IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

Size: px
Start display at page:

Download "IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704"

Transcription

1 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion of he He Equion in Semi-Infinie Region 76 IX..6 Wve Equion 7 IX..7 Soluion of Inegrl Equion 74 IX..8 Review Queion nd Eercie 76 IX..9 plce Trnform wih Mple 78

2 7 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 IX.. DEFINITION: The plce rnform of he funcion f ( ), i defined plcetrnform { f ( ) } ( ) f ( ) φ e d > M Me f ( ) There re everl rdiionl noion ued for he plce rnform: e : ( ) φ( ) ( ) Y ( ) ( ) u( ) f : y : u The funcion i he kernel of he rnform nd i he rnform vrible. The eience condiion for he plce rnform i eblihed for funcion growing no fer hn n eponenil funcion: if here ei conn > nd M > uch h ( ) Me of eponenil order. f for ll hen he funcion ( ) f i clled Theorem 9. (ufficien condiion for eience of he plce rnform) e he funcion f ( ) be piecewie coninuou on [,) nd of eponenil order wih conn > nd M >, hen ) The plce rnform { f ( ) } ( ) f ( ) ) φ ( ) M 3) ( ) φ when 4) ( ) φ i bounded when φ e d ei for ll > Emple:. f ( ) e, M f ( ) e d e >. f ( ) Me f ( ) M > Invere plce rnform We define he invere plce rnform of he funcion φ ( ) n operion which yield funcion f ( ) uch h { f ( ) } φ( ) : { φ } f Here, we conider he plce rnform rericed o rel vlue of. A more generl definiion i bed on he Fourier rnform pplied o funcion which re equl o zero for negive vlue, nd he vrible i n imginry frequency: iω, < ω < f F f f e d f e d iω { } π { } Then he invere plce rnform i defined by φ f α i α + i e d π i, >, α Re( )

3 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 7 IX.. PROPERTIES To clcule he plce rnform nd i invere we will ue moly he ble of he plce rnform nd i properie. e { f ( ) } φ ( ) hen: ) ineriy: Boh nd re liner: { f ( ) + bg( ) } { f ( ) } b{ g( ) } + ) Shifing in : { αφ( ) + βψ ( ) } α { φ( ) } + β { ψ ( ) } { } φ e f { } φ ( + ) e f { φ ( )} e f { φ ( + )} e f 3) Shifing in : e H( ) ( ) H hen 4) Similriy: { f ( ) } be he Heviide uni ep funcion if > if < { } φ f H e > { φ } ( ) ( ) e f H φ d d φ 5) Differeniion: { f ( ) } ( ) 6) Inegrion: f φ d 7) Convoluion: f g f ( ) g( )d Convoluion Theorem { f g} { f} { g} F( ) G( ) 8) Trnform of derivive: { } F G f g { f ( ) } φ ( ) f { f ( ) } φ ( ) f f ( n ) n n n ( n { f ( ) } φ ( ) f f... f )

4 7 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 IX..3 EXAMPES ) Uing he definiion, clcule he plce rnform of f ( ) { } e d d e : d ( e ) inegrion by pr + e e d + + { } e lime ) Derive he propery { f ( ) H( ) } e φ ( ). According o definiion of he plce rnform { ( ) ( )} ( ) ( ) f H f H e d f e d ubiue τ + ( τ) ( τ + ) f e dτ e f e τ d ( τ) e φ ( ) 3) Derive he propery { f ( ) } ( ) f { ( ) } f 4) Evlue { }. f e d e d f τ φ. move o differenil f ( ) e f ( ) d e inegrion by pr f f e d + φ f e f ( ), hen f ( ) nd { f ( ) } φ ( ) f { } { } f { } { } { } 3 In generl, for n, pplicion of propery (7) yield n! { } n n + ume lim f e f. Apply he propery

5 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, ) Inverion of he formul { } { { }} n n! n+ n! n+ n n n+ n! n! : n n + 6) Invere rnform of rionl funcion (pril frcion decompoiion): Evlue 9. + Conver rionl funcion o pril frcion (ee Secion ): + 9 ( + ) + ( ) + A B A 3 B A 3 6 B Therefore + 9 A 3 B e e ) Invere rnform of rionl funcion (convoluion heorem): Evlue. ( ) Noice h { } ( ) nd { e } { { } { e }} e ( ) e d e d e d e e e e e + e e. Then by convoluion

