1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #3: Hydraulic Head and Fluid Potential. p o. p o + p

Size: px
Start display at page:

Download "1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #3: Hydraulic Head and Fluid Potential. p o. p o + p"

Transcription

1 1.7, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #3: Hydraulc Head and Flud Potental What makes water flow? Consder ressure Water Level o A Water Level C o o + B Pressure at A atmosherc ( o ) Pressure at B > atmosherc ( o + ) Pressure at C atmosherc ( o ) But flow s not from A to B to C. Flow s not down ressure gradent. Hubbert (1940) Potental A hyscal quantty caable of measurement at every ont n a flow system, whose roertes are such that flow always occurs from regons n whch the quantty has less hgher values to those n whch t has lower values regardless of the drecton n sace. Examles: Heat conducts from hgh temerature to low temerature Temerature s a otental Electrcty flows from hgh voltage to low voltage Voltage s a otental Flud otental and hydraulc head Fluds flow from hgh to low flud otental Flow drecton s away from locaton where mechancal energy er unt mass of flud s hgh to where t s low. How does ths relate to measurable quantty? Prof. Charles Harvey Page 1 of 9

2 Groundwater flow s a mechancal rocess forces drvng flud must overcome frctonal forces between orous meda and flud. (generates thermal energy) Work mechancal energy er unt mass requred to move a flud from ont z to ont z. Elevaton: z Pressure: Velocty: v Densty: ρ Volume: V Elevaton: z0 Pressure: o Velocty: v o Densty: ρ o Volume: V o z z Flud otental s mechancal energy er unt mass work to move unt mass Prof. Charles Harvey Page of 9

3 Whch way does water flow (functon of Z and P)? h 1 h 1 h Q h Q z z 1 z 1 z h 1 h 1 h h Q Q z 1 z z 1 z Flud otental s the mechancal energy er unt mass of flud otental at z flud otental at datum + work from z to z. The work to move a unt mass of water has three comonents: 1) Work to lft the mass (where z 0) w mgz' ) Work to accelerate flud from v0 to v mv w 3) Work to rase flud ressure from o to V w 3 Vd m d m d m o o o Prof. Charles Harvey Page 3 of 9

4 Note that a unt mass of flud occues a volume V 1/ρ The Flud Potental (the mechancal energy er unt mass, m1) φ gz + v + d + o φ gz + v + 0 for ncomressble flud (ρ s constant) Ths term s almost always unmortant n groundwater flow, wth the ossble exceton of where the flow s very fast, and Darcy s Law begns to break down. How does otental relate to the level n a e? At a measurement ont ressure s descrbed by: P ρ g(deth) + o ρ gϕ + o ρ g(h-z) + o ϕ z h Return to flud otental equaton 0 φ gz + v + Neglect velocty (knetc) term, and substtute for So, ρ g ( h z ) φ gz + ρ φ gh or h φ / g Thus, head h s a flud otental. Prof. Charles Harvey Page 4 of 9

5 Flow s always from hgh h to low h. H s energy er unt weght. H s drectly measurable, the heght of water above some ont. h z + ϕ Thermal Potental ϕ t Thermal Potental Temerature can be an mortant drvng force for groundwater and sol mosture. Volcanc regons Dee groundwater Nuclear waste dsosal Can cause heat flow and also drve water. Chemcal Potental Adsorton Potental Total Potental s the sum of these, but for saturated condtons for our ntal cases we wll have: ϕ ϕ g + ϕ q * L 1 h T L l l L 3 c l Dervaton of the Groundwater Flow Equaton Darcy s Law n 3D Homogeneous vs. Heterogeneous Isotroc vs. Ansotroc Isotroy Havng the same value n all drectons. s a scalar. h h q x q y q z x y Ansotroc havng drectonal roertes. s really a tensor n 3D Gradent Flow The value that converts one vector to another vector s a tensor. Prof. Charles Harvey Page 5 of 9

