mri T nd he design mri H re respeciely gien by T H Emple The body is cully moing long srigh line wih consn elociy m/s, m/s. The noise of he posiion obserions hs sndrd deiion of m (see Fig..). In he cse of model A he error dded o he elociy hs sndrd deiion of. m/s, while in he cse of model B he error dded o he ccelerion hs sndrd deiion of. m/s. I is cler h using he Klmn filer bsed on model A he esimed rjecory is closer o srigh line since higher leel of regulriy is imposed (see Fig..). Consequenly, fer rnsiion ime of bou 5 seconds, he posiion errors deried from he model A (rms.6 m) re smller hn hose deried from he model B (rms.6 m) (see Fig..3) Fig.: Idel rjecory (in blck) nd posiion obserions (in grey) smpling re of sec.
6 Fig.: Esimed rjecory using Klmn filer wih he dynmicl model A (in blck) nd he dynmicl model B (in grey) error ime [s] Fig.3: Absolue lue of he posiion errors using Klmn filer wih he dynmicl model A (in blck) nd he dynmicl model B (in grey).
7 Emple The body is now moing long circulr rjecory wih rdius R m nd consn ngulr elociy ω.5 rd/s. This mens h in seconds (obserion ime) he body coers bou 3 lps of he circui. The noise of he posiion obserions hs sndrd deiion of.5 m (see Fig..). In he cse of model A he error dded o he elociy hs sndrd deiion of. m/s, while in he cse of model B he error dded o he ccelerion hs sndrd deiion of. m/s. In his emple, fer rnsiion ime due o he fc h he sring poin is no on he circulr ph, he Klmn filer bsed on he model B is ble o follow he curiliner rjecory (where he elociy chnges), while he soluion wih he model A is oo rigid, predicing circulr rjecory wih lrger rdius (see Fig..). This resuls in posiion error wih sysemic bis. The error rms for he model A is of he order of 5 m gins n error rms of. m for he model B (see Fig..3) Fig.: Idel rjecory (in blck) nd posiion obserions (in grey) smpling re of sec.
8 Fig.: Esimed rjecory using Klmn filer wih he dynmicl model A (in blck, solid line) nd he dynmicl model B (in grey, solid line). True rjecory in blck dsh line error ime [s] Fig.3: Absolue lue of he posiion errors using Klmn filer wih he dynmicl model A (in blck) nd he dynmicl model B (in grey).
9 Emple 3 The body is moing long he ph shown in Fig. 3.. The obserion noise hs sndrd deiion of.5 m. In he cse of model A he error dded o he elociy hs sndrd deiion of.5 m/s, while in he cse of model B he error dded o he ccelerion hs sndrd deiion of.5 m/s. This emple emphsizes he pros nd cons of he wo models (see Fig. 3.). In he srigh sreches he soluion A is more regulr, bu in he curiliner secions i runs wy from he rue ph; i needs some ddiionl ime o correc he rjecory when he rod reurns o be srigh. On he oher hnd, he soluion B is more nerous eerywhere, bu i is cpble o follow he rue rjecory een in he curiliner secions. As consequence, fer he iniil rnsiion ime, he error leel become sble in he cse of model B, while i oscilles in he cse of model A, depending on he fc h he body is coering srigh or curiliner secion (noe h wo of he four srigh lines re no long enough o llow he body o come bck on he righ rjecory). The error rms for he model A is. m, while for he model B i is bou. m (see Fig. 3.3). Emple 4 The Emple 3 is repeed long he sme ph nd wih he sme obserions, bu now he error dded o he elociy in he model A hs sndrd deiion of.5 m/s. In oher words, higher model errors re cceped. The corresponding soluion becomes much more recie, following eery chnge of direcion. On he oher hnd, he min dnge of model A is definiiely los, since he rjecory hs he sme regulriy of he one compued by using he model B. Therefore he wo soluions re ery similr (see Fig. 4.), boh wih n error rms of. m (see Fig. 4.) Fig 3.: Idel rjecory (in blck) nd posiion obserions (in grey) smpling re of sec.