6 74 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 IX..4 Soluion of IVP for ODE The plce rnform elimine derivive nd i cn be ued for he oluion of differenil equion in emi-infinie domin, <. Bu becue he plce rnform of he derivive include vlue of he funcion nd i derivive zero, he plce rnform i more uible for iniil vlue problem rher hn for boundry vlue problem like he Fourier rnform. Emple (Soluion of IVP by he plce Trnform) Conider he nd order differenil equion y + y y in ( ) π wih wo iniil condiion π y π y π ) Trnle iniil condiion by he chnge of he vrible τ o τ : π y + y y in τ + Then iniil condiion re τ : y y. ) Apply he plce rnform Y ( ) y( τ ) Solve for Y Y + Y Y + Y e ( + )( )( + ) 3) Then by invere plce rnform y τ d τ o equion ( ): τ τ ( τ ) e + e coτ + inτ π Ue bck ubiuion τ o ge he oluion of he originl IVP: y 6 π 5 3 π + + π e e co + in π π y( )

7 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 75 Emple (Soluion of IVP by he plce Trnform) Solve he 3 rd order differenil equion y y y + y e ( ) ubjec o iniil condiion y y y ) Apply he plce rnform Y ( ) y( τ ) e τ d τ o equion ( ): Y y y y Y y y Y y + Y + 3 Y Y Y + Y Y + Solve for Y Y + 3 ( + )( )( )( + ) Conver hi epreion o pril frcion (ee Emple 6): Y ( + ) ( ) ( + ) ( ) ) Then he oluion of he IVP cn be found by invere plce rnform 5 y e e e e y( )

8 76 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 IX..5 SOUTION OF THE HEAT EQUATION IN SEMI-INFINITE REGIONS ) Dirichle Problem Conider he He Equion in he emi-infinie lb for u (, ) boundry condiion u, f u (,) u (,) u (,) iniil condiion u (, ) < u u (, ) > u (,) iniil condiion (,) f ( ) u > Dirichle b.c. lim u, < > bounded oluion α Trnformed equion Apply he plce rnform in he vrible (,) u(,) he He Equion nd o he boundry condiion U e d o u, U, u, U U (,) F ( ) where U F f e d Thi i he nd order liner ODE wih conn coefficien. Generl oluion (,) c e c U + e Soluion of he HE nd correpondingly i plce rnform hould be bounded when, herefore, we hve o ign c : (, ) c e U Applying boundry condiion, one end up wih he oluion for he rnformed funcion U (,) F ( ) e Noe (ee Mple Emple 7) h he funcion rnform of he funcion e i plce 4 G( ) { g(,) } e e 3 π g 4 ( ) e π 3 Then he rnformed oluion i produc of wo plce rnform: rnformed oluion (,) F ( ) G( ) U Apply he invere plce rnform uing he convoluion heorem u (, ) { } ( ) F G f g f τ g τ dτ Finlly, he oluion i given in erm of convoluion inegrl 4( τ ) e d 3 Soluion of IVP: u(,) f ( τ ) π ( τ ) τ

9 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 77 Conn b.c. f f Conider ce when he boundry condiion pecifie conn emperure f f, hen u, Mke he ubiuion: 4 ( τ ) f e π ( τ ) 3 z limi of inegrion: τ dτ ( τ ) ( ) 3 ( τ ) dz dτ z τ z z e dz π f z z u (,) e dz f e dz ferfc π π erf Then he oluion i given by u, f erfc ( ) f Plo he oluion for nd f u (,) 5 The emperure diribuion in he emi-infinie lyer pproche he edy e conn vlue of he boundry condiion f. θ, u, u Generl ce: u (,) u Chnge he vrible: Iniil condiion: θ (,) u (,) u Boundry condiion: θ (,) u (,) u f u Soluion: θ u, u f u erfc, f u erfc +

10 78 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 b) Robin Problem Conider he He Equion in he emi-infinie lb for u (, ) u (,) u u (, ) > α u u (,) u u, iniil condiion u u (, ) < u k + hu hu lim u, > Robin b.c. < > bounded oluion ) Reduce o IBVP wih zero iniil condiion: Chnge of vrible: θ (,) u (,) u u (,) θ (,) + u Iniil condiion: θ (,) u (,) u ( θ + u ) Boundry condiion: ( θ ) imiing condiion: limθ (,) He Equion: k + h + u hu θ + Hθ H u u θ ) Soluion by plce rnform: < θ, h H k Trnformed equion: Boundry condiion: Θ Θ Θ H u + HΘ limθ (,) < ( u ) Soluion: Θ, c e c e Θ + (,) c e Derivive: Subiue ino b.c.: Θ, ce H u c e + He H u c H + c ( u ) H u H + ( u ) c ( u )

