Maximum Flow. Flow Graph
|
|
- Dorothy Hodge
- 4 years ago
- Views:
Transcription
1 Mximum Flow Chper 26 Flow Grph A ommon enrio i o ue grph o repreen flow nework nd ue i o nwer queion ou meril flow Flow i he re h meril move hrough he nework Eh direed edge i ondui for he meril wih ome ed piy Verie re onneion poin u do no olle meril Flow ino verex mu equl he flow leving he verex, flow onervion 1
2 Smple Nework Nework Node Ar Flow ommuniion elephone exhnge, ompuer, ellie le, fier opi, mirowve rely voie, video, pke irui ge, regier, proeor wire urren mehnil join rod, em, pring he, energy hydruli reervoir, pumping ion, lke pipeline fluid, oil finnil ok, ompnie rnion money rnporion irpor, ril yrd, ree inereion highwy, riled, irwy roue freigh, vehile, penger hemil ie ond energy Flow Conep Soure verex where meril i produed Sink verex where meril i onumed For ll oher verie wh goe in mu go ou Flow onervion Gol: deermine mximum re of meril flow from oure o ink 2
3 Forml Mx Flow Prolem Grph G=(V,E) flow nework Direed, eh edge h piy (u,v) 0 Two peil verie: oure, nd ink For ny oher verex v, here i ph v Flow funion f : V V R Cpiy onrin: For ll u, v V: f(u,v) (u,v) Skew ymmery: For ll u, v V: f(u,v) = f(v,u) Flow onervion: For ll u V {, }: 2/15 5/1 0/9 2/5 /19 3/3 v V v V f ( u, v) f ( u, V ) 0, or f ( v, u) f ( V, u) 0 Cnellion of flow We would like o void wo poiive flow in oppoie direion eween he me pir of verie Suh flow nel (mye prilly) eh oher due o kew ymmery 2/15 5/19 2/15 5/19 2/9 5/5 0/9 3/5 5/1 2/3 5/1 2/3 3
4 Mx Flow We wn o find flow of mximum vlue from he oure o he ink Denoed y f Luky Puk Diriuion Nework Mx Flow, f = 19 Or i i? Be we n do? Ford-Fulkeron mehod Conin everl lgorihm: Reidue nework Augmening ph Find ph p from o (ugmening ph), uh h here i ome vlue x > 0, nd for eh edge (u,v) in p we n dd x uni of flow f(u,v) + x (u,v) Augmening Ph? /15 8/ /19 2/ 9 5/5 6/1 8/11 d 3/3
5 Reidul Nework To find ugmening ph we n find ny ph in he reidul nework: Reidul piie: f (u,v) = (u,v) f(u,v) i.e. he ul piy minu he ne flow from u o v Ne flow my e negive Reidul nework: G f =(V,E f ), where E f = {(u,v) V V : f (u,v) > 0} Oervion edge in E f re eiher edge in E or heir reverl: E f 2 E Su-grph Wih (u,v) nd f(u,v) 5/15 0/1 5/6 Reidul Su-Grph Reidul Grph Compue he reidul grph of he grph wih he following flow: /15 2/ 8/ 9 5/5 /19 6/1 8/11 d 3/3 5
6 Reidul Cpiy nd Augmening Ph Finding n Augmening Ph Find ph from o in he reidul grph The reidul piy of ph p in G f : f (p) = min{ f (u,v): (u,v) i in p} i.e. find he minimum piy long p Doing ugmenion: for ll (u,v) in p, we ju dd hi f (p) o f(u,v) (nd ur i from f(v,u)) Reuling flow i vlid flow wih lrger vlue. Reidul nework nd ugmening ph 6
7 The Ford-Fulkeron mehod Ford-Fulkeron(G,,) 1 for eh edge (u,v) in G.E do 2 f(u,v) f(v,u) 0 3 while here exi ph p from o in reidul nework G f do f = min{ f (u,v): (u,v) i in p} 5 for eh edge (u,v) in p do 6 f(u,v) f(u,v) + f 7 f(v,u) -f(u,v) 8 reurn f The lgorihm ed on hi mehod differ in how hey hooe p in ep 3. If hoen poorly he lgorihm migh no ermine. Exeuion of Ford-Fulkeron (1) Lef Side = Reidul Grph Righ Side = Augmened Flow 7
8 Exeuion of Ford-Fulkeron (2) Lef Side = Reidul Grph Righ Side = Augmened Flow Cu Doe he mehod find he minimum flow? Ye, if we ge o he poin where he reidul grph h no ph from o A u i priion of V ino S nd T = V S, uh h S nd T The ne flow (f(s,t)) hrough he u i he um of flow f(u,v), where S nd T Inlude negive flow k from T o S The piy ((S,T)) of he u i he um of piie (u,v), where S nd T The um of poiive piie Minimum u u wih he mlle piy of ll u. f = f(s,t) i.e. he vlue of mx flow i equl o he piy of min u. /15 6/1 2/ 8/ 8/11 9 5/5 /19 3/3 Cu piy = 2 Min Cu piy = 21 d 8