10 Fig 3.: Esimed rjecory using Klmn filer wih he dynmicl model A (in blck, solid line) nd he dynmicl model B (in grey, solid line). True rjecory in blck dsh line error ime [s] Fig 3.3: Absolue lue of he posiion errors using Klmn filer wih he dynmicl model A (in blck) nd he dynmicl model B (in grey).
11 Fig 4.: Esimed rjecory using Klmn filer wih he dynmicl model A (in blck, solid line) nd he dynmicl model B (in grey, solid line). True rjecory in blck dsh line error [s] ime [s] Fig 4.: Absolue lue of he posiion errors using Klmn filer wih he dynmicl model A (in blck) nd he dynmicl model B (in grey).
12 Emple 5 In his eperimen he body is kep sill he sme locion. Is posiion is mesured eery second wih n obserion noise of.5 m (see Fig. 5.). When Klmn filering is pplied, he esimed posiion howeer chnges in ime nd he resuling rjecory winds round he rue locion boh in he cse of model A nd of model B (see Fig 5.). Noe h, due o he rndomness of he iniil se, he esimed rjecory cn sr fr from he rue posiion nd een moe in he wrong direcion; howeer, fer rnsiion ime, i ends o come bck owrds he rue locion Fig 5.: Body locion (blck cross) nd posiion obserions (in grey) smpling re of sec Fig 5.: Esimed rjecory using Klmn filer. The blck cross indices he rue posiion of he body
Average & instantaneous velocity and acceleration Motion with constant acceleration
Physics 7: Lecure Reminders Discussion nd Lb secions sr meeing ne week Fill ou Pink dd/drop form if you need o swich o differen secion h is FULL. Do i TODAY. Homework Ch. : 5, 7,, 3,, nd 6 Ch.: 6,, 3 Submission
More information1. Consider a PSA initially at rest in the beginning of the lefthand end of a long ISS corridor. Assume xo = 0 on the left end of the ISS corridor.
In Eercise 1, use sndrd recngulr Cresin coordine sysem. Le ime be represened long he horizonl is. Assume ll ccelerions nd decelerions re consn. 1. Consider PSA iniilly res in he beginning of he lefhnd
More informationSeptember 20 Homework Solutions
College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum
More informationA 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m
PHYS : Soluions o Chper 3 Home Work. SSM REASONING The displcemen is ecor drwn from he iniil posiion o he finl posiion. The mgniude of he displcemen is he shores disnce beween he posiions. Noe h i is onl
More informationPHYSICS 1210 Exam 1 University of Wyoming 14 February points
PHYSICS 1210 Em 1 Uniersiy of Wyoming 14 Februry 2013 150 poins This es is opennoe nd closedbook. Clculors re permied bu compuers re no. No collborion, consulion, or communicion wih oher people (oher
More informationChapter 2. Motion along a straight line. 9/9/2015 Physics 218
Chper Moion long srigh line 9/9/05 Physics 8 Gols for Chper How o describe srigh line moion in erms of displcemen nd erge elociy. The mening of insnneous elociy nd speed. Aerge elociy/insnneous elociy
More informationMotion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.
Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v  vo = Δv Δ ccelerion = = v  vo chnge of velociy elpsed ime Accelerion is vecor, lhough in onedimensionl
More informationMotion in a Straight Line
Moion in Srigh Line. Preei reched he mero sion nd found h he esclor ws no working. She wlked up he sionry esclor in ime. On oher dys, if she remins sionry on he moing esclor, hen he esclor kes her up in
More informatione t dt e t dt = lim e t dt T (1 e T ) = 1
Improper Inegrls There re wo ypes of improper inegrls  hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie
More information2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information.
Nme D Moion WS The equions of moion h rele o projeciles were discussed in he Projecile Moion Anlsis Acii. ou found h projecile moes wih consn eloci in he horizonl direcion nd consn ccelerion in he ericl
More information(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1.