11 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 79 Trnformed Soluion: Θ (,) ( u u ) H e H + Ue Mple o find he invere plce rnform: H A, b > invlplce(a*ep(-b*qr())//(qr()+a),,); + b~ + A~ erf e ( b~ A~ + A~ ) + erf b~ b Ae Ab A b b e e erfc A + + erfc ( + A ) Invere plce rnform: H H+ H θ (,) ( u u) e erfc + + ( u u) erfc Soluion: H H+ H u, u + u u erfc e erfc + Emple: u, u 5,, k 5, h u (,) u, 3 u

12 7 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 c) Conc Problem Conider he idel herml conc of wo emi-infinie lb of uniform conduciviie k nd k, nd coefficien of hermodiffuiviy α nd α, correpondingly. Iniilly lb re he emperure T nd T, hen he rnien emperure diribuion i decribed by u (,) u,. u, nd T u k (,) T k u (,) T u u u u (,) > (, ) > α α u, T iniil condiion u, T u, u, > coninuiy k u, k u, > conervion of flu u (,) Symmeric eenion of u (, ) u (,) T u (,) T T Soluion of he Dirichle problem for he emi-infinie lb: + u, T T T erfc + u, T T T erfc Here, he condiion of emperure coninuiy he conc i umed wih conn emperure of he conc T : u, u, T

13 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 7 Apply condiion of conervion of flu he conc: u(,) ( T T ) ep π u(,) ( T T ) ep π k( T T ) ep π k( T T ) ep π k( T T ) π k T T π ( ) k ( T T) k T T Solve for conc emperure: Conc Temperure: kt T k + kt + k Conc emperure i conn for >. Emple: T 3. 3 T 4.3 T. k 4.. k 5..

14 7 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 IX..6 WAVE EQUATION Conider vibrion of he emi-infinie ring (WE) u u + g(,) u (,) : (, ) > g (,) force per uni lengh of he ring (,) f ( ) u > Dirichle boundry condiion (, ) u ( ) u(, ) u ( ) u iniil condiion iniil condiion ) Trnformed equion Apply he plce rnform in he vrible U G F (,) u(,) e (,) g(,) ( ) f ( ) d e d e d o he WE nd boundry condiion U u u U + G (,) F ( ) U u u G U U Q Q noion Generl oluion: e + ce U p U c + where coefficien c, c re, in generl, funcion of. Hence he oluion hould be bounded, c, nd he generl oluion become e U p U c + Ce u u G Conider ce Q : iniilly he ring i re, here i no eernl force. Then he oluion become: U F Noe h ( ) e δ δ e d δ e d e for >

15 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 73 ) Invere rnform: (,) F ( ) e { f ( ) } δ δ f ( ) u Clcule convoluion δ f δ τ f ( τ) dτ δ τ f dτ f H The oluion become: (,) f H u Emple of ime dependen b.c. 3) Conider he ce of periodic b.c.: ( ) in u (,) in H Plo he oluion (T-.mw): f hen u (,) 4 5 Eercie: Conider differen ce: wih grviionl force fied end, iniil hpe nd velociy Coefficien in he Wve Equion: gt w m peed of propgion of ound wve in he medium; g ccelerion of grviy; T enion; w weigh of he ring per uni lengh.

16 74 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 IX..7 INTEGRA EQUATIONS Recll he Volerr inegrl equion of he nd kind λ + u K, y u y dy f If he kernel of he inegrl equion K (,y ) i funcion of y K (,y) g( y) hen he inegrl equion i id o be convoluion inegrl equion: convoluion inegrl equion u ( ) λ g ( y) u ( y) dy + f ( ) We will conider pplicion of he plce rnform o he oluion of he convoluion inegrl equion. The mehod i bed on he convoluion heorem for he plce rnform: { f g} f g Apply he plce rnform o he convoluion inegrl equion λ ( ) + u g y u y dy f λ { } + λ + u g u f u g u f Solve for he rnformed funcion u u ( ) f λ g Then he forml oluion of he inegrl equion i given by he invere plce rnform f u( ) λg Emple (non-homogeneou Volerr inegrl equion of he nd kind) Solve he inegrl equion λ u + u y dy Apply he plce rnform (ue ble propery 49): u u ( y) dy u u + λ

17 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 75 Solve for u u λ Then he oluion i given by he invere plce rnform u e λ λ Emple (Abel inegrl equion) Abel inegrl equion Tble T: { } Γ Solve he inegrl equion: u ( y) ( y) f dy Rewrie (AE) in he form ( ) f u y y dy nd pply he plce rnform < < (AE) f ( ) u ( y)( y) dy { } Γ { } { } u Γ u u Solve for he rnformed unknown funcion { } u y u( ) f ( ) u ( ) ( ) Γ ( ) Γ + Γ + f u Γ ( ) Γ u { f ( ) } { } + Γ Then pplicion of he invere plce rnform nd convoluion heorem, yield forml oluion for he Abel inegrl equion u ( ) u + ( y) f ( y) dy Γ ( ) Γ