9 Mx Flow / Min Cu Theorem 1. Sine f (S,T) for ll u of (S,T) hen if f = (S,T) hen (S,T) mu e he min u of G 2. Thi implie h f i mximum flow of G 3. Thi implie h he reidul nework G f onin no ugmening ph. If here were ugmening ph hi would onrdi h we found he mximum flow of G nd from 2 3 we hve h he Ford Fulkeron mehod find he mximum flow if he reidul grph h no ugmening ph. Wor Ce Running Time Auming ineger flow Eh ugmenion inree he vlue of he flow y ome poiive moun. Augmenion n e done in O(E). Tol wor-e running ime O(E f* ), where f* i he mx-flow found y he lgorihm. Exmple of wor e: Augmening ph of 1 Reuling Reidul Nework Reuling Reidul Nework 9
10 Edmond Krp Tke hore ph (in erm of numer of edge) n ugmening ph Edmond-Krp lgorihm How do we find uh hore ph? Running ime O(VE 2 ), eue he numer of ugmenion i O(VE) Skipping he proof here Even eer mehod: puh-relel, O(V 2 E) runime Muliple Soure or Sink Wh if you hve prolem wih more hn one oure nd more hn one ink? Modify he grph o ree ingle uperoure nd uperink x e g d f 9 5 h 3 3 y i j e g d f 9 5 h 3 3 k l
11 Appliion Biprie Mhing Exmple given ommuniy wih n men nd m women Aume we hve wy o deermine whih ouple (mn/womn) re ompile for mrrige E.g. (Joe, Sun) or (Fred, Sun) u no (Frnk, Sun) Prolem: Mximize he numer of mrrige No polygmy llowed Cn olve hi prolem y reing flow nework ou of iprie grph Biprie Grph A iprie grph i n undireed grph G=(V,E) in whih V n e priioned ino wo e V 1 nd V 2 uh h (u,v) E implie eiher u V 1 nd v V 12 or vie ver. Th i, ll edge go eween he wo e V 1 nd V 2 nd no wihin V 1 nd V 2. 11
12 Model for Mhing Prolem Men on lefmo e, women on righmo e, edge if hey re ompile A B C D Men X Y Z Women A B C D A mhing X Y Z A X B Y C Z D Opiml mhing Soluion Uing Mx Flow Add uperoue, uperink, mke eh undireed edge direed wih flow of 1 A X A X B C D Y Z B C D Y Z Sine he inpu i 1, flow onervion preven muliple mhing 12
Graduate Algorithms CS F-18 Flow Networks
Grue Algorihm CS673-2016F-18 Flow Nework Dvi Glle Deprmen of Compuer Siene Univeriy of Sn Frnio 18-0: Flow Nework Diree Grph G Eh ege weigh i piy Amoun of wer/eon h n flow hrough pipe, for inne Single
CSC 373: Algorithm Design and Analysis Lecture 9
CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow
1 The Network Flow Problem
5-5/65: Deign & Anlyi of Algorihm Ooer 5, 05 Leure #0: Nework Flow I l hnged: Ooer 5, 05 In hee nex wo leure we re going o lk ou n imporn lgorihmi prolem lled he Nework Flow Prolem. Nework flow i imporn
Solutions to assignment 3
D Sruure n Algorihm FR 6. Informik Sner, Telikeplli WS 03/04 hp://www.mpi-.mpg.e/~ner/oure/lg03/inex.hml Soluion o ignmen 3 Exerie Arirge i he ue of irepnie in urreny exhnge re o rnform one uni of urreny
ALG 5.3 Flow Algorithms:
ALG 5. low Algorihm: () Mx-flow, min-u Theorem () Augmening Ph () 0 - flow (d) Verex Conneiviy (e) Plnr low Min Reding Seleion: CLR, Chper 7 Algorihm Profeor John Reif Auxillry Reding Seleion: Hndou: "Nework
Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation
Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,
Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001
CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each
Graphs III - Network Flow