Answers o Een Numbered Problems Chper. () 7 m s, 6 m s (b) 8 5 yr 4.. m ih 6. () 5. m s (b).5 m s (c).5 m s (d) 3.33 m s (e) 8. ().3 min (b) 64 mi..3 h. ().3 s (b) 3 m 4..8 mi wes of he flgpole 6. (b)
More informationName: Per: L o s A l t o s H i g h S c h o o l. Physics Unit 1 Workbook. 1D Kinematics. Mr. Randall Room 705
Nme: Per: L o s A l o s H i g h S c h o o l Physics Uni 1 Workbook 1D Kinemics Mr. Rndll Room 705 Adm.Rndll@ml.ne www.laphysics.com Uni 1  Objecies Te: Physics 6 h Ediion Cunel & Johnson The objecies
More informationPhys 110. Answers to even numbered problems on Midterm Map
Phys Answers o een numbered problems on Miderm Mp. REASONING The word per indices rio, so.35 mm per dy mens.35 mm/d, which is o be epressed s re in f/cenury. These unis differ from he gien unis in boh
More informationPhysics 2A HW #3 Solutions
Chper 3 Focus on Conceps: 3, 4, 6, 9 Problems: 9, 9, 3, 41, 66, 7, 75, 77 Phsics A HW #3 Soluions Focus On Conceps 33 (c) The ccelerion due o grvi is he sme for boh blls, despie he fc h he hve differen
More informationChapter Direct Method of Interpolation
Chper 5. Direc Mehod of Inerpolion Afer reding his chper, you should be ble o:. pply he direc mehod of inerpolion,. sole problems using he direc mehod of inerpolion, nd. use he direc mehod inerpolns o
More informationPhysics 101 Lecture 4 Motion in 2D and 3D
Phsics 11 Lecure 4 Moion in D nd 3D Dr. Ali ÖVGÜN EMU Phsics Deprmen www.ogun.com Vecor nd is componens The componens re he legs of he righ ringle whose hpoenuse is A A A A A n ( θ ) A Acos( θ) A A A nd
More information3 Motion with constant acceleration: Linear and projectile motion
3 Moion wih consn ccelerion: Liner nd projecile moion cons, In he precedin Lecure we he considered moion wih consn ccelerion lon he is: Noe h,, cn be posiie nd neie h leds o rie of behiors. Clerl similr
More informationIntroduction to LoggerPro
Inroducion o LoggerPro Sr/Sop collecion Define zero Se d collecion prmeers Auoscle D Browser Open file Sensor seup window To sr d collecion, click he green Collec buon on he ool br. There is dely of second
More informationPhysics Worksheet Lesson 4: Linear Motion Section: Name:
Physics Workshee Lesson 4: Liner Moion Secion: Nme: 1. Relie Moion:. All moion is. b. is n rbirry coorine sysem wih reference o which he posiion or moion of somehing is escribe or physicl lws re formule.