18 76 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 IX..8 REVIEW QUESTIONS ) How i he plce rnform defined? ) Wh condiion gurnee he eience of he plce rnform? 3) How i he invere plce rnform defined? 4) Wh re he min properie of he plce rnform nd he invere plce rnform? 5) How cn he convoluion heorem be pplied for evluion of he invere plce rnform? 6) How cn he invere plce rnform of he rionl funcion be found? 7) Wh propery llow pplicion of he plce rnform for oluion of differenil equion? 8) Wh re he min ep in he procedure of pplicion of he plce rnform for oluion of differenil equion? EXERCISES. ) Derive he imilriy propery { f ( ) } φ. f φ f f. b) Uing inegrion by pr derive { }. Evlue uing he definiion of he plce rnform: 3 ) { in( )} b) { e } 3. Evlue uing he Tble nd he properie of he plce rnform: e b) ( + 5) 3 ) { } c) { } 3 { } d) { e co } e

19 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, Evlue he following invere plce rnform uing pril frcion: ) 3 + ( 9)( + ) uing he convoluion heorem: c) + 9 b) d) ( 3)( ) ( + 9) 5. Solve he following Iniil Vlue Problem: ) y y 6y 3 y + y + y y b) y y y y in3 y 6. Solve he Neumnn Iniil-Boundry Vlue Problem for u (,) : u u (, ) > T u, k u, q lim u, > < bounded oluion Skech he oluion curve. 7. Solve he Iniil-Boundry Vlue Problem for (,) dependen periodic boundry condiion: u wih ime- u u (,) > T u, k u, + hu, Tm in u (,) ( ω ) > Chooe ome vlue for he conn nd kech he oluion curve.

20 78 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 IX..9 APACE TRANSFORM WITH MAPE ) Evluion of he plce Trnform uing he definiion (for > ): Emple : > f():;ume(>); f( ) : > phi():in(f()*ep(-*),..infiniy); φ( ~ ) : ~ ) Evluion of he plce Trnform nd he invere plce rnform wih he help of commnd in he pckge inrn: > wih (inrn): Emple : > lplce(ep(),,); Emple 3: Emple 4: Emple 5: Emple 6: > lplce(^*in(),,); ( + 3 ) ( + ) 3 > invlplce(/(^+9),,); co( 3 ) > invlplce(ep(-*)/,,); Heviide ( ) > Y:(+3)/(+)/(-)/(-)/(+); > y():invlplce(y,,); + 3 Y : ( + ) ( ) ( ) ( + ) y( ) : + 5 ) + e( 3 e e ) 3 e( Emple 7: > ume(>):ume(>): > G():ep(-**qr()); > invlplce(g(),,); G( ) : e ( ~ ~ ) ~ ~ e ~ ~ 4 π ( 3/ )

21 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 79

22 7 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 Rue plce

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

IX.2 THE FOURIER TRANSFORM

IX.2 THE FOURIER TRANSFORM Chper IX The Inegrl Trnsform Mehods IX. The Fourier Trnsform November, 7 7 IX. THE FOURIER TRANSFORM IX.. The Fourier Trnsform Definiion 7 IX.. Properies 73 IX..3 Emples 74 IX..4 Soluion of ODE 76 IX..5

More information

can be viewed as a generalized product, and one for which the product of f and g. That is, does

can be viewed as a generalized product, and one for which the product of f and g. That is, does Boyce/DiPrim 9 h e, Ch 6.6: The Convoluion Inegrl Elemenry Differenil Equion n Bounry Vlue Problem, 9 h eiion, by Willim E. Boyce n Richr C. DiPrim, 9 by John Wiley & Son, Inc. Someime i i poible o wrie

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) QUESTION BANK 6 SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddhrh Ngr, Nrynvnm Rod 5758 QUESTION BANK (DESCRIPTIVE) Subjec wih Code :Engineering Mhemic-I (6HS6) Coure & Brnch: B.Tech Com o ll Yer & Sem:

More information

Chapter Direct Method of Interpolation

Chapter Direct Method of Interpolation Chper 5. Direc Mehod of Inerpolion Afer reding his chper, you should be ble o:. pply he direc mehod of inerpolion,. sole problems using he direc mehod of inerpolion, nd. use he direc mehod inerpolns o

More information

Math Week 12 continue ; also cover parts of , EP 7.6 Mon Nov 14

Math Week 12 continue ; also cover parts of , EP 7.6 Mon Nov 14 Mh 225-4 Week 2 coninue.-.3; lo cover pr of.4-.5, EP 7.6 Mon Nov 4.-.3 Lplce rnform, nd pplicion o DE IVP, epecilly hoe in Chper 5. Tody we'll coninue (from l Wednedy) o fill in he Lplce rnform ble (on

