REAL ANALYSIS I HOMEWORK 3. Chapter 1


 Jemimah Gray
 6 years ago
 Views:
Transcription
1 REAL ANALYSIS I HOMEWORK 3 CİHAN BAHRAN The quesions re from Sein nd Shkrchi s e. Chper Prove he following sserion: Every mesurble funcion is he limi.e. of sequence of coninuous funcions. We firs suppose h f : E R is mesurble funcion (finie vlued) wih m(e) <. Then for every n N, by Lusin s heorem here eiss closed se F n E such h m(e F n ) 1/n nd f Fn is coninuous. For ech n N, wrie C n = n k=1 F n nd define g n = f Cn. By he psing lemm every g n is coninuous (he coninuous f Fk s re psed on finiely mny closed ses). Now since ech C n is closed, by he Tieze eension heorem here eiss coninuous funcion h n : E R such h h n Cn = g n. We clim h h n f.e. For, leing B = C n, since C n s re incresing, every B evenully flls in he C n s (h is, here eiss N N such h C n whenever n N); herefore lim n h n () = f(). So h n f on B nd m(e B) = m( (E C n )) m( (E F n )) =.. Show h here eiss closed ses A nd B wih m(a) = m(b) =, bu m(a + B) > : () In R, le A = C (he Cnor se), B = C/. Noe h A + B [, 1]. (b) In R, observe h if A = I {} nd B = {} I (where I = [, 1]), hen A + B = I I. () Le [, 1]. We know h hs ernry epnsion = n 3 n. Then if we define nd n if n 1 b n = oherwise if n = 1 c n = oherwise 1
2 REAL ANALYSIS I HOMEWORK 3 hen we hve = b n 3 n + c n 3 n = b n 3 n + 1 c n 3 n C + C/ since (b n ) nd (c n ) re sequences of s nd s. As ws rbirry bove, we obin [, 1] A + B. Hence m(a + B) 1, bu A nd B re closed ses of mesure zero. (b) Given (, y) I I, (, y) = (, ) + (, y) A + B. So I I A + B nd he reverse coninmen is similr so we hve A + B = I I. Therefore m(a + B) = 1, however boh A nd B cn be covered by recngles of re ε for ny given ε >, herefore m(a) = m(b) =. 1. Prove h here is coninuous funcion h mps Lebesgue mesurble se o nonmesurble se. [Hin: Consider nonmesurble subse of [, 1], nd is inverse imge in C by he funcion F in Eercise.] We know h [, 1] conins nonmesurble se N. So if we le F : C [, 1] o be he funcion in Eercise, since A := F 1 (N ) C, we hve m (A) = nd hence A is mesurble. Bu s F is surjecive, F (A) = N, ye N is no mesurble.. Le χ [,1] be he chrcerisic funcion of [, 1]. Show h here is no everywhere coninuous funcion f on R such h lmos everywhere. f() = χ [,1] () Wrie g = χ [,1] nd suppose such n f eiss. Since g = on se of posiive mesure (nmely R [, 1]), here eiss R such h f() =. Similrly, here eiss b R such h f(b) = 1. WLOG we my ssume < b. Consider he se S = { [, b] : f() = 1}. Firs, S Ø since b S. And S is bounded below from, hence hs n infimum, sy d. So here eiss sequence ( n ) in S such h f( n ) = 1 nd lim n n = d. Since f is coninuous, we ge f(d) = 1. So < d b nd by he definiion of c, for every [, d) we hve f() 1. In similr fshion, if we define c o be he supremum of he se { [, d] : f() = } hen f(c) =, c < d nd for every (c, d] we hve f(). Therefore, 1 / f((c, d)). Bu g is lwys eiher or 1, so is conrdicion. m ({ R : f() g()}) m((c, d)) = d c > 6. Suppose A E B, where A nd B re mesurble ses of finie mesure. Prove h if m(a) = m(b), hen E is mesurble. Noe h m(b) = m(a)+m(b A) nd since m(a) = m(b) < we hve m(b A) =. Now E A B A, so E A is null se nd in priculr mesurble. Thus