More informationENGR 1990 Engineering Mathematics The Integral of a Function as a Function
ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under
More informationPhysic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = =
Mi i fd l Phsic 3 Lecure 4 Min poins of od s lecure: Emple: ddiion of elociies Trjecories of objecs in dimensions: dimensions: g 9.8m/s downwrds ( ) g o g g Emple: A foobll pler runs he pern gien in he
More information0 for t < 0 1 for t > 0
8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside
More informationAn object moving with speed v around a point at distance r, has an angular velocity. m/s m
Roion The mosphere roes wih he erh n moions wihin he mosphere clerly follow cure phs (cyclones, nicyclones, hurricnes, ornoes ec.) We nee o epress roion quniiely. For soli objec or ny mss h oes no isor
More informationPhysics 100: Lecture 1
Physics : Lecure Agen for Toy Aice Scope of his course Mesuremen n Unis Funmenl unis Sysems of unis Conering beween sysems of unis Dimensionl Anlysis D Kinemics (reiew) Aerge & insnneous elociy n ccelerion
More informationLAB # 2  Equilibrium (static)
AB #  Equilibrium (saic) Inroducion Isaac Newon's conribuion o physics was o recognize ha despie he seeming compleiy of he Unierse, he moion of is pars is guided by surprisingly simple aws. Newon's inspiraion
More informationContraction Mapping Principle Approach to Differential Equations
epl Journl of Science echnology 0 (009) 4953 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of
More informationf t f a f x dx By Lin McMullin f x dx= f b f a. 2
Accumulion: Thoughs On () By Lin McMullin f f f d = + The gols of he AP* Clculus progrm include he semen, Sudens should undersnd he definie inegrl s he ne ccumulion of chnge. 1 The Topicl Ouline includes
More informationME 141. Engineering Mechanics
ME 141 Engineeing Mechnics Lecue 13: Kinemics of igid bodies hmd Shhedi Shkil Lecue, ep. of Mechnicl Engg, UET Emil: sshkil@me.bue.c.bd, shkil6791@gmil.com Websie: eche.bue.c.bd/sshkil Couesy: Veco Mechnics
More informationCHAPTER 2 KINEMATICS IN ONE DIMENSION ANSWERS TO FOCUS ON CONCEPTS QUESTIONS
Physics h Ediion Cunell Johnson Young Sdler Soluions Mnul Soluions Mnul, Answer keys, Insrucor's Resource Mnul for ll chpers re included. Compleed downlod links: hps://esbnkre.com/downlod/physicshediionsoluionsmnulcunelljohnsonyoungsdler/
More informationSolutions to Problems from Chapter 2
Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5
More information1.0 Electrical Systems
. Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,
More informationProbability, Estimators, and Stationarity
Chper Probbiliy, Esimors, nd Sionriy Consider signl genered by dynmicl process, R, R. Considering s funcion of ime, we re opering in he ime domin. A fundmenl wy o chrcerize he dynmics using he ime domin
More informationChapter 10. Simple Harmonic Motion and Elasticity. Goals for Chapter 10
Chper 0 Siple Hronic Moion nd Elsiciy Gols or Chper 0 o ollow periodic oion o sudy o siple hronic oion. o sole equions o siple hronic oion. o use he pendulu s prooypicl syse undergoing siple hronic oion.
More information4.8 Improper Integrals
4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls
More informationt s (half of the total time in the air) d?
.. In Cl or Homework Eercie. An Olmpic long jumper i cpble of jumping 8.0 m. Auming hi horizonl peed i 9.0 m/ he lee he ground, how long w he in he ir nd how high did he go? horizonl? 8.0m 9.0 m / 8.0
More informationLecture 3: 1D Kinematics. This Week s Announcements: Class Webpage: visit regularly
Lecure 3: 1D Kinemics This Week s Announcemens: Clss Webpge: hp://kesrel.nm.edu/~dmeier/phys121/phys121.hml isi regulrly Our TA is Lorrine Bowmn Week 2 Reding: Chper 2  Gincoli Week 2 Assignmens: Due:
More informationRESPONSE UNDER A GENERAL PERIODIC FORCE. When the external force F(t) is periodic with periodτ = 2π
RESPONSE UNDER A GENERAL PERIODIC FORCE When he exernl force F() is periodic wih periodτ / ω,i cn be expnded in Fourier series F( ) o α ω α b ω () where τ F( ) ω d, τ,,,... () nd b τ F( ) ω d, τ,,... (3)
More informationBrock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension
Brock Uniersiy Physics 1P21/1P91 Fall 2013 Dr. D Agosino Soluions for Tuorial 3: Chaper 2, Moion in One Dimension The goals of his uorial are: undersand posiionime graphs, elociyime graphs, and heir
More informationThink of the Relationship Between Time and Space Again
Repor nd Opinion, 1(3),009 hp://wwwsciencepubne sciencepub@gmilcom Think of he Relionship Beween Time nd Spce Agin Yng Fcheng Compny of Ruid Cenre in Xinjing 15 Hongxing Sree, Klmyi, Xingjing 834000,
More informationMTH 146 Class 11 Notes
8. Are of Surfce of Revoluion MTH 6 Clss Noes Suppose we wish o revolve curve C round n is nd find he surfce re of he resuling solid. Suppose f( ) is nonnegive funcion wih coninuous firs derivive on he
More informationwhen t = 2 s. Sketch the path for the first 2 seconds of motion and show the velocity and acceleration vectors for t = 2 s.(2/63)
. The coordine of pricle in curiliner oion i gien b where i in eer nd i in econd. The coponen of ccelerion in eer per econd ured i gien b =. If he pricle h coponen = nd when = find he gniude of he eloci
More informationVersion 001 test1 swinney (57010) 1. is constant at m/s.