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform Inegrl Trnsform Definiions Funcion Spce funcion spce A funcion spce is liner spce of funcions defined on he sme domins & rnges. Liner Mpping liner mpping Le VF, WF e liner spces over he field F. A mpping

More information

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x) Properies of Logrihms Solving Eponenil nd Logrihmic Equions Properies of Logrihms Produc Rule ( ) log mn = log m + log n ( ) log = log + log Properies of Logrihms Quoien Rule log m = logm logn n log7 =

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

MTH 146 Class 11 Notes

MTH 146 Class 11 Notes 8.- Are of Surfce of Revoluion MTH 6 Clss Noes Suppose we wish o revolve curve C round n is nd find he surfce re of he resuling solid. Suppose f( ) is nonnegive funcion wih coninuous firs derivive on he

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

f t f a f x dx By Lin McMullin f x dx= f b f a. 2 Accumulion: Thoughs On () By Lin McMullin f f f d = + The gols of he AP* Clculus progrm include he semen, Sudens should undersnd he definie inegrl s he ne ccumulion of chnge. 1 The Topicl Ouline includes

More information

Physics 2A HW #3 Solutions

Physics 2A HW #3 Solutions Chper 3 Focus on Conceps: 3, 4, 6, 9 Problems: 9, 9, 3, 41, 66, 7, 75, 77 Phsics A HW #3 Soluions Focus On Conceps 3-3 (c) The ccelerion due o grvi is he sme for boh blls, despie he fc h he hve differen

More information

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition.

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition. CHAPTER 8 Forced Equaion and Syem 8 The aplace Tranform and I Invere Tranform from he Definiion 5 5 = b b {} 5 = 5e d = lim5 e = ( ) b {} = e d = lim e + e d b = (inegraion by par) = = = = b b ( ) ( )

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

Chapter 2. Motion along a straight line. 9/9/2015 Physics 218

Chapter 2. Motion along a straight line. 9/9/2015 Physics 218 Chper Moion long srigh line 9/9/05 Physics 8 Gols for Chper How o describe srigh line moion in erms of displcemen nd erge elociy. The mening of insnneous elociy nd speed. Aerge elociy/insnneous elociy

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information

1.0 Electrical Systems

1.0 Electrical Systems . Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms Chaper 6. Laplace Tranform Kreyzig by YHLee;45; 6- An ODE i reduced o an algebraic problem by operaional calculu. The equaion i olved by algebraic manipulaion. The reul i ranformed back for he oluion of

More information

Exponential Decay for Nonlinear Damped Equation of Suspended String

Exponential Decay for Nonlinear Damped Equation of Suspended String 9 Inernionl Symoium on Comuing, Communicion, nd Conrol (ISCCC 9) Proc of CSIT vol () () IACSIT Pre, Singore Eonenil Decy for Nonliner Dmed Equion of Suended Sring Jiong Kemuwn Dermen of Mhemic, Fculy of

More information

Solutions to Problems from Chapter 2

Solutions to Problems from Chapter 2 Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5

More information

ENGI 9420 Engineering Analysis Assignment 2 Solutions

ENGI 9420 Engineering Analysis Assignment 2 Solutions ENGI 940 Engineering Analysis Assignmen Soluions 0 Fall [Second order ODEs, Laplace ransforms; Secions.0-.09]. Use Laplace ransforms o solve he iniial value problem [0] dy y, y( 0) 4 d + [This was Quesion

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı CONTROL SYSTEMS Chaper Mahemaical Modelling of Phyical Syem-Laplace Tranform Prof.Dr. Faih Mehme Boalı Definiion Tranform -- a mahemaical converion from one way of hinking o anoher o make a problem eaier

More information

Average & instantaneous velocity and acceleration Motion with constant acceleration

Average & instantaneous velocity and acceleration Motion with constant acceleration Physics 7: Lecure Reminders Discussion nd Lb secions sr meeing ne week Fill ou Pink dd/drop form if you need o swich o differen secion h is FULL. Do i TODAY. Homework Ch. : 5, 7,, 3,, nd 6 Ch.: 6,, 3 Submission

More information

Chapter 9 - The Laplace Transform

Chapter 9 - The Laplace Transform Chaper 9 - The Laplace Tranform Selece Soluion. Skech he pole-zero plo an region of convergence (if i exi) for hee ignal. ω [] () 8 (a) x e u = 8 ROC σ ( ) 3 (b) x e co π u ω [] ( ) () (c) x e u e u ROC

More information

FM Applications of Integration 1.Centroid of Area

FM Applications of Integration 1.Centroid of Area FM Applicions of Inegrion.Cenroid of Are The cenroid of ody is is geomeric cenre. For n ojec mde of uniform meril, he cenroid coincides wih he poin which he ody cn e suppored in perfecly lnced se ie, is

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008 [E5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 008 EEE/ISE PART II MEng BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: :00 hours There are FOUR quesions

More information

A LOG IS AN EXPONENT.