3 E = A (E A) is mesurble. REAL ANALYSIS I HOMEWORK Le E be subse of R wih m (E) >. Prove h for ech < α < 1, here eiss n open inervl I so h m (E I) αm (I). Loosely speking, he esime shows h E conins lmos whole inervl. [Hin: Choose n open se O h conins E, nd such h m (E) αm (O). Wrie O s he counble union of disjoin open inervls, nd show h one of hese inervls mus sisfy he desired propery.] Since m (E) > nd 1 α > 1, we hve m (E) < 1 α m (E). So m (E) = inf{m(o) : E Oopen} < 1 α m (E) herefore here eiss n open se O R conining E such h m(o) < 1 α m (E). Wrie O = I n where I n s re disjoin (nonempy) open inervls. Then E = E O = (E I n ) so we ge αm(i n ) = αm(o) < m (E) m (E I n ). Hence he semen for every n N, αm(i n ) m (E I n ) would yield conrdicion. Thus here eiss n N such h αm(i n ) < m (E I n ). 37. Suppose Γ is curve y = f() in R, where f is coninuous. Show h m(γ) =. Noe h since he mp preserves res of recngles, Γ hs he sme mesure wih he curve given by y = f(). Therefore we my ssume f is nonnegive. Also since Γ = {(, f()) : [n, n + 1]} nd mesure is counbly subddiive, i suffices o show h ech erm in he bove union hs mesure zero. Thus we my ssume h f : [, b] R where [, b] R is finie inervl. Moreover by replcing f wih f + 1, we my ssume h f() 1 for every [, b]. Then given < ε < 1, he se E ε = {(, y) : b, f() ε y f() + ε} conins Γ. Bu since f 1 > ε, boh f + ε nd f ε re nonnegive nd coninuous, herefore he mesure of E ε cn be clculed by definie Riemnn inegrl s m(e ε ) = (f() + ε)d (f() ε)d = ε d = ε(b ),
4 REAL ANALYSIS I HOMEWORK 3 4 So m(γ) ε(b ) for rbirrily smll ε. As, b is independen from ε, his shows h m(γ) =. 4. Suppose f is inegrble on [, b], nd Chper f() g() = d for b. Prove h g is inegrble on [, b] nd g()d = f()d. Firs, we show he clim ssuming f is nonnegive. Le E = {(, ) R : < b }. Noe h E is mesurble nd conined in [, b] (, b]. Now define h : [, b] (, b] R (, ) χ E(, )f() which is nonnegive nd mesurble (i is obined by lgebric operions on mesurble funcions). Using Tonelli s heorem we ge he following: firs, for lmos every [, b], he funcion is mesurble. Second, he funcion h : (, b] R [, b] R h(, ) h (,b] is mesurble. Noe h his funcion is nohing bu g becuse f() h = h(, )d = d. (,b] Third, we hve [,b] (,b] h = [,b] g = g()d. Also using Tonelli for he oher vrible, we ge he following: Firs, for lmos every (, b), he funcion is mesurble. Second, he funcion h : [, b] R (, b] R h(, ) h [,b]
5 REAL ANALYSIS I HOMEWORK 3 5 is mesurble. Noe h his funcion is nohing bu f, since Third, we hve Thus we ge [,b] h = [,b] (,b) h(, )d = h = (,b] g()d = f = f() d = f(). f()d. f()d. As f is inegrble on [, b], he inegrl bove is finie; hence g is lso inegrble on [, b]. For he generl cse, le P = { (, b] : f() } nd N = (, b] P nd define f + : (, b] R f() if P if N, f : (, b] R if P f() if N. Observe h f + nd f re inegrble nonnegive funcions such h f = f + f. Now define g + : [, b] R g : [, b] R By he firs pr g +, g re inegrble nd g + ()d = g ()d = f + () d, f () d. f + ()d, f ()d. Observe h g + () = g () = [,b] P [,b] N f() d, f() d.
6 REAL ANALYSIS I HOMEWORK 3 6 Thus f() f() g + () g () = d + d [,b] P [,b] N f() = d = g() [,b] nd hence since everyhing is inegrble we cn do subrcion o ge g()d = = = g + ()d f + ()d f()d <. g ()d f ()d 6. Inegrbiliy of f on R does no necessrily imply he convergence of f() o s. () There eiss posiive coninuous funcion f on R so h f is inegrble on R, bu ye lim sup f() =. (b) However, if we ssume h f is uniformly coninuous on R nd inegrble, hen lim f() =. [Hin: For (), consruc coninuous version of he funcion equl o n on he segmen [n, n + 1/n 3 ), n 1.] () To pch he holes of he hined funcion o eend i o coninuous funcion in nice wy, we use lemm. Lemm 1. Le, b, c, d R such h < b nd c, d >. Then inf f()d f : [, b] R+ is coninuous, f() = c, f(b) = d =. Proof. Le ε > such h ε < min{(b )/, c, d}. Then he funcion f : [, b] R ε c ( ) + c if + ε ε ε if + ε b ε d ε( b) + d if b ε b ε is welldefined, posiive nd coninuous. Is grph looks like he following: So we see h f()d = 1 ε(c ε) + ε(b ) + 1 ε(d ε) Ç c ε = ε + b + d ε å Ç å c + d = ε + b ε ε(c + d + b ).