6 q x xx x xy y xz q y yx x yy y yz x y qz zx zy z zz The frst ndex s the drecton of flow The second ndex s the gradent drecton Interretaton - xx s a coeffcent along the x-drecton that contrbutes a comonent of flux along the x-axs due to the coeffcent along the z-drecton that contrbutes a comonent of flux along the z-axs due to the comonent of the gradent n the y-drecton. The conductvty ellse (ansotroc vs. sotroc) y yy Flow y yy Flow xx xx Gradent Gradent x x If yy xx then the meda s sotroc and ellse s a crcle. It s convenent to descrbe Darcy s law as: r q h Where s called del and s a gradent oerator, so h s the gradent n all three drectons (n 3D). s a matrx. Prof. Charles Harvey Page 6 of 9

7 q x q y q z xx xy xz yx yy yz zx zy zz x y The magntudes of n conductvtes. the rncal drectons are known as the rncal If the coordnate axes are algned wth the rncal drectons of the conductvty tensor then the cross-terms dro out gvng: q x xx x q y yy y q z zz Prof. Charles Harvey Page 7 of 9

8 Effectve Hydraulc Conductvty H tot Q 1 Q tot Q L tot Q 3 Q 4 Q tot Q 1 + Q + Q 3 + Q 4 H L 1 1 H n H L tot eff H H H + L + L L 4 L n eff n L 4 L Prof. Charles Harvey Page 8 of 9

9 Q H 1 H H tot L tot H 3 H 4 H tot H 1 + H + H 3 + H 4 H tot H 1 H H q 3 eff 1 3 H 4 4 Ltot L 1 L L 3 L 4 n ql tot ql L eff eff n L n Prof. Charles Harvey Page 9 of 9

THERMODYNAMICS. Temperature

THERMODYNAMICS. Temperature HERMODYNMICS hermodynamcs s the henomenologcal scence whch descrbes the behavor of macroscoc objects n terms of a small number of macroscoc arameters. s an examle, to descrbe a gas n terms of volume ressure

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

Convection Heat Transfer. Textbook: Convection Heat Transfer. Reference: Convective Heat and Mass Transfer. Convection Heat Transfer

Convection Heat Transfer. Textbook: Convection Heat Transfer. Reference: Convective Heat and Mass Transfer. Convection Heat Transfer Convecton Heat Transfer Tetbook: Convecton Heat Transfer Adran Bean, John Wley & Sons Reference: Convectve Heat and Mass Transfer Kays, Crawford, and Wegand, McGraw-Hll Convecton Heat Transfer Vedat S.

More information

NEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system).

NEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system). EWTO S LAWS Consder two partcles. 1 1. If 1 0 then 0 wth p 1 m1v. 1 1 2. 1.. 3. 11 These laws only apply when vewed from an nertal coordnate system (unaccelerated system). consder a collecton of partcles

More information

Solutions to Problem Set 6

Solutions to Problem Set 6 Solutons to Problem Set 6 Problem 6. (Resdue theory) a) Problem 4.7.7 Boas. n ths problem we wll solve ths ntegral: x sn x x + 4x + 5 dx: To solve ths usng the resdue theorem, we study ths complex ntegral:

More information

Adsorption: A gas or gases from a mixture of gases or a liquid (or liquids) from a mixture of liquids is bound physically to the surface of a solid.

Adsorption: A gas or gases from a mixture of gases or a liquid (or liquids) from a mixture of liquids is bound physically to the surface of a solid. Searatons n Chemcal Engneerng Searatons (gas from a mxture of gases, lquds from a mxture of lquds, solds from a soluton of solds n lquds, dssolved gases from lquds, solvents from gases artally/comletely

More information

Macroscopic Momentum Balances

Macroscopic Momentum Balances Lecture 13 F. Morrson CM3110 2013 10/22/2013 CM3110 Transport I Part I: Flud Mechancs Macroscopc Momentum Balances Professor Fath Morrson Department of Chemcal Engneerng Mchgan Technologcal Unersty 1 Macroscopc