A LOG IS AN EXPONENT. Ojeives: n nlze nd inerpre he ehvior of rihmi funions, inluding end ehvior nd smpoes. n solve rihmi equions nlill nd grphill. n grph rihmi funions. n deermine he domin nd rnge of rihmi funions. n deermine

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM Elecronic Journl of Differenil Equions, Vol. 208 (208), No. 50, pp. 6. ISSN: 072-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Chapter 2 : Fourier Series. Chapter 3 : Fourier Series

Chapter 2 : Fourier Series. Chapter 3 : Fourier Series Chaper 2 : Fourier Series.0 Inroducion Fourier Series : represenaion of periodic signals as weighed sums of harmonically relaed frequencies. If a signal x() is periodic signal, hen x() can be represened

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

International ejournals

International ejournals Avilble online ww.inernionlejournl.om Inernionl ejournl Inernionl Journl of Mhemil Siene, Tehnology nd Humniie 7 (0 8-8 The Mellin Type Inegrl Trnform (MTIT in he rnge (, Rmhndr M. Pie Deprmen of Mhemi,

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak .65, MHD Theory of Fusion Sysems Prof. Freidberg Lecure 9: The High e Tokmk Summry of he Properies of n Ohmic Tokmk. Advnges:. good euilibrium (smll shif) b. good sbiliy ( ) c. good confinemen ( τ nr )

More information

..,..,.,

..,..,., 57.95. «..» 7, 9,,. 3 DOI:.459/mmph7..,..,., E-mil: yshr_ze@mil.ru -,,. -, -.. -. - - ( ). -., -. ( - ). - - -., - -., - -, -., -. -., - - -, -., -. : ; ; - ;., -,., - -, []., -, [].,, - [3, 4]. -. 3 (

More information

REAL ANALYSIS I HOMEWORK 3. Chapter 1

REAL ANALYSIS I HOMEWORK 3. Chapter 1 REAL ANALYSIS I HOMEWORK 3 CİHAN BAHRAN The quesions re from Sein nd Shkrchi s e. Chper 1 18. Prove he following sserion: Every mesurble funcion is he limi.e. of sequence of coninuous funcions. We firs

More information

Solutions - Midterm Exam

Solutions - Midterm Exam DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERITY OF NEW MEXICO ECE-34: ignals and ysems ummer 203 PROBLEM (5 PT) Given he following LTI sysem: oluions - Miderm Exam a) kech he impulse response

More information

Honours Introductory Maths Course 2011 Integration, Differential and Difference Equations

Honours Introductory Maths Course 2011 Integration, Differential and Difference Equations Honours Inroducory Mhs Course 0 Inegrion, Differenil nd Difference Equions Reding: Ching Chper 4 Noe: These noes do no fully cover he meril in Ching, u re men o supplemen your reding in Ching. Thus fr

More information

MAT 266 Calculus for Engineers II Notes on Chapter 6 Professor: John Quigg Semester: spring 2017

MAT 266 Calculus for Engineers II Notes on Chapter 6 Professor: John Quigg Semester: spring 2017 MAT 66 Clculus for Engineers II Noes on Chper 6 Professor: John Quigg Semeser: spring 7 Secion 6.: Inegrion by prs The Produc Rule is d d f()g() = f()g () + f ()g() Tking indefinie inegrls gives [f()g

More information

The order of reaction is defined as the number of atoms or molecules whose concentration change during the chemical reaction.

The order of reaction is defined as the number of atoms or molecules whose concentration change during the chemical reaction. www.hechemisryguru.com Re Lw Expression Order of Recion The order of recion is defined s he number of oms or molecules whose concenrion chnge during he chemicl recion. Or The ol number of molecules or

More information

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x,

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x, Laplace Transforms Definiion. An ordinary differenial equaion is an equaion ha conains one or several derivaives of an unknown funcion which we call y and which we wan o deermine from he equaion. The equaion

More information

Laplace Examples, Inverse, Rational Form

Laplace Examples, Inverse, Rational Form Lecure 3 Ouline: Lplce Exple, Invere, Rionl For Announceen: Rein: 6: Lplce Trnfor pp. 3-33, 55.5-56.5, 7 HW 8 poe, ue nex We. Free -y exenion OcenOne Roo Tour will e fer cl y 7 (:3-:) Lunch provie ferwr.