7 REAL ANALYSIS I HOMEWORK 3 7 y d y = f() c ε + ε b ε b Hence indeed, he inegrl of posiive coninuous funcion f wih f() = c nd f(b) = d cn be mde rbirrily smll. Corollry. Le C be closed subse of R nd f : C R be posiive coninuous funcion. Then given ε >, f cn be eended o posiive coninuous funcion g : R R such h g C f + ε. Proof. Since U := R C is n open subse of R, i is (counble) union of disjoin open inervls, h is, here eiss sequences ( n ), (b n ) such h nd 1 < b 1 < < b < 3 < b 3 < U = ( n, b n ). Therefore ech n nd b n belongs o C. So by he bove proposiion, for every n N here eiss posiive coninuous funcion g n : [ n, b n ] R wih g n ( n ) = f( n ), g n (b n ) = f(b n ) such h g n ε [ n,b n]. n So he funcion is welldefined nd coninuous. And g = = g : R R f() if C g n () if [ n, b n ] C C C g + U f + f + ε. g g n [ n,b n]
8 Now le REAL ANALYSIS I HOMEWORK 3 8 C = ñn, n + 1n ô 3 n= which, being union of uniformly disn closed ses, is closed. And he funcion f : C R n is welldefined nd coninuous, wih f = C n= if î n, n + 1 n 3 ó 1 n n = 1 3 n <. So by he corollry, f cn be eended o coninuous funcion g : R R such h g <, h is, g is inegrble. However, since lim sup f() = we hve lim sup g() =. (b) We prove he conrposiive, h is, ssuming h f is uniformly coninuous nd lim f() we show h f is no inegrble (i follows h f is no inegrble). By uniform coninuiy, here eiss < δ < 1 such h f() f(y) ε/ whenever y < δ. Also since lim f() here eiss 1 such h f( 1 ) ε. Agin since lim f(), we my choose > such h f( ) ε. Then we choose 3 > + 1 such h f( 3 ) ε nd proceed in his wy. Since δ < 1, by our consrucion he collecion of inervls I n := ( n δ, n + δ) s n vries is disjoin. Noe h for fied n, if y I n hen f( n ) f(y) ε/. Bu f( n ) ε, so f(y) ε/ by ringle inequliy. Therefore f f = f ε/ =, In I n s desired. (b) For every k N wrie E k = { R : f() > 1/k}. I suffices o show h ech E k is bounded. Suppose no, h is, for some k he se E k is unbounded. Then we cn find sequence { n } in E k such h n+1 > n + 1 for every n. Now by uniform coninuiy here eiss δ (, 1) such h y < δ implies f() f(y) < 1/k. Noe h he inervls I n := ( n δ, n + δ) re disjoin. And given y I n since f( n ) > 1/k we hve f(y) > 1/k. Thus f conrdicing h f L 1 (R). In f = n= f 1/k =, I n 8. If f is inegrble on R, show h F () = f()d is uniformly coninuous. Given, y R wih y, by ddiiviy of he Lebesgue inegrl we hve f + f = f (,] f()d + y [,y] f()d = (,y] y f()d.
9 REAL ANALYSIS I HOMEWORK 3 9 Since f is inegrble on R, he bove inegrls re ll finie. Therefore we cn perform usul lgebr o ge y f()d = y f()d = F (y) F (). f()d Given ε >, by Proposiion 1.1 pr (ii) in Sein & Shkrchi s e, here eiss δ > such h y y F (y) F () = f()d f() d < ε whenever y < δ (king E = [, y] in he semen of he proposiion). This is precisely uniform coninuiy for F. 11. Prove h if f is inegrble on R d, relvlued, nd E f()d for every mesurble E, hen f().e.. As resul, if E f()d = for every mesurble E, hen f() =.e. Wrie E n = { R d : f() < 1/n}. E n s re mesurble. Noe h { R d : f() < } = E n, So i is enough o show h every E n hs mesure zero. Suppose no, so m(e n ) > for some n. So using he ssumpion on E n, we hve 1 f E n E n n = 1 n m(e n) <, conrdicion. Now le s do he second pr. By he firs pr, we hve f.e. Wriing g = f, since E g = E ( f) = for every mesurble E, gin by he firs pr we deduce h f = g.e. Thus f.e. nd hence f =.e. 1. Show h here re f L 1 (R d ) nd sequence {f n } wih f n L 1 (R d ) such h bu f n () f() for no. f f n L 1. [Hin: In R, le f n = χ In, where I n is n ppropriely chosen sequence of inervls wih m(i n ).] For every n N here eiss unique k, j N such h n + k + j. Noe h k s n. So defining I n = î j, j+1 ó k, by binry epnsions every [, 1] belong k in infiniely mny I n s nd lso every [, 1] belong in he complemen of infiniely mny I n s. So given [, 1], if we define f n = χ In, he limi lim f n () does no eis. However f n = f n = m(i n ) = k s n. So king f = gives couneremple.
INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).
INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely
More informationMathematics 805 Final Examination Answers
. 5 poins Se he Weiersrss Mes. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se
More informationContraction Mapping Principle Approach to Differential Equations
epl Journl of Science echnology 0 (009) 4953 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of
More informatione t dt e t dt = lim e t dt T (1 e T ) = 1
Improper Inegrls There re wo ypes of improper inegrls  hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie
More informationMTH 146 Class 11 Notes
8. Are of Surfce of Revoluion MTH 6 Clss Noes Suppose we wish o revolve curve C round n is nd find he surfce re of he resuling solid. Suppose f( ) is nonnegive funcion wih coninuous firs derivive on he
More information5.1The InitialValue Problems For Ordinary Differential Equations
5.The IniilVlue Problems For Ordinry Differenil Equions Consider solving iniilvlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil
More information3. Renewal Limit Theorems
Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process
More informationENGR 1990 Engineering Mathematics The Integral of a Function as a Function
ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under
More informationA LIMITPOINT CRITERION FOR A SECONDORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES
A LIMITPOINT CRITERION FOR A SECONDORDER LINEAR DIFFERENTIAL OPERATOR j IAN KNOWLES 1. Inroducion Consider he forml differenil operor T defined by el, (1) where he funcion q{) is relvlued nd loclly
More informationConvergence of Singular Integral Operators in Weighted Lebesgue Spaces
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 10, No. 2, 2017, 335347 ISSN 13075543 www.ejpm.com Published by New York Business Globl Convergence of Singulr Inegrl Operors in Weighed Lebesgue
More informationSOLUTIONS TO ASSIGNMENT 2  MATH 355. with c > 3. m(n c ) < δ. f(t) t. g(x)dx =
SOLUTIONS TO ASSIGNMENT 2  MATH 355 Problem. ecall ha, B n {ω [, ] : S n (ω) > nɛ n }, and S n (ω) N {ω [, ] : lim }, n n m(b n ) 3 n 2 ɛ 4. We wan o show ha m(n c ). Le δ >. We can pick ɛ 4 n c n wih
More informationHow to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.
How o Prove he Riemnn Hohesis Auhor: Fez Fok Al Adeh. Presiden of he Srin Cosmologicl Socie P.O.Bo,387,Dmscus,Sri Tels:96377679,735 Emil:hf@scsne.org Commens: 3 ges SubjClss: Funcionl nlsis, comle
More informationf(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2
Impope Inegls To his poin we hve only consideed inegls f() wih he is of inegion nd b finie nd he inegnd f() bounded (nd in fc coninuous ecep possibly fo finiely mny jump disconinuiies) An inegl hving eihe
More informationChapter 4. Lebesgue Integration
4.2. Lebesgue Integrtion 1 Chpter 4. Lebesgue Integrtion Section 4.2. Lebesgue Integrtion Note. Simple functions ply the sme role to Lebesgue integrls s step functions ply to Riemnn integrtion. Definition.
More informationMATH 351 Solutions: TEST 3B 23 April 2018 (revised)
MATH Soluions: TEST B April 8 (revised) Par I [ ps each] Each of he following asserions is false. Give an eplici counereample o illusrae his.. If H: (, ) R is coninuous, hen H is unbounded. Le H() =
More informationa n = 1 58 a n+1 1 = 57a n + 1 a n = 56(a n 1) 57 so 0 a n+1 1, and the required result is true, by induction.
MAS221(21617) Exm Solutions 1. (i) A is () bounded bove if there exists K R so tht K for ll A ; (b) it is bounded below if there exists L R so tht L for ll A. e.g. the set { n; n N} is bounded bove (by
More information4.8 Improper Integrals
4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls
More informationLecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)
Lecture 3 (5.3.2018) (trnslted nd slightly dpted from lecture notes by Mrtin Klzr) Riemnn integrl Now we define precisely the concept of the re, in prticulr, the re of figure U(, b, f) under the grph of
More informationMATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008)
MATH 14 AND 15 FINAL EXAM REVIEW PACKET (Revised spring 8) The following quesions cn be used s review for Mh 14/ 15 These quesions re no cul smples of quesions h will pper on he finl em, bu hey will provide
More informationSome Inequalities variations on a common theme Lecture I, UL 2007
Some Inequliies vriions on common heme Lecure I, UL 2007 Finbrr Hollnd, Deprmen of Mhemics, Universiy College Cork, fhollnd@uccie; July 2, 2007 Three Problems Problem Assume i, b i, c i, i =, 2, 3 re rel
More informationPresentation Problems 5
Presenttion Problems 5 21355 A For these problems, ssume ll sets re subsets of R unless otherwise specified. 1. Let P nd Q be prtitions of [, b] such tht P Q. Then U(f, P ) U(f, Q) nd L(f, P ) L(f, Q).