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs hyscs 151 Lecture Canoncal Transformatons (Chater 9) What We Dd Last Tme Drect Condtons Q j Q j = = j, Q, j, Q, Necessary and suffcent j j for Canoncal Transf. = = j Q, Q, j Q, Q, Infntesmal CT

More information

CHAPTER 7 ENERGY BALANCES SYSTEM SYSTEM. * What is energy? * Forms of Energy. - Kinetic energy (KE) - Potential energy (PE) PE = mgz

CHAPTER 7 ENERGY BALANCES SYSTEM SYSTEM. * What is energy? * Forms of Energy. - Kinetic energy (KE) - Potential energy (PE) PE = mgz SYSTM CHAPTR 7 NRGY BALANCS 1 7.1-7. SYSTM nergy & 1st Law of Thermodynamcs * What s energy? * Forms of nergy - Knetc energy (K) K 1 mv - Potental energy (P) P mgz - Internal energy (U) * Total nergy,

More information

Homogeneous model: Horizontal pipe and horizontal well. Flow loops can't duplicate field conditions. Daniel D. Joseph. April 2001

Homogeneous model: Horizontal pipe and horizontal well. Flow loops can't duplicate field conditions. Daniel D. Joseph. April 2001 Homogeneous model of producton of heavy ol through horzontal ppelnes and wells based on the Naver-Stokes equatons n the ppelne or the well and Darcy's law n the reservor Homogeneous model: Danel D. Joseph

More information

6. Hamilton s Equations

6. Hamilton s Equations 6. Hamlton s Equatons Mchael Fowler A Dynamcal System s Path n Confguraton Sace and n State Sace The story so far: For a mechancal system wth n degrees of freedom, the satal confguraton at some nstant

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Chapter 3 The Kinetic Theory of Gases 3.1. Ideal Gases Experimental Laws and the Equation of State

Chapter 3 The Kinetic Theory of Gases 3.1. Ideal Gases Experimental Laws and the Equation of State Chater 3 The Knetc Theory of Gases 3.1. Ideal Gases 3.1.1. Exermental Laws and the Equaton of State 3.1.2. Molecular Model of an Ideal Gas 3.3. Mean Free Path 3.4. The Boltzmann Dstrbuton Law and The Dstrbuton

More information

A. H. Hall, 33, 35 &37, Lendoi

A. H. Hall, 33, 35 &37, Lendoi 7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9

More information

Lecture # 02: Pressure measurements and Measurement Uncertainties

Lecture # 02: Pressure measurements and Measurement Uncertainties AerE 3L & AerE343L Lecture Notes Lecture # 0: Pressure measurements and Measurement Uncertantes Dr. Hu H Hu Deartment of Aerosace Engneerng Iowa State Unversty Ames, Iowa 500, U.S.A Mechancal Pressure

More information

From Newton s 2 nd Law: v v. The time rate of change of the linear momentum of a particle is equal to the net force acting on the particle.

From Newton s 2 nd Law: v v. The time rate of change of the linear momentum of a particle is equal to the net force acting on the particle. From Newton s 2 nd Law: F ma d dm ( ) m dt dt F d dt The tme rate of change of the lnear momentum of a artcle s equal to the net force actng on the artcle. Conseraton of Momentum +x The toy rocket n dee

More information

Recitation: Energy, Phys Energies. 1.2 Three stones. 1. Energy. 1. An acorn falling from an oak tree onto the sidewalk.

Recitation: Energy, Phys Energies. 1.2 Three stones. 1. Energy. 1. An acorn falling from an oak tree onto the sidewalk. Rectaton: Energy, Phys 207. Energy. Energes. An acorn fallng from an oak tree onto the sdewalk. The acorn ntal has gravtatonal potental energy. As t falls, t converts ths energy to knetc. When t hts the

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Sprng 2017 Exam 1 NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q

More information

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017 17/0/017 Lecture 16 (Refer the text boo CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlnes) Knematcs of Fluds Last class, we started dscussng about the nematcs of fluds. Recall the Lagrangan and Euleran