More information

EE Control Systems LECTURE 2

EE Control Systems LECTURE 2 Copyrigh F.L. Lewi 999 All righ reerved EE 434 - Conrol Syem LECTURE REVIEW OF LAPLACE TRANSFORM LAPLACE TRANSFORM The Laplace ranform i very ueful in analyi and deign for yem ha are linear and ime-invarian

More information

t s (half of the total time in the air) d?

t s (half of the total time in the air) d? .. In Cl or Homework Eercie. An Olmpic long jumper i cpble of jumping 8.0 m. Auming hi horizonl peed i 9.0 m/ he lee he ground, how long w he in he ir nd how high did he go? horizonl? 8.0m 9.0 m / 8.0

More information

CONTROL SYSTEMS. Chapter 10 : State Space Response

CONTROL SYSTEMS. Chapter 10 : State Space Response CONTROL SYSTEMS Chaper : Sae Space Repone GATE Objecive & Numerical Type Soluion Queion 5 [GATE EE 99 IIT-Bombay : Mark] Conider a econd order yem whoe ae pace repreenaion i of he form A Bu. If () (),

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

ME 391 Mechanical Engineering Analysis

ME 391 Mechanical Engineering Analysis Fall 04 ME 39 Mechanical Engineering Analsis Eam # Soluions Direcions: Open noes (including course web posings). No books, compuers, or phones. An calculaor is fair game. Problem Deermine he posiion of

More information

3. Renewal Limit Theorems

3. Renewal Limit Theorems Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

GEOMETRIC EFFECTS CONTRIBUTING TO ANTICIPATION OF THE BEVEL EDGE IN SPREADING RESISTANCE PROFILING

GEOMETRIC EFFECTS CONTRIBUTING TO ANTICIPATION OF THE BEVEL EDGE IN SPREADING RESISTANCE PROFILING GEOMETRIC EFFECTS CONTRIBUTING TO ANTICIPATION OF THE BEVEL EDGE IN SPREADING RESISTANCE PROFILING D H Dickey nd R M Brennn Solecon Lbororie, Inc Reno, Nevd 89521 When preding reince probing re mde prior

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh. How o Prove he Riemnn Hohesis Auhor: Fez Fok Al Adeh. Presiden of he Srin Cosmologicl Socie P.O.Bo,387,Dmscus,Sri Tels:963--77679,735 Emil:hf@scs-ne.org Commens: 3 ges Subj-Clss: Funcionl nlsis, comle

More information

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic Journl of Applied Mhemics & Bioinformics, vol.2, no.2, 2012, 1-10 ISSN: 1792-6602 prin, 1792-6939 online Scienpress Ld, 2012 Applicion on Inner Produc Spce wih Fixed Poin Theorem in Probbilisic Rjesh Shrivsv

More information

2/5/2012 9:01 AM. Chapter 11. Kinematics of Particles. Dr. Mohammad Abuhaiba, P.E.

2/5/2012 9:01 AM. Chapter 11. Kinematics of Particles. Dr. Mohammad Abuhaiba, P.E. /5/1 9:1 AM Chper 11 Kinemic of Pricle 1 /5/1 9:1 AM Inroducion Mechnic Mechnic i Th cience which decribe nd predic he condiion of re or moion of bodie under he cion of force I i diided ino hree pr 1.

More information

The complex Fourier series has an important limiting form when the period approaches infinity, i.e., T 0. 0 since it is proportional to 1/L, but

The complex Fourier series has an important limiting form when the period approaches infinity, i.e., T 0. 0 since it is proportional to 1/L, but Fourier Transforms The complex Fourier series has an imporan limiing form when he period approaches infiniy, i.e., T or L. Suppose ha in his limi () k = nπ L remains large (ranging from o ) and (2) c n

More information

u(t) Figure 1. Open loop control system

u(t) Figure 1. Open loop control system Open loop conrol v cloed loop feedbac conrol The nex wo figure preen he rucure of open loop and feedbac conrol yem Figure how an open loop conrol yem whoe funcion i o caue he oupu y o follow he reference

More information

APPENDIX 2 LAPLACE TRANSFORMS

APPENDIX 2 LAPLACE TRANSFORMS APPENDIX LAPLACE TRANSFORMS Thi ppendix preent hort introduction to Lplce trnform, the bic tool ued in nlyzing continuou ytem in the frequency domin. The Lplce trnform convert liner ordinry differentil

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m PHYS : Soluions o Chper 3 Home Work. SSM REASONING The displcemen is ecor drwn from he iniil posiion o he finl posiion. The mgniude of he displcemen is he shores disnce beween he posiions. Noe h i is onl

More information

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008)