More informationSeptember 20 Homework Solutions
College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum
More informationHow to prove the Riemann Hypothesis
Scholrs Journl of Phsics, Mhemics nd Sisics Sch. J. Phs. Mh. S. 5; (B:56 Scholrs Acdemic nd Scienific Publishers (SAS Publishers (An Inernionl Publisher for Acdemic nd Scienific Resources *Corresonding
More informationSolutions to Problems from Chapter 2
Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5
More informationThe solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.
[~ o o : o o ill] i 1. Mrices, Vecors, nd GussJordn Eliminion 1 x y = =  z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries
More informationON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX
Journl of Applied Mhemics, Sisics nd Informics JAMSI), 9 ), No. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX MEHMET ZEKI SARIKAYA, ERHAN. SET
More information0 for t < 0 1 for t > 0
8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside
More informationGreen s Functions and Comparison Theorems for Differential Equations on Measure Chains
Green s Funcions nd Comprison Theorems for Differenil Equions on Mesure Chins Lynn Erbe nd Alln Peerson Deprmen of Mhemics nd Sisics, Universiy of NebrskLincoln Lincoln,NE 685880323 lerbe@@mh.unl.edu
More informationMath 61CM  Solutions to homework 9
Mth 61CM  Solutions to homework 9 Cédric De Groote November 30 th, 2018 Problem 1: Recll tht the left limit of function f t point c is defined s follows: lim f(x) = l x c if for ny > 0 there exists δ
More informationT b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.
Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene
More information14. The fundamental theorem of the calculus
4. The funmenl heorem of he clculus V 20 00 80 60 40 20 0 0 0.2 0.4 0.6 0.8 v 400 200 0 0 0.2 0.5 0.8 200 400 Figure : () Venriculr volume for subjecs wih cpciies C = 24 ml, C = 20 ml, C = 2 ml n (b) he
More informationf t f a f x dx By Lin McMullin f x dx= f b f a. 2
Accumulion: Thoughs On () By Lin McMullin f f f d = + The gols of he AP* Clculus progrm include he semen, Sudens should undersnd he definie inegrl s he ne ccumulion of chnge. 1 The Topicl Ouline includes
More informationMotion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.
Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v  vo = Δv Δ ccelerion = = v  vo chnge of velociy elpsed ime Accelerion is vecor, lhough in onedimensionl
More information( ) ( ) ( ) ( ) ( ) ( y )
8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll
More informationMATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.
MATH 409 Advnced Clculus I Lecture 19: Riemnn sums. Properties of integrls. Drboux sums Let P = {x 0,x 1,...,x n } be prtition of n intervl [,b], where x 0 = < x 1 < < x n = b. Let f : [,b] R be bounded
More informationIntegral Transform. Definitions. Function Space. Linear Mapping. Integral Transform
Inegrl Trnsform Definiions Funcion Spce funcion spce A funcion spce is liner spce of funcions defined on he sme domins & rnges. Liner Mpping liner mpping Le VF, WF e liner spces over he field F. A mpping
More informationProperties of the Riemann Integral
Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University Februry 15, 2018 Outline 1 Some Infimum nd Supremum Properties 2
More informationAppendix to Notes 8 (a)
Appendix to Notes 8 () 13 Comprison of the Riemnn nd Lebesgue integrls. Recll Let f : [, b] R be bounded. Let D be prtition of [, b] such tht Let D = { = x 0 < x 1
More informationThe Regulated and Riemann Integrals
Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue
More informationFractional Calculus. Connor Wiegand. 6 th June 2017
Frcionl Clculus Connor Wiegnd 6 h June 217 Absrc This pper ims o give he reder comforble inroducion o Frcionl Clculus. Frcionl Derivives nd Inegrls re defined in muliple wys nd hen conneced o ech oher
More informationFUNDAMENTALS OF REAL ANALYSIS by. III.1. Measurable functions. f 1 (
FUNDAMNTALS OF RAL ANALYSIS by Doğn Çömez III. MASURABL FUNCTIONS AND LBSGU INTGRAL III.. Mesurble functions Hving the Lebesgue mesure define, in this chpter, we will identify the collection of functions
More informationEXERCISE  01 CHECK YOUR GRASP
UNIT # 09 PARABOLA, ELLIPSE & HYPERBOLA PARABOLA EXERCISE  0 CHECK YOUR GRASP. Hin : Disnce beween direcri nd focus is 5. Given (, be one end of focl chord hen oher end be, lengh of focl chord 6. Focus
More informationPhysics 2A HW #3 Solutions
Chper 3 Focus on Conceps: 3, 4, 6, 9 Problems: 9, 9, 3, 41, 66, 7, 75, 77 Phsics A HW #3 Soluions Focus On Conceps 33 (c) The ccelerion due o grvi is he sme for boh blls, despie he fc h he hve differen
More informationAdvanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004
Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when
More information1. Introduction. 1 b b
Journl of Mhemicl Inequliies Volume, Number 3 (007), 45 436 SOME IMPROVEMENTS OF GRÜSS TYPE INEQUALITY N. ELEZOVIĆ, LJ. MARANGUNIĆ AND J. PEČARIĆ (communiced b A. Čižmešij) Absrc. In his pper some inequliies
More informationMAT 266 Calculus for Engineers II Notes on Chapter 6 Professor: John Quigg Semester: spring 2017
MAT 66 Clculus for Engineers II Noes on Chper 6 Professor: John Quigg Semeser: spring 7 Secion 6.: Inegrion by prs The Produc Rule is d d f()g() = f()g () + f ()g() Tking indefinie inegrls gives [f()g
More informationLecture 1. Functional series. Pointwise and uniform convergence.