Graph III - Nework Flow Flow nework eup graph G=(V,E) edge capaciy w(u,v) 0 - if edge doe no exi, hen w(u,v)=0 pecial verice: ource verex ; ink verex - no edge ino and no edge ou of Aume every verex v
CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017
Uer ID (NOT he 9 igi numer): gurell4 CS351 Deign & Anlyi of Algorihm Fll 17 Seion A Te 3 Soluion Inruor: Rihr Peng In l, Weney, Nov 15, 17 Do no open hi quiz ookle unil you re iree o o o. Re ll he inruion
Lecture 2: Network Flow. c 14
Comp 260: Avne Algorihms Tufs Universiy, Spring 2016 Prof. Lenore Cowen Srie: Alexner LeNil Leure 2: Nework Flow 1 Flow Neworks s 16 12 13 10 4 20 14 4 Imgine some nework of pipes whih rry wer, represene
Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.
CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex
Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445
CS 445 Flow Nework lon Efr Slide corey of Chrle Leieron wih mll chnge by Crol Wenk Flow nework Definiion. flow nework i direced grph G = (V, E) wih wo diingihed erice: orce nd ink. Ech edge (, ) E h nonnegie
1 Motivation and Basic Definitions
CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider
5. Network flow. Network flow. Maximum flow problem. Ford-Fulkerson algorithm. Min-cost flow. Network flow 5-1
Nework flow -. Nework flow Nework flow Mximum flow prolem Ford-Fulkeron lgorihm Min-co flow Nework flow Nework N i e of direced grph G = (V ; E) ource 2 V which h only ougoing edge ink (or deinion) 2 V
Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t)
/0/ dmin lunch oday rading MX LOW PPLIION 0, pring avid Kauchak low graph/nework low nework direced, weighed graph (V, ) poiive edge weigh indicaing he capaciy (generally, aume ineger) conain a ingle ource
Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples
CS 7 Algorihm Fll 24 Dvid Wgner /3 Noe The min-u problem Le G = (V,E) be direed grph, wih oure verex V nd ink verex V. Aume h edge re lbelled wih o, whih n be modelled o funion : E N h oie non-negive inegrl
Max Flow, Min Cut COS 521. Kevin Wayne Fall Soviet Rail Network, Cuts. Minimum Cut Problem. Flow network.
Sovie Rail Nework, Max Flow, Min u OS Kevin Wayne Fall Reference: On he hiory of he ranporaion and maximum flow problem. lexander Schrijver in Mah Programming, :,. Minimum u Problem u Flow nework.! Digraph
Max-flow and min-cut
Mx-flow nd min-cu Mx-Flow nd Min-Cu Two imporn lgorihmic prolem, which yield euiful duliy Myrid of non-rivil pplicion, i ply n imporn role in he opimizion of mny prolem: Nework conneciviy, irline chedule
Maximum Flow and Minimum Cut
// Sovie Rail Nework, Maximum Flow and Minimum Cu Max flow and min cu. Two very rich algorihmic problem. Cornerone problem in combinaorial opimizaion. Beauiful mahemaical dualiy. Nework Flow Flow nework.
Max-flow and min-cut
Mx-flow nd min-cu Mx-Flow nd Min-Cu Two imporn lgorihmic prolem, which yield euiful duliy Myrid of non-rivil pplicion, i ply n imporn role in he opimizion of mny prolem: Nework conneciviy, irline chedule
Network Flows: Introduction & Maximum Flow
CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch
Algorithmic Discrete Mathematics 6. Exercise Sheet
Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap
CS4445/9544 Analysis of Algorithms II Solution for Assignment 1
Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he
e t dt e t dt = lim e t dt T (1 e T ) = 1
Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie
Main Reference: Sections in CLRS.