More information

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property. Unt Eght Calculatons wth Entropy Mechancal Engneerng 370 Thermodynamcs Larry Caretto October 6, 010 Outlne Quz Seven Solutons Second law revew Goals for unt eght Usng entropy to calculate the maxmum work

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

Mathematical Modeling of a Lithium Ion Battery

Mathematical Modeling of a Lithium Ion Battery Ecert from the Proceedngs of the COMSOL Conference 9 Boston Mathematcal Modelng of a Lthum Ion Battery Long Ca and Ralh E. Whte * Deartment of Chemcal Engneerng Unversty of South Carolna *Corresondng author:

More information

Lecture 3 Examples and Problems

Lecture 3 Examples and Problems Lecture 3 Examles and Problems Mechancs & thermodynamcs Equartton Frst Law of Thermodynamcs Ideal gases Isothermal and adabatc rocesses Readng: Elements Ch. 1-3 Lecture 3, 1 Wllam Thomson (1824 1907) a.k.a.

More information

The Dirac Equation for a One-electron atom. In this section we will derive the Dirac equation for a one-electron atom.

The Dirac Equation for a One-electron atom. In this section we will derive the Dirac equation for a one-electron atom. The Drac Equaton for a One-electron atom In ths secton we wll derve the Drac equaton for a one-electron atom. Accordng to Ensten the energy of a artcle wth rest mass m movng wth a velocty V s gven by E

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding. Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lecture 22 Canoncal Transformatons (Chater 9) What We Dd Last Tme Drect Condtons Q j Q j = = j P, Q, P j, P Q, P Necessary and suffcent P j P j for Canoncal Transf. = = j Q, Q, P j

More information

ME 440 Aerospace Engineering Fundamentals

ME 440 Aerospace Engineering Fundamentals Fall 006 ME 440 Aerosace Engneerng Fundamentals roulson hrust Jet Engne F m( & Rocket Engne F m & F ρ A - n ) ρ A he basc rncle nsde the engne s to convert the ressure and thermal energy of the workng

More information

11. Dynamics in Rotating Frames of Reference

11. Dynamics in Rotating Frames of Reference Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

More information

CHEMICAL REACTIONS AND DIFFUSION

CHEMICAL REACTIONS AND DIFFUSION CHEMICAL REACTIONS AND DIFFUSION A.K.A. NETWORK THERMODYNAMICS BACKGROUND Classcal thermodynamcs descrbes equlbrum states. Non-equlbrum thermodynamcs descrbes steady states. Network thermodynamcs descrbes

More information

ROTATIONAL MOTION. dv d F m m V v dt dt. i i i cm i

ROTATIONAL MOTION. dv d F m m V v dt dt. i i i cm i ROTATIONAL MOTION Consder a collecton of partcles, m, located at R relatve to an nertal coordnate system. As before wrte: where R cm locates the center of mass. R Rcm r Wrte Newton s second law for the

More information

ESCI 341 Atmospheric Thermodynamics Lesson 6 Thermodynamic Processes

ESCI 341 Atmospheric Thermodynamics Lesson 6 Thermodynamic Processes ESCI 341 Atmosherc Thermodynamcs Lesson 6 Thermodynamc Processes Reerences: An Introducton to Atmosherc Thermodynamcs, Tsons Introducton to Theoretcal Meteorology, Hess Physcal Chemstry (4 th edton), Lene

More information

σ τ τ τ σ τ τ τ σ Review Chapter Four States of Stress Part Three Review Review

σ τ τ τ σ τ τ τ σ Review Chapter Four States of Stress Part Three Review Review Chapter Four States of Stress Part Three When makng your choce n lfe, do not neglect to lve. Samuel Johnson Revew When we use matrx notaton to show the stresses on an element The rows represent the axs

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

Programming Project 1: Molecular Geometry and Rotational Constants

Programming Project 1: Molecular Geometry and Rotational Constants Programmng Project 1: Molecular Geometry and Rotatonal Constants Center for Computatonal Chemstry Unversty of Georga Athens, Georga 30602 Summer 2012 1 Introducton Ths programmng project s desgned to provde