Version 001 es1 swinne (57010) 1 This prinou should hve 20 quesions. Muliplechoice quesions m coninue on he nex column or pge find ll choices before nswering. CubeUniVec1x76 001 10.0 poins Acubeis1.4fee
More information( ) ( ) ( ) ( ) ( ) ( y )
8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll
More informationPhysics for Scientists and Engineers I
Physics for Scieniss nd Engineers I PHY 48, Secion 4 Dr. Beriz Roldán Cueny Uniersiy of Cenrl Florid, Physics Deprmen, Orlndo, FL Chper  Inroducion I. Generl II. Inernionl Sysem of Unis III. Conersion
More informationChapter 2: Evaluative Feedback
Chper 2: Evluive Feedbck Evluing cions vs. insrucing by giving correc cions Pure evluive feedbck depends olly on he cion ken. Pure insrucive feedbck depends no ll on he cion ken. Supervised lerning is
More informationChapter 2 PROBLEM SOLUTIONS
Chper PROBLEM SOLUTIONS. We ssume h you re pproximely m ll nd h he nere impulse rels uniform speed. The elpsed ime is hen Δ x m Δ = m s s. s.3 Disnces reled beween pirs of ciies re ( ) Δx = Δ = 8. km h.5
More informationWhat distance must an airliner travel down a runway before reaching
2 LEARNING GALS By sudying his chper, you will lern: How o describe srighline moion in erms of erge elociy, insnneous elociy, erge ccelerion, nd insnneous ccelerion. How o inerpre grphs of posiion ersus
More information5.1The InitialValue Problems For Ordinary Differential Equations
5.The IniilVlue Problems For Ordinry Differenil Equions Consider solving iniilvlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil
More informationS Radio transmission and network access Exercise 12
S7.330 Rdio rnsmission nd nework ccess Exercise 1  P1 In foursymbol digil sysem wih eqully probble symbols he pulses in he figure re used in rnsmission over AWGNchnnel. s () s () s () s () 1 3 4 )
More informationFM Applications of Integration 1.Centroid of Area
FM Applicions of Inegrion.Cenroid of Are The cenroid of ody is is geomeric cenre. For n ojec mde of uniform meril, he cenroid coincides wih he poin which he ody cn e suppored in perfecly lnced se ie, is
More informationCh.4 Motion in 2D. Ch.4 Motion in 2D
Moion in plne, such s in he sceen, is clled 2dimensionl (2D) moion. 1. Posiion, displcemen nd eloci ecos If he picle s posiion is ( 1, 1 ) 1, nd ( 2, 2 ) 2, he posiions ecos e 1 = 1 1 2 = 2 2 Aege eloci
More informationZürich. ETH Master Course: L Autonomous Mobile Robots Localization II
Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151085400L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),
More informationChapter 3 Kinematics in Two Dimensions
Chaper 3 KINEMATICS IN TWO DIMENSIONS PREVIEW Twodimensional moion includes objecs which are moing in wo direcions a he same ime, such as a projecile, which has boh horizonal and erical moion. These wo
More informationPhys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole
Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen
More informationChapter 12: Velocity, acceleration, and forces
To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable
More information22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak
.65, MHD Theory of Fusion Sysems Prof. Freidberg Lecure 9: The High e Tokmk Summry of he Properies of n Ohmic Tokmk. Advnges:. good euilibrium (smll shif) b. good sbiliy ( ) c. good confinemen ( τ nr )
More informationDifferential Geometry: Numerical Integration and Surface Flow
Differenial Geomery: Numerical Inegraion and Surface Flow [Implici Fairing of Irregular Meshes using Diffusion and Curaure Flow. Desbrun e al., 1999] Energy Minimizaion Recall: We hae been considering
More informationRobotics I. April 11, The kinematics of a 3R spatial robot is specified by the DenavitHartenberg parameters in Tab. 1.