1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is
More informationChapter Direct Method of Interpolation
Chper 5. Direc Mehod of Inerpolion Afer reding his chper, you should be ble o:. pply he direc mehod of inerpolion,. sole problems using he direc mehod of inerpolion, nd. use he direc mehod inerpolns o
More informationf(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all
3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the
More informationHermiteHadamardFejér type inequalities for convex functions via fractional integrals
Sud. Univ. BeşBolyi Mh. 6(5, No. 3, 355 366 HermieHdmrdFejér ype inequliies for convex funcions vi frcionl inegrls İmd İşcn Asrc. In his pper, firsly we hve eslished Hermie HdmrdFejér inequliy for
More informationMath 554 Integration
Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we
More informationSOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set
SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL 28 Nottion: N {, 2, 3,...}. (Tht is, N.. Let (X, M be mesurble spce with σfinite positive mesure µ. Prove tht there is finite positive mesure ν on (X, M such
More informationW. We shall do so one by one, starting with I 1, and we shall do it greedily, trying
Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)
More informationRiemann is the Mann! (But Lebesgue may besgue to differ.)
Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >
More informationProperties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)
Properies of Logrihms Solving Eponenil nd Logrihmic Equions Properies of Logrihms Produc Rule ( ) log mn = log m + log n ( ) log = log + log Properies of Logrihms Quoien Rule log m = logm logn n log7 =
More informationQuestion 1: Question 2: Topology Exercise Sheet 3
Topology Exercise Shee 3 Prof. Dr. Alessandro Siso Due o 14 March Quesions 1 and 6 are more concepual and should have prioriy. Quesions 4 and 5 admi a relaively shor soluion. Quesion 7 is harder, and you
More informationHamilton J acobi Equation: Weak S olution We continue the study of the HamiltonJacobi equation:
M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon J acobi Equaion: Weak S oluion We coninue he sudy of he HamilonJacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno
More informationwhite strictly far ) fnf regular [ with f fcs)8( hs ) as function Preliminary question jointly speaking does not exist! Brownian : APA Lecture 1.
Am : APA Lecure 13 Brownin moion Preliminry quesion : Wh is he equivlen in coninuous ime of sequence of? iid Ncqe rndom vribles ( n nzn noise ( 4 e Re whie ( ie se every fm ( xh o + nd covrince E ( xrxs
More informationJournal of Mathematical Analysis and Applications. Two normality criteria and the converse of the Bloch principle
J. Mh. Anl. Appl. 353 009) 43 48 Conens liss vilble ScienceDirec Journl of Mhemicl Anlysis nd Applicions www.elsevier.com/loce/jm Two normliy crieri nd he converse of he Bloch principle K.S. Chrk, J. Rieppo
More informationAn integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.