More information

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles. » ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Physics 114 Exam 2 Fall 2014 Solutions. Name: Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,

More information

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018 MATH 5630: Dscrete Tme-Space Model Hung Phan, UMass Lowell March, 08 Newton s Law of Coolng Consder the coolng of a well strred coffee so that the temperature does not depend on space Newton s law of collng

More information

Electrostatic Potential from Transmembrane Currents

Electrostatic Potential from Transmembrane Currents Electrostatc Potental from Transmembrane Currents Let s assume that the current densty j(r, t) s ohmc;.e., lnearly proportonal to the electrc feld E(r, t): j = σ c (r)e (1) wth conductvty σ c = σ c (r).

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

Solutions for Euler and Navier-Stokes Equations in Powers of Time

Solutions for Euler and Navier-Stokes Equations in Powers of Time Solutons for Euler and Naver-Stokes Equatons n Powers of Tme Valdr Montero dos Santos Godo valdr.msgodo@gmal.com Abstract We present a soluton for the Euler and Naver-Stokes equatons for ncompressble case

More information

( ) 2 ( ) ( ) Problem Set 4 Suggested Solutions. Problem 1

( ) 2 ( ) ( ) Problem Set 4 Suggested Solutions. Problem 1 Problem Set 4 Suggested Solutons Problem (A) The market demand functon s the soluton to the followng utlty-maxmzaton roblem (UMP): The Lagrangean: ( x, x, x ) = + max U x, x, x x x x st.. x + x + x y x,

More information

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Blucher Mechancal Engneerng Proceedngs May 0, vol., num. www.proceedngs.blucher.com.br/evento/0wccm STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Takahko Kurahash,

More information

From Biot-Savart Law to Divergence of B (1)

From Biot-Savart Law to Divergence of B (1) From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

More information

Solutions to Exercises in Astrophysical Gas Dynamics

Solutions to Exercises in Astrophysical Gas Dynamics 1 Solutons to Exercses n Astrophyscal Gas Dynamcs 1. (a). Snce u 1, v are vectors then, under an orthogonal transformaton, u = a j u j v = a k u k Therefore, u v = a j a k u j v k = δ jk u j v k = u j

More information

Poisson brackets and canonical transformations

Poisson brackets and canonical transformations rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order

More information

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G y G Y 87 y Y 8 Y - $ X ; ; y y q 8 y $8 $ $ $ G 8 q < 8 6 4 y 8 7 4 8 8 < < y 6 $ q - - y G y G - Y y y 8 y y y Y Y 7-7- G - y y y ) y - y y y y - - y - y 87 7-7- G G < G y G y y 6 X y G y y y 87 G

More information

Linear Momentum and Collisions

Linear Momentum and Collisions Lnear Momentum and Collsons Chater 9 Lnear Momentum [kg m/s] x y mv x mv y Newton s nd Law n terms o momentum: Imulse I - [kg m/s] I t t Fdt I = area under curve bounded by t axs Imulse-Momentum Theorem

More information

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS I Main Topics A Why deal with tensors? B Order of scalars, vectors, and tensors C Linear transformation of scalars and vectors (and tensors) II Why

More information

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1 A mass s attached to a long, massless rod. The mass s close to one end of the rod. Is t easer to balance the rod on end wth the mass near the top or near the bottom? Hnt: Small α means sluggsh behavor

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013 Lagrange Multplers Monday, 5 September 013 Sometmes t s convenent to use redundant coordnates, and to effect the varaton of the acton consstent wth the constrants va the method of Lagrange undetermned

More information

Linear system of the Schrödinger equation Notes on Quantum Mechanics

Linear system of the Schrödinger equation Notes on Quantum Mechanics Lnear sstem of the Schrödnger equaton Notes on Quantum Mechancs htt://quantum.bu.edu/notes/quantummechancs/lnearsstems.df Last udated Wednesda, October 9, 003 :0:08 Corght 003 Dan Dll (dan@bu.edu) Deartment

More information

Lecture 3 Electrostatic effects November 6, 2009

Lecture 3 Electrostatic effects November 6, 2009 The stablty of thn (soft) flms Lecture 3 Electrostatc effects November 6, 009 Ian Morrson 009 Revew of Lecture The dsjonng pressure s a jump n pressure at the boundary. It does not vary between the plates.