Roboics I April 11, 017 Exercise 1 he kinemaics of a 3R spaial robo is specified by he DenaviHarenberg parameers in ab 1 i α i d i a i θ i 1 π/ L 1 0 1 0 0 L 3 0 0 L 3 3 able 1: able of DH parameers of
More informationOneDimensional Kinematics
OneDimensional Kinemaics One dimensional kinemaics refers o moion along a sraigh line. Een hough we lie in a 3dimension world, moion can ofen be absraced o a single dimension. We can also describe moion
More informationMATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008)
MATH 14 AND 15 FINAL EXAM REVIEW PACKET (Revised spring 8) The following quesions cn be used s review for Mh 14/ 15 These quesions re no cul smples of quesions h will pper on he finl em, bu hey will provide
More informationUnit 1 Test Review Physics Basics, Movement, and Vectors Chapters 13
A.P. Physics B Uni 1 Tes Reiew Physics Basics, Moemen, and Vecors Chapers 13 * In sudying for your es, make sure o sudy his reiew shee along wih your quizzes and homework assignmens. Muliple Choice Reiew:
More informationThe order of reaction is defined as the number of atoms or molecules whose concentration change during the chemical reaction.
www.hechemisryguru.com Re Lw Expression Order of Recion The order of recion is defined s he number of oms or molecules whose concenrion chnge during he chemicl recion. Or The ol number of molecules or
More informationTwo Coupled Oscillators / Normal Modes
Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own
More informationEquations of motion for constant acceleration
Lecure 3 Chaper 2 Physics I 01.29.2014 Equaions of moion for consan acceleraion Course websie: hp://faculy.uml.edu/andriy_danylo/teaching/physicsi Lecure Capure: hp://echo360.uml.edu/danylo2013/physics1spring.hml
More informationSome Basic Information about MSD Systems
Some Basic Informaion abou MSD Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (nonhomogeneous) models for linear oscillaors governed by secondorder,
More informationPhysics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle
Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,
More information2/5/2012 9:01 AM. Chapter 11. Kinematics of Particles. Dr. Mohammad Abuhaiba, P.E.
/5/1 9:1 AM Chper 11 Kinemic of Pricle 1 /5/1 9:1 AM Inroducion Mechnic Mechnic i Th cience which decribe nd predic he condiion of re or moion of bodie under he cion of force I i diided ino hree pr 1.