Improper Inegrls To his poin we hve only considered inegrls f(x) wih he is of inegrion nd b finie nd he inegrnd f(x) bounded (nd in fc coninuous excep possibly for finiely mny jump disconinuiies) An inegrl
More informationFRACTIONAL ORNSTEINUHLENBECK PROCESSES
FRACTIONAL ORNSTEINULENBECK PROCESSES Prick Cheridio Deprmen of Mhemics, ET Zürich C89 Zürich, Swizerlnd dio@mh.ehz.ch ideyuki Kwguchi Deprmen of Mhemics, Keio Universiy iyoshi, Yokohm 385, Jpn hide@999.jukuin.keio.c.jp
More informationP441 Analytical Mechanics  I. Coupled Oscillators. c Alex R. Dzierba
Lecure 3 Mondy  Deceber 5, 005 Wrien or ls upded: Deceber 3, 005 P44 Anlyicl Mechnics  I oupled Oscillors c Alex R. Dzierb oupled oscillors  rix echnique In Figure we show n exple of wo coupled oscillors,
More informationON THE OSTROWSKIGRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS
Hceepe Journl of Mhemics nd Sisics Volume 45) 0), 65 655 ON THE OSTROWSKIGRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS M Emin Özdemir, Ahme Ock Akdemir nd Erhn Se Received 6:06:0 : Acceped
More informationANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2
ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER Seion Eerise : Coninuiy of he uiliy funion Le λ ( ) be he monooni uiliy funion defined in he proof of eisene of uiliy funion If his funion is oninuous y hen
More informationSTUDY GUIDE FOR BASIC EXAM
STUDY GUIDE FOR BASIC EXAM BRYON ARAGAM This is prtil list of theorems tht frequently show up on the bsic exm. In mny cses, you my be sked to directly prove one of these theorems or these vrints. There
More informationTheory of the Integral
Spring 2012 Theory of the Integrl Author: Todd Gugler Professor: Dr. Drgomir Sric My 10, 2012 2 Contents 1 Introduction 5 1.0.1 Office Hours nd Contct Informtion..................... 5 1.1 Set Theory:
More informationA product convergence theorem for Henstock Kurzweil integrals
A product convergence theorem for Henstock Kurzweil integrls Prsr Mohnty Erik Tlvil 1 Deprtment of Mthemticl nd Sttisticl Sciences University of Albert Edmonton AB Cnd T6G 2G1 pmohnty@mth.ulbert.c etlvil@mth.ulbert.c
More informationPhil Wertheimer UMD Math Qualifying Exam Solutions Analysis  January, 2015
Problem 1 Let m denote the Lebesgue mesure restricted to the compct intervl [, b]. () Prove tht function f defined on the compct intervl [, b] is Lipschitz if nd only if there is constct c nd function
More informationMAA 4212 Improper Integrals
Notes by Dvid Groisser, Copyright c 1995; revised 2002, 2009, 2014 MAA 4212 Improper Integrls The Riemnn integrl, while perfectly welldefined, is too restrictive for mny purposes; there re functions which
More informationApplication on Inner Product Space with. Fixed Point Theorem in Probabilistic
Journl of Applied Mhemics & Bioinformics, vol.2, no.2, 2012, 110 ISSN: 17926602 prin, 17926939 online Scienpress Ld, 2012 Applicion on Inner Produc Spce wih Fixed Poin Theorem in Probbilisic Rjesh Shrivsv
More informationProbability, Estimators, and Stationarity
Chper Probbiliy, Esimors, nd Sionriy Consider signl genered by dynmicl process, R, R. Considering s funcion of ime, we re opering in he ime domin. A fundmenl wy o chrcerize he dynmics using he ime domin
More informationLAPLACE TRANSFORMS. 1. Basic transforms
LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming
More information4 Sequences of measurable functions
4 Sequences of measurable funcions 1. Le (Ω, A, µ) be a measure space (complee, afer a possible applicaion of he compleion heorem). In his chaper we invesigae relaions beween various (nonequivalen) convergences
More informationAverage & instantaneous velocity and acceleration Motion with constant acceleration
Physics 7: Lecure Reminders Discussion nd Lb secions sr meeing ne week Fill ou Pink dd/drop form if you need o swich o differen secion h is FULL. Do i TODAY. Homework Ch. : 5, 7,, 3,, nd 6 Ch.: 6,, 3 Submission
More information7.2 Riemann Integrable Functions
7.2 Riemnn Integrble Functions Theorem 1. If f : [, b] R is step function, then f R[, b]. Theorem 2. If f : [, b] R is continuous on [, b], then f R[, b]. Theorem 3. If f : [, b] R is bounded nd continuous
More informationGENERALIZATION OF SOME INEQUALITIES VIA RIEMANNLIOUVILLE FRACTIONAL CALCULUS
 TAMKANG JOURNAL OF MATHEMATICS Volume 5, Number, 75, June doi:5556/jkjm555 Avilble online hp://journlsmhkueduw/    GENERALIZATION OF SOME INEQUALITIES VIA RIEMANNLIOUVILLE FRACTIONAL CALCULUS MARCELA
More information1.0 Electrical Systems
. Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,
More informationChapter 2. Motion along a straight line. 9/9/2015 Physics 218
Chper Moion long srigh line 9/9/05 Physics 8 Gols for Chper How o describe srigh line moion in erms of displcemen nd erge elociy. The mening of insnneous elociy nd speed. Aerge elociy/insnneous elociy
More informationarxiv: v1 [math.pr] 24 Sep 2015
RENEWAL STRUCTURE OF THE BROWNIAN TAUT STRING EMMANUEL SCHERTZER rxiv:59.7343v [mh.pr] 24 Sep 25 Absrc. In recen pper [LS5], M. Lifshis nd E. Seerqvis inroduced he u sring of Brownin moion w, defined s
More informationThe RiemannLebesgue Lemma
Physics 215 Winter 218 The RiemnnLebesgue Lemm The Riemnn Lebesgue Lemm is one of the most importnt results of Fourier nlysis nd symptotic nlysis. It hs mny physics pplictions, especilly in studies of
More information23.5. HalfRange Series. Introduction. Prerequisites. Learning Outcomes
HalfRange Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion
More informationRefinements to Hadamard s Inequality for LogConvex Functions
Alied Mhemics 89993 doi:436/m7 Pulished Online Jul (h://wwwscirporg/journl/m) Refinemens o Hdmrd s Ineuli for LogConvex Funcions Asrc Wdllh T Sulimn Dermen of Comuer Engineering College of Engineering
More information1 Sets Functions and Relations Mathematical Induction Equivalence of Sets and Countability The Real Numbers...