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008) MATH 14 AND 15 FINAL EXAM REVIEW PACKET (Revised spring 8) The following quesions cn be used s review for Mh 14/ 15 These quesions re no cul smples of quesions h will pper on he finl em, bu hey will provide

More information

Question Details Int Vocab 1 [ ] Question Details Int Vocab 2 [ ]

Question Details Int Vocab 1 [ ] Question Details Int Vocab 2 [ ] /3/5 Assignmen Previewer 3 Bsic: Definie Inegrls (67795) Due: Wed Apr 5 5 9: AM MDT Quesion 3 5 6 7 8 9 3 5 6 7 8 9 3 5 6 Insrucions Red ody's Noes nd Lerning Gols. Quesion Deils In Vocb [37897] The chnge

More information

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations Journl of Mhemics nd Sisics 5 ():136-14, 9 ISS 1549-3644 9 Science Publicions On he Pseudo-Specrl Mehod of Solving Liner Ordinry Differenil Equions B.S. Ogundre Deprmen of Pure nd Applied Mhemics, Universiy

More information

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes The Trnform nd it Invere 2.2 Introduction In thi Section we formlly introduce the Lplce trnform. The trnform i only pplied to cul function which were introduced in Section 2.1. We find the Lplce trnform

More information

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains Green s Funcions nd Comprison Theorems for Differenil Equions on Mesure Chins Lynn Erbe nd Alln Peerson Deprmen of Mhemics nd Sisics, Universiy of Nebrsk-Lincoln Lincoln,NE 68588-0323 lerbe@@mh.unl.edu

More information

Rectilinear Kinematics

Rectilinear Kinematics Recilinear Kinemaic Coninuou Moion Sir Iaac Newon Leonard Euler Oeriew Kinemaic Coninuou Moion Erraic Moion Michael Schumacher. 7-ime Formula 1 World Champion Kinemaic The objecie of kinemaic i o characerize

More information

Applications of Prüfer Transformations in the Theory of Ordinary Differential Equations

Applications of Prüfer Transformations in the Theory of Ordinary Differential Equations Irih Mh. Soc. Bullein 63 (2009), 11 31 11 Applicion of Prüfer Trnformion in he Theory of Ordinry Differenil Equion GEORGE CHAILOS Abrc. Thi ricle i review ricle on he ue of Prüfer Trnformion echnique in

More information

2. The Laplace Transform

2. The Laplace Transform . The Lplce Trnform. Review of Lplce Trnform Theory Pierre Simon Mrqui de Lplce (749-87 French tronomer, mthemticin nd politicin, Miniter of Interior for 6 wee under Npoleon, Preident of Acdemie Frncie

More information

Some Inequalities variations on a common theme Lecture I, UL 2007

Some Inequalities variations on a common theme Lecture I, UL 2007 Some Inequliies vriions on common heme Lecure I, UL 2007 Finbrr Hollnd, Deprmen of Mhemics, Universiy College Cork, fhollnd@uccie; July 2, 2007 Three Problems Problem Assume i, b i, c i, i =, 2, 3 re rel

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

Mon Apr 2: Laplace transform and initial value problems like we studied in Chapter 5

Mon Apr 2: Laplace transform and initial value problems like we studied in Chapter 5 Mah 225-4 Week 2 April 2-6 coninue.-.3; alo cover par of.4-.5, EP 7.6 Mon Apr 2:.-.3 Laplace ranform and iniial value problem like we udied in Chaper 5 Announcemen: Warm-up Exercie: Recall, The Laplace

More information

Mon Apr 9 EP 7.6 Convolutions and Laplace transforms. Announcements: Warm-up Exercise:

Mon Apr 9 EP 7.6 Convolutions and Laplace transforms. Announcements: Warm-up Exercise: Mah 225-4 Week 3 April 9-3 EP 7.6 - convoluions; 6.-6.2 - eigenvalues, eigenvecors and diagonalizabiliy; 7. - sysems of differenial equaions. Mon Apr 9 EP 7.6 Convoluions and Laplace ransforms. Announcemens:

More information

On a Volterra equation of the second kind with incompressible kernel

On a Volterra equation of the second kind with incompressible kernel Jenliyev e l. Advnces in Difference Equions 25 25:7 DOI.86/s3662-5-48-6 R E S E A R C H Open Access On Volerr equion of he second kind wih incompressible kernel Muvshrkhn Jenliyev * Meirmkul Amngliyev

More information

Fractional Calculus. Connor Wiegand. 6 th June 2017

Fractional Calculus. Connor Wiegand. 6 th June 2017 Frcionl Clculus Connor Wiegnd 6 h June 217 Absrc This pper ims o give he reder comforble inroducion o Frcionl Clculus. Frcionl Derivives nd Inegrls re defined in muliple wys nd hen conneced o ech oher

More information