More informationNEWTON S SECOND LAW OF MOTION
Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during
More informationMagnetostatics Bar Magnet. Magnetostatics Oersted s Experiment
Mgneosics Br Mgne As fr bck s 4500 yers go, he Chinese discovered h cerin ypes of iron ore could rc ech oher nd cerin mels. Iron filings "mp" of br mgne s field Crefully suspended slivers of his mel were
More informationCHAPTER 2: Describing Motion: Kinematics in One Dimension
CHAPTER : Describing Moion: Kinemics in One Dimension Answers o Quesions A cr speeomeer mesures only spee I oes no gie ny informion bou he irecion, n so oes no mesure elociy By efiniion, if n objec hs
More informationHamilton J acobi Equation: Weak S olution We continue the study of the HamiltonJacobi equation:
M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon J acobi Equaion: Weak S oluion We coninue he sudy of he HamilonJacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno
More information1 jordan.mcd Eigenvalueeigenvector approach to solving first order ODEs.  Jordan normal (canonical) form. Instructor: Nam Sun Wang
jordnmcd Eigenvlueeigenvecor pproch o solving firs order ODEs  ordn norml (cnonicl) form Insrucor: Nm Sun Wng Consider he following se of coupled firs order ODEs d d x x 5 x x d d x d d x x x 5 x x
More informationPhysics 201, Lecture 5
Phsics 1 Lecue 5 Tod s Topics n Moion in D (Chp 4.14.3): n D Kinemicl Quniies (sec. 4.1) n D Kinemics wih Consn Acceleion (sec. 4.) n D Pojecile (Sec 4.3) n Epeced fom Peiew: n Displcemen eloci cceleion
More informationINTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).
INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely
More informationP441 Analytical Mechanics  I. Coupled Oscillators. c Alex R. Dzierba
Lecure 3 Mondy  Deceber 5, 005 Wrien or ls upded: Deceber 3, 005 P44 Anlyicl Mechnics  I oupled Oscillors c Alex R. Dzierb oupled oscillors  rix echnique In Figure we show n exple of wo coupled oscillors,
More information3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and FirstOrder Conditions in a Finite Time Horizon
3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and FirsOrder Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of
More informationGreen s Functions and Comparison Theorems for Differential Equations on Measure Chains
Green s Funcions nd Comprison Theorems for Differenil Equions on Mesure Chins Lynn Erbe nd Alln Peerson Deprmen of Mhemics nd Sisics, Universiy of NebrskLincoln Lincoln,NE 685880323 lerbe@@mh.unl.edu
More informationPhysics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4)
Physics 101: Lecure 03 Kinemaics Today s lecure will coer Texbook Secions 3.13.3 (and some Ch. 4) Physics 101: Lecure 3, Pg 1 A Refresher: Deermine he force exered by he hand o suspend he 45 kg mass as
More informationMAT 266 Calculus for Engineers II Notes on Chapter 6 Professor: John Quigg Semester: spring 2017
MAT 66 Clculus for Engineers II Noes on Chper 6 Professor: John Quigg Semeser: spring 7 Secion 6.: Inegrion by prs The Produc Rule is d d f()g() = f()g () + f ()g() Tking indefinie inegrls gives [f()g
More informationObservability of flow dependent structure functions and their use in data assimilation
Oserviliy of flow dependen srucure funcions nd heir use in d ssimilion Pierre Guhier nd Crisin Lupu Collorion wih Séphne Lroche, Mrk Buehner nd Ahmed Mhidji (Env. Cnd) 3rd meeing of he HORPEX DAOSWG Monrél
More informationrank Additionally system of equation only independent atfect Gawp (A) possible ( Alb ) easily process form rang A. Proposition with Definition
Defiion nexivnol numer ler dependen rows mrix sid row Gwp elimion mehod does no fec h numer end process i possile esily red rng fc for mrix form der zz rn rnk wih m dcussion i holds rr o Proposiion ler
More informationI. OBJECTIVE OF THE EXPERIMENT.
I. OBJECTIVE OF THE EXPERIMENT. Swissmero raels a high speeds hrough a unnel a low pressure. I will hereore undergo ricion ha can be due o: ) Viscosiy o gas (c. "Viscosiy o gas" eperimen) ) The air in
More information3. Renewal Limit Theorems
Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process
More informationKinematics of Wheeled Robots
1 Kinemaics of Wheeled Robos hps://www.ouube.com/wach?=gis41ujlbu 2 Wheeled Mobile Robos robo can hae one or more wheels ha can proide seering direcional conrol power eer a force agains he ground an ideal
More informationdt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.
Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies
More informationFlow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445
CS 445 Flow Nework lon Efr Slide corey of Chrle Leieron wih mll chnge by Crol Wenk Flow nework Definiion. flow nework i direced grph G = (V, E) wih wo diingihed erice: orce nd ink. Ech edge (, ) E h nonnegie
More informationA Simple Method to Solve Quartic Equations. Key words: Polynomials, Quartics, Equations of the Fourth Degree INTRODUCTION
Ausrlin Journl of Bsic nd Applied Sciences, 6(6): 6, 0 ISSN 99878 A Simple Mehod o Solve Quric Equions Amir Fhi, Poo Mobdersn, Rhim Fhi Deprmen of Elecricl Engineering, Urmi brnch, Islmic Ad Universi,
More informationWeek 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)
Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =
More informationREAL ANALYSIS I HOMEWORK 3. Chapter 1
REAL ANALYSIS I HOMEWORK 3 CİHAN BAHRAN The quesions re from Sein nd Shkrchi s e. Chper 1 18. Prove he following sserion: Every mesurble funcion is he limi.e. of sequence of coninuous funcions. We firs
More informationPHY2048 Exam 1 Formula Sheet Vectors. Motion. v ave (3 dim) ( (1 dim) dt. ( (3 dim) Equations of Motion (Constant Acceleration)
Insrucors: Field/Mche PHYSICS DEPATMENT PHY 48 Em Ferur, 5 Nme prin, ls firs: Signure: On m honor, I he neiher gien nor receied unuhoried id on his eminion. YOU TEST NUMBE IS THE 5DIGIT NUMBE AT THE TOP
More informationPhysics Notes  Ch. 2 Motion in One Dimension
Physics Noes  Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,
More informationECE Microwave Engineering
EE 537635 Microwve Engineering Adped from noes y Prof. Jeffery T. Willims Fll 8 Prof. Dvid R. Jcson Dep. of EE Noes Wveguiding Srucures Pr 7: Trnsverse Equivlen Newor (N) Wveguide Trnsmission Line Model
More informationTwo Dimensional Dynamics
Physics 11: Lecure 6 Two Dimensional Dynamics Today s lecure will coer Chaper 4 Exam I Physics 11: Lecure 6, Pg 1 Brie Reiew Thus Far Newon s Laws o moion: SF=ma Kinemaics: x = x + + ½ a Dynamics Today
More information6. Gas dynamics. Ideal gases Speed of infinitesimal disturbances in still gas
6. Gs dynmics Dr. Gergely Krisóf De. of Fluid echnics, BE Februry, 009. Seed of infiniesiml disurbnces in sill gs dv d, dv d, Coninuiy: ( dv)( ) dv omenum r r heorem: ( ( dv) ) d 3443 4 q m dv d dv llievi
More informationA new model for limit order book dynamics
Anewmodelforlimiorderbookdynmics JeffreyR.Russell UniversiyofChicgo,GrdueSchoolofBusiness TejinKim UniversiyofChicgo,DeprmenofSisics Absrc:Thispperproposesnewmodelforlimiorderbookdynmics.Thelimiorderbookconsiss
More informationModule 2 F c i k c s la l w a s o s f dif di fusi s o i n
Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms
More informationTwo Dimensional Dynamics
Physics 11: Lecure 6 Two Dimensional Dynamics Today s lecure will coer Chaper 4 Saring Wed Sep 15, WF oice hours will be in 3 Loomis. Exam I M oice hours will coninue in 36 Loomis Physics 11: Lecure 6,
More informationMotion along a Straight Line
chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)
More informationMinimum Squared Error
Minimum Squred Error LDF: Minimum SquredError Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples
More informationAn integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.
Improper Inegrls To his poin we hve only considered inegrls f(x) wih he is of inegrion nd b finie nd he inegrnd f(x) bounded (nd in fc coninuous excep possibly for finiely mny jump disconinuiies) An inegrl
More information