Maximum Flow Reied 09/09/200 Main Reference: Secion 26.-26. in CLRS. Inroducion Definiion Muli-Source Muli-Sink The Ford-Fulkeron Mehod Reidual Nework Augmening Pah The Max-Flow Min-Cu Theorem The Edmond-Karp
Today: Max Flow Proofs
Today: Max Flow Proof COSC 58, Algorihm March 4, 04 Many of hee lide are adaped from everal online ource Reading Aignmen Today cla: Chaper 6 Reading aignmen for nex cla: Chaper 7 (Amorized analyi) In-Cla
Matching. Slides designed by Kevin Wayne.
Maching Maching. Inpu: undireced graph G = (V, E). M E i a maching if each node appear in a mo edge in M. Max maching: find a max cardinaliy maching. Slide deigned by Kevin Wayne. Biparie Maching Biparie
Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)
Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find
Soviet Rail Network, 1955
7.1 Nework Flow Sovie Rail Nework, 19 Reerence: On he hiory o he ranporaion and maximum low problem. lexander Schrijver in Mah Programming, 91: 3, 00. (See Exernal Link ) Maximum Flow and Minimum Cu Max
Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review
Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion
Algorithm Design and Analysis
Algorihm Deign and Analyi LECTURES 17 Nework Flow Dualiy of Max Flow and Min Cu Algorihm: Ford-Fulkeron Capaciy Scaling Sofya Rakhodnikova S. Rakhodnikova; baed on lide by E. Demaine, C. Leieron, A. Smih,
! Abstraction for material flowing through the edges. ! G = (V, E) = directed graph, no parallel edges.
Sovie Rail Nework, haper Nework Flow Slide by Kevin Wayne. opyrigh Pearon-ddion Weley. ll righ reerved. Reference: On he hiory of he ranporaion and maximum flow problem. lexander Schrijver in Mah Programming,
CSE 521: Design & Analysis of Algorithms I
CSE 52: Deign & Analyi of Algorihm I Nework Flow Paul Beame Biparie Maching Given: A biparie graph G=(V,E) M E i a maching in G iff no wo edge in M hare a verex Goal: Find a maching M in G of maximum poible
Jonathan Turner Exam 2-10/28/03
CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm
6/3/2009. CS 244 Algorithm Design Instructor: t Artur Czumaj. Lecture 8 Network flows. Maximum Flow and Minimum Cut. Minimum Cut Problem.
Maximum Flow and Minimum Cu CS lgorihm Deign Inrucor: rur Czumaj Lecure Nework Max and min cu. Two very rich algorihmic problem. Cornerone problem in combinaorial opimizaion. Beauiful mahemaical dualiy.
The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.
[~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries
A LOG IS AN EXPONENT.
Ojeives: n nlze nd inerpre he ehvior of rihmi funions, inluding end ehvior nd smpoes. n solve rihmi equions nlill nd grphill. n grph rihmi funions. n deermine he domin nd rnge of rihmi funions. n deermine
0 for t < 0 1 for t > 0
8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside
Randomized Perfect Bipartite Matching
Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for
LAPLACE TRANSFORMS. 1. Basic transforms
LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming
Flow Networks. Ma/CS 6a. Class 14: Flow Exercises
0/0/206 Ma/CS 6a Cla 4: Flow Exercie Flow Nework A flow nework i a digraph G = V, E, ogeher wih a ource verex V, a ink verex V, and a capaciy funcion c: E N. Capaciy Source 7 a b c d e Sink 0/0/206 Flow
Reminder: Flow Networks
0/0/204 Ma/CS 6a Cla 4: Variou (Flow) Execie Reminder: Flow Nework A flow nework i a digraph G = V, E, ogeher wih a ource verex V, a ink verex V, and a capaciy funcion c: E N. Capaciy Source 7 a b c d
Network Flows UPCOPENCOURSEWARE number 34414
Nework Flow UPCOPENCOURSEWARE number Topic : F.-Javier Heredia Thi work i licened under he Creaive Common Aribuion- NonCommercial-NoDeriv. Unpored Licene. To view a copy of hi licene, vii hp://creaivecommon.org/licene/by-nc-nd/./
Today s topics. CSE 421 Algorithms. Problem Reduction Examples. Problem Reduction. Undirected Network Flow. Bipartite Matching. Problem Reductions
Today opic CSE Algorihm Richard Anderon Lecure Nework Flow Applicaion Prolem Reducion Undireced Flow o Flow Biparie Maching Dijoin Pah Prolem Circulaion Loweround conrain on flow Survey deign Prolem Reducion
Chapter Introduction. 2. Linear Combinations [4.1]