More information

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort - 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Physics 111: Mechanics Lecture 11

Physics 111: Mechanics Lecture 11 Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 Rgd-Body Rotaton

More information

Physics 1202: Lecture 11 Today s Agenda

Physics 1202: Lecture 11 Today s Agenda Physcs 122: Lecture 11 Today s Agenda Announcements: Team problems start ths Thursday Team 1: Hend Ouda, Mke Glnsk, Stephane Auger Team 2: Analese Bruder, Krsten Dean, Alson Smth Offce hours: Monday 2:3-3:3

More information

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16 0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 9-3, 5-6. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03 -- Lecture 7 0/4/03

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potential Energy and Conservation of Energy CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information

Darcy s law in 3-D. K * xx K * yy K * zz

Darcy s law in 3-D. K * xx K * yy K * zz PART 7 Equations of flow Darcy s law in 3-D Specific discarge (vector) is calculated by multiplying te ydraulic conductivity (second-order tensor) by te ydraulic gradient (vector). We obtain a general

More information

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

More information

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD Ákos Jósef Lengyel, István Ecsed Assstant Lecturer, Professor of Mechancs, Insttute of Appled Mechancs, Unversty of Mskolc, Mskolc-Egyetemváros,

More information

> To construct a potential representation of E and B, you need a vector potential A r, t scalar potential ϕ ( F,t).

> To construct a potential representation of E and B, you need a vector potential A r, t scalar potential ϕ ( F,t). MIT Departent of Chestry p. 54 5.74, Sprng 4: Introductory Quantu Mechancs II Instructor: Prof. Andre Tokakoff Interacton of Lght wth Matter We want to derve a Haltonan that we can use to descrbe the nteracton

More information

Physics 114 Exam 2 Spring Name:

Physics 114 Exam 2 Spring Name: Physcs 114 Exam Sprng 013 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red wth the amount beng

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

In this section is given an overview of the common elasticity models.

In this section is given an overview of the common elasticity models. Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp

More information

Modeling heat flow across material interfaces and cracks using the material point method

Modeling heat flow across material interfaces and cracks using the material point method Comutatonal Partcle Mechancs manuscrt No. (wll be nserted by the edtor) Modelng heat flow across materal nterfaces and cracks usng the materal ont method John A. Narn Acceted: July 18 Abstract Heat conducton

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total).

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total). CHEMISTRY 123-07 Mdterm #2 answer key November 04, 2010 Statstcs: Average: 68 p (68%); Hghest: 91 p (91%); Lowest: 37 p (37%) Number of students performng at or above average: 58 (53%) Number of students

More information

Normally, in one phase reservoir simulation we would deal with one of the following fluid systems:

Normally, in one phase reservoir simulation we would deal with one of the following fluid systems: TPG4160 Reservor Smulaton 2017 page 1 of 9 ONE-DIMENSIONAL, ONE-PHASE RESERVOIR SIMULATION Flud systems The term sngle phase apples to any system wth only one phase present n the reservor In some cases

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR 5.0, Prncples of Inorganc Chemstry II MIT Department of Chemstry Lecture 3: Vbratonal Spectroscopy and the IR Vbratonal spectroscopy s confned to the 00-5000 cm - spectral regon. The absorpton of a photon

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q For orthogonal curvlnear coordnates, eˆ grad a a= ( aˆ ˆ e). h q (98) Expandng the dervatve, we have, eˆ aˆ ˆ e a= ˆ ˆ a h e + q q 1 aˆ ˆ ˆ a e = ee ˆˆ ˆ + e. h q h q Now expandng eˆ / q (some of the detals