Contents 1 Sets 1 1.1 Functions nd Reltions....................... 3 1.2 Mthemticl Induction....................... 5 1.3 Equivlence of Sets nd Countbility................ 6 1.4 The Rel Numbers..........................
More informationThe HenstockKurzweil integral
fculteit Wiskunde en Ntuurwetenschppen The HenstockKurzweil integrl Bchelorthesis Mthemtics June 2014 Student: E. vn Dijk First supervisor: Dr. A.E. Sterk Second supervisor: Prof. dr. A. vn der Schft
More informationExample on p. 157
Example 2.5.3. Le where BV [, 1] = Example 2.5.3. on p. 157 { g : [, 1] C g() =, g() = g( + ) [, 1), var (g) = sup g( j+1 ) g( j ) he supremum is aken over all he pariions of [, 1] (1) : = < 1 < < n =
More information1 i n x i x i 1. Note that kqk kp k. In addition, if P and Q are partition of [a, b], P Q is finer than both P and Q.
Chpter 6 Integrtion In this chpter we define the integrl. Intuitively, it should be the re under curve. Not surprisingly, fter mny exmples, counter exmples, exceptions, generliztions, the concept of the
More informationMagnetostatics Bar Magnet. Magnetostatics Oersted s Experiment
Mgneosics Br Mgne As fr bck s 4500 yers go, he Chinese discovered h cerin ypes of iron ore could rc ech oher nd cerin mels. Iron filings "mp" of br mgne s field Crefully suspended slivers of his mel were
More informationt is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...
Mah 228 Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger
More informationHomework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.
Homework 4 (1) If f R[, b], show tht f 3 R[, b]. If f + (x) = mx{f(x), 0}, is f + R[, b]? Justify your nswer. (2) Let f be continuous function on [, b] tht is strictly positive except finitely mny points
More informationEXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECONDORDER ITERATIVE BOUNDARYVALUE PROBLEM
Elecronic Journl of Differenil Equions, Vol. 208 (208), No. 50, pp. 6. ISSN: 072669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECONDORDER ITERATIVE
More informationNotes on length and conformal metrics
Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued
More informationMinimum Squared Error
Minimum Squred Error LDF: Minimum SquredError Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples
More information22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak
.65, MHD Theory of Fusion Sysems Prof. Freidberg Lecure 9: The High e Tokmk Summry of he Properies of n Ohmic Tokmk. Advnges:. good euilibrium (smll shif) b. good sbiliy ( ) c. good confinemen ( τ nr )
More informationFM Applications of Integration 1.Centroid of Area
FM Applicions of Inegrion.Cenroid of Are The cenroid of ody is is geomeric cenre. For n ojec mde of uniform meril, he cenroid coincides wih he poin which he ody cn e suppored in perfecly lnced se ie, is
More informationSolutions from Chapter 9.1 and 9.2
Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is
More informationThis is a short summary of Lebesgue integration theory, which will be used in the course.
3 Chpter 0 ntegrtion theory This is short summry of Lebesgue integrtion theory, which will be used in the course. Fct 0.1. Some subsets (= delmängder E R = (, re mesurble (= mätbr in the Lebesgue sense,
More informationTransforms II  Wavelets Preliminary version please report errors, typos, and suggestions for improvements
EECS 3 Digil Signl Processing Universiy of Cliforni, Berkeley: Fll 007 Gspr November 4, 007 Trnsforms II  Wveles Preliminry version plese repor errors, ypos, nd suggesions for improvemens We follow n
More informationEntrance Exam, Real Analysis September 1, 2009 Solve exactly 6 out of the 8 problems. Compute the following and justify your computation: lim
1. Let n be positive integers. ntrnce xm, Rel Anlysis September 1, 29 Solve exctly 6 out of the 8 problems. Sketch the grph of the function f(x): f(x) = lim e x2n. Compute the following nd justify your
More informationREAL ANALYSIS I HOMEWORK 4
REAL ANALYSIS I HOMEWORK 4 CİHAN BAHRAN The questions are from Stein and Shakarchi s text, Chapter 2.. Given a collection of sets E, E 2,..., E n, construct another collection E, E 2,..., E N, with N =
More informationBipartite Matching. Matching. Bipartite Matching. Maxflow Formulation
Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,
More information