Chper 4 Inrouion Thi hper i ou generlizing he onep you lerne in hper o pe oher n hn R Mny opi in hi hper re heoreil n MATLAB will no e le o help you ou You will ee where MATLAB i ueful in hper 4 n how
CS 473G Lecture 15: Max-Flow Algorithms and Applications Fall 2005
CS 473G Lecure 1: Max-Flow Algorihm and Applicaion Fall 200 1 Max-Flow Algorihm and Applicaion (November 1) 1.1 Recap Fix a direced graph G = (V, E) ha doe no conain boh an edge u v and i reveral v u,
CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it
CSC 36S Noe Univeriy of Torono, Spring, 2003 Flow Algorihm The nework we will conider are direced graph, where each edge ha aociaed wih i a nonnegaive capaciy. The inuiion i ha if edge (u; v) ha capaciy
Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:
Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial
4.8 Improper Integrals
4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls
Three Dimensional Coordinate Geometry
HKCWCC dvned evel Pure Mhs. / -D Co-Geomer Three Dimensionl Coordine Geomer. Coordine of Poin in Spe Z XOX, YOY nd ZOZ re he oordine-es. P,, is poin on he oordine plne nd is lled ordered riple. P,, X Y
graph of unit step function t
.5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"
MAXIMUM FLOW. introduction Ford-Fulkerson algorithm maxflow-mincut theorem
MAXIMUM FLOW inroducion Ford-Fulkeron algorihm maxflow-mincu heorem Mincu problem Inpu. An edge-weighed digraph, ource verex, and arge verex. each edge ha a poiive capaciy capaciy 9 10 4 15 15 10 5 8 10
Robust Network Coding for Bidirected Networks
Rou Nework Coding for Bidireed Nework A. Sprinon, S. Y. El Rouyhe, nd C. N. Georghide Ar We onider he prolem of nding liner nework ode h gurnee n innneou reovery from edge filure in ommuniion nework. Wih
Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso
Sph3u Prcice Uni Te: Kinemic (Soluion) LoRuo Nme: Tuey, Ocober 3, 07 Ku: /45 pp: /0 T&I: / Com: Thi i copy of uni e from 008. Thi will be imilr o he uni e you will be wriing nex Mony. you cn ee here re
Flow networks, flow, maximum flow. Some definitions. Edmonton. Saskatoon Winnipeg. Vancouver Regina. Calgary. 12/12 a.
Flow nework, flow, maximum flow Can inerpre direced graph a flow nework. Maerial coure hrough ome yem from ome ource o ome ink. Source produce maerial a ome eady rae, ink conume a ame rae. Example: waer
Greedy. I Divide and Conquer. I Dynamic Programming. I Network Flows. Network Flow. I Previous topics: design techniques
Algorihm Deign Technique CS : Nework Flow Dan Sheldon April, reedy Divide and Conquer Dynamic Programming Nework Flow Comparion Nework Flow Previou opic: deign echnique reedy Divide and Conquer Dynamic
5.1-The Initial-Value Problems For Ordinary Differential Equations
5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil
Network Flow. Data Structures and Algorithms Andrei Bulatov
Nework Flow Daa Srucure and Algorihm Andrei Bulao Algorihm Nework Flow 24-2 Flow Nework Think of a graph a yem of pipe We ue hi yem o pump waer from he ource o ink Eery pipe/edge ha limied capaciy Flow
1.0 Electrical Systems
. Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,
The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm
Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,
The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm
Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,
Soviet Rail Network, 1955
Sovie Rail Nework, 1 Reference: On he hiory of he ranporaion and maximum flow problem. Alexander Schrijver in Mah Programming, 1: 3,. Maximum Flow and Minimum Cu Max flow and min cu. Two very rich algorihmic
16 Max-Flow Algorithms and Applications
Algorihm A proce canno be underood by opping i. Underanding mu move wih he flow of he proce, mu join i and flow wih i. The Fir Law of Mena, in Frank Herber Dune (196) There a difference beween knowing
( ) ( ) ( ) ( ) ( ) ( y )
8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll
Chapter 2: Evaluative Feedback
Chper 2: Evluive Feedbck Evluing cions vs. insrucing by giving correc cions Pure evluive feedbck depends olly on he cion ken. Pure insrucive feedbck depends no ll on he cion ken. Supervised lerning is
Control Systems -- Final Exam (Spring 2006)
6.5 Conrol Syem -- Final Eam (Spring 6 There are 5 prolem (inluding onu prolem oal poin. (p Given wo marie: (6 Compue A A e e. (6 For he differenial equaion [ ] ; y u A wih ( u( wha i y( for >? (8 For
Algorithm Design and Analysis
Algorihm Deign and Analyi LECTURE 0 Nework Flow Applicaion Biparie maching Edge-dijoin pah Adam Smih 0//0 A. Smih; baed on lide by E. Demaine, C. Leieron, S. Rakhodnikova, K. Wayne La ime: Ford-Fulkeron
Minimum Squared Error
Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples
Minimum Squared Error
Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples
Maximum Flow. How do we transport the maximum amount data from source to sink? Some of these slides are adapted from Lecture Notes of Kevin Wayne.
Conen Conen. Maximum flow problem. Minimum cu problem. Max-flow min-cu heorem. Augmening pah algorihm. Capaciy-caling. Shore augmening pah. Chaper Maximum How do we ranpor he maximum amoun daa from ource
Positive and negative solutions of a boundary value problem for a
Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference
Chapter 7: Solving Trig Equations
Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions
Bisimulation, Games & Hennessy Milner logic p.1/32
Clil lnguge heory Biimulion, Gme & Henney Milner logi Leure 1 of Modelli Memii dei Proei Conorreni Pweł Sooińki Univeriy of Souhmon, UK I onerned rimrily wih lnguge, eg finie uom regulr lnguge; uhdown
2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V
ME 352 VETS 2. VETS Vecor algebra form he mahemaical foundaion for kinemaic and dnamic. Geomer of moion i a he hear of boh he kinemaic and dnamic of mechanical em. Vecor anali i he imehonored ool for decribing
Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.
Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl
ENGR 1990 Engineering Mathematics The Integral of a Function as a Function
ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under
18 Extensions of Maximum Flow
Who are you?" aid Lunkwill, riing angrily from hi ea. Wha do you wan?" I am Majikhie!" announced he older one. And I demand ha I am Vroomfondel!" houed he younger one. Majikhie urned on Vroomfondel. I
Network flows. The problem. c : V V! R + 0 [ f+1g. flow network G = (V, E, c), a source s and a sink t uv not in E implies c(u, v) = 0
Nework flow The problem Seing flow nework G = (V, E, c), a orce and a ink no in E implie c(, ) = 0 Flow from o capaciy conrain kew-ymmery flow-coneraion ale of he flow jfj = P 2V Find a maximm flow from
EECE 301 Signals & Systems Prof. Mark Fowler
EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual
S Radio transmission and network access Exercise 1-2
S-7.330 Rdio rnsmission nd nework ccess Exercise 1 - P1 In four-symbol digil sysem wih eqully probble symbols he pulses in he figure re used in rnsmission over AWGN-chnnel. s () s () s () s () 1 3 4 )
Global alignment in linear space
Globl linmen in liner spe 1 2 Globl linmen in liner spe Gol: Find n opiml linmen of A[1..n] nd B[1..m] in liner spe, i.e. O(n) Exisin lorihm: Globl linmen wih bkrkin O(nm) ime nd spe, bu he opiml os n
Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)
Properies of Logrihms Solving Eponenil nd Logrihmic Equions Properies of Logrihms Produc Rule ( ) log mn = log m + log n ( ) log = log + log Properies of Logrihms Quoien Rule log m = logm logn n log7 =
September 20 Homework Solutions
College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum
8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1
8. a For ep repone, inpu i u, U Y a U α α Y a α α Taking invere Laplae ranform a α e e / α / α A α 0 a δ 0 e / α a δ deal repone, α d Y i Gi U i δ Hene a α 0 a i For ramp repone, inpu i u, U Soluion anual
PHYSICS 1210 Exam 1 University of Wyoming 14 February points
PHYSICS 1210 Em 1 Uniersiy of Wyoming 14 Februry 2013 150 poins This es is open-noe nd closed-book. Clculors re permied bu compuers re no. No collborion, consulion, or communicion wih oher people (oher
CSE 421 Introduction to Algorithms Winter The Network Flow Problem
CSE 42 Inroducion o Algorihm Winer 202 The Nework Flow Problem 2 The Nework Flow Problem 5 a 4 3 x 3 7 6 b 4 y 4 7 6 c 5 z How much uff can flow from o? 3 Sovie Rail Nework, 955 Reference: On he hiory
two values, false and true used in mathematical logic, and to two voltage levels, LOW and HIGH used in switching circuits.
Digil Logi/Design. L. 3 Mrh 2, 26 3 Logi Ges nd Boolen Alger 3. CMOS Tehnology Digil devises re predominnly mnufured in he Complemenry-Mel-Oide-Semionduor (CMOS) ehnology. Two ypes of swihes, s disussed
26.1 Flow networks. f (u,v) = 0.
26 Maimum Flow Ju a we can model a road map a a direced graph in order o find he hore pah from one poin o anoher, we can alo inerpre a direced graph a a flow nework and ue i o anwer queion abou maerial
Mathematics 805 Final Examination Answers
. 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se
Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients
Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous
CS 170 DISCUSSION 10 MAXIMUM FLOW. Raymond Chan raychan3.github.io/cs170/fa17.html UC Berkeley Fall 17
7 IUION MXIMUM FLOW Raymond han raychan.github.io/cs7/fa7.html U erkeley Fall 7 MXIMUM FLOW Given a directed graph G = (V, E), send as many units of flow from source node s to sink node t. Edges have capacity
Designing A Fanlike Structure
Designing A Fnlike Sruure To proeed wih his lesson, lik on he Nex buon here or he op of ny pge. When you re done wih his lesson, lik on he Conens buon here or he op of ny pge o reurn o he lis of lessons.
The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation
Hea (iffusion) Equaion erivaion of iffusion Equaion The fundamenal mass balance equaion is I P O L A ( 1 ) where: I inpus P producion O oupus L losses A accumulaion Assume ha no chemical is produced or
Discussion Session 2 Constant Acceleration/Relative Motion Week 03
PHYS 100 Dicuion Seion Conan Acceleraion/Relaive Moion Week 03 The Plan Today you will work wih your group explore he idea of reference frame (i.e. relaive moion) and moion wih conan acceleraion. You ll
Solving Evacuation Problems Efficiently. Earliest Arrival Flows with Multiple Sources
Solving Evcuion Prolem Efficienly Erlie Arrivl Flow wih Muliple Source Ndine Bumnn Univeriä Dormund, FB Mhemik 441 Dormund, Germny ndine.umnn@mh.uni-dormund.de Mrin Skuell Univeriä Dormund, FB Mhemik 441
Solutions to Assignment 1
MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we
Chapter 8 The Complete Response of RL and RC Circuits
Chaper 8 he Complee Response of R and RC Ciruis Exerises Ex 8.3-1 Before he swih loses: Afer he swih loses: 2 = = 8 Ω so = 8 0.05 = 0.4 s. 0.25 herefore R ( ) Finally, 2.5 ( ) = o + ( (0) o ) = 2 + V for
dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.
Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies
Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors
Trnformion Ordered e of number:,,,4 Emple:,,z coordine of p in pce. Vecor If, n i i, K, n, i uni ecor Vecor ddiion +w, +, +, + V+w w Sclr roduc,, Inner do roduc α w. w +,.,. The inner produc i SCLR!. w,.,
Reinforcement Learning
Reiforceme Corol lerig Corol polices h choose opiml cios Q lerig Covergece Chper 13 Reiforceme 1 Corol Cosider lerig o choose cios, e.g., Robo lerig o dock o bery chrger o choose cios o opimize fcory oupu