More information

Physics 207 Lecture 13. Lecture 13

Physics 207 Lecture 13. Lecture 13 Physcs 07 Lecture 3 Goals: Lecture 3 Chapter 0 Understand the relatonshp between moton and energy Defne Potental Energy n a Hooke s Law sprng Develop and explot conservaton of energy prncple n problem

More information

' Liberty and Umou Ono and Inseparablo "

' Liberty and Umou Ono and Inseparablo 3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <

More information

MASS TRANSFER Lesson 1 BY DR. ARI SEPPÄLÄ AALTO UNIVERSITY

MASS TRANSFER Lesson 1 BY DR. ARI SEPPÄLÄ AALTO UNIVERSITY SS TRNSFER 2015 Lesson 1 BY DR. RI SEPPÄLÄ LTO UNIVERSITY Structure of the course 6 lessons by r Seälä and Tuula Noonen 5 excercse lessons (one homework roblem n each excercse) by Votto Kotaho (1/6 onts)

More information

Introduction to Turbulence Modeling

Introduction to Turbulence Modeling Introducton to Turbulence Modelng Professor Ismal B. Celk West Vrgna nversty Ismal.Celk@mal.wvu.edu CFD Lab. - West Vrgna nversty I-1 Introducton to Turbulence CFD Lab. - West Vrgna nversty I-2 Introducton

More information

Bulk Air Flow in a Duct. Hoods and Local Exhaust Ventilation. Inside a ventilation system. System Nomenclature

Bulk Air Flow in a Duct. Hoods and Local Exhaust Ventilation. Inside a ventilation system. System Nomenclature Bulk Ar Flow n a Duct Hoods and Local Exhaust Ventlaton Essental pressure and low relatonshps Ar movement always ollows the pressure gradent Flow goes rom hgher (abs) pressure to lower (abs) pressure regons

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html

More information

General Physics I. Lecture 10: Rolling Motion and Angular Momentum.

General Physics I. Lecture 10: Rolling Motion and Angular Momentum. General Physics I Lecture 10: Rolling Motion and Angular Momentum Prof. WAN, Xin (万歆) 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Rolling motion of a rigid object: center-of-mass motion

More information

12. Stresses and Strains

12. Stresses and Strains 12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM - Formulation Classification of Problems Scalar Vector 1-D T(x) u(x)

More information

RIGID BODY MOTION. Next, we rotate counterclockwise about ξ by angle. Next we rotate counterclockwise about γ by angle to get the final set (x,y z ).

RIGID BODY MOTION. Next, we rotate counterclockwise about ξ by angle. Next we rotate counterclockwise about γ by angle to get the final set (x,y z ). RGD BODY MOTON We now consder the moton of rgd bodes. The frst queston s what coordnates are needed to specf the locaton and orentaton of such an object. Clearl 6 are needed 3 to locate a partcular pont

More information

Order parameters of crystals in LAMMPS

Order parameters of crystals in LAMMPS Order parameters of crystals n LAMMPS Aula Tegar Wcaksono Department of Materals Engneerng, The Unversty of Brtsh Columba tegar@alumn.ubc.ca Wrtten on: July 19, 015 Abstract To dentfy atoms n a bcrystal

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors Pont cloud to pont cloud rgd transformatons Russell Taylor 600.445 1 600.445 Fall 000-015 Mnmzng Rgd Regstraton Errors Typcally, gven a set of ponts {a } n one coordnate system and another set of ponts

More information

PHYSICS 231 Lecture 18: equilibrium & revision

PHYSICS 231 Lecture 18: equilibrium & revision PHYSICS 231 Lecture 18: equlbrum & revson Remco Zegers Walk-n hour: Thursday 11:30-13:30 am Helproom 1 gravtaton Only f an object s near the surface of earth one can use: F gravty =mg wth g=9.81 m/s 2

More information

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube A Numercal Study of Heat ransfer and Flud Flow past Sngle ube ZEINAB SAYED ABDEL-REHIM Mechancal Engneerng Natonal Research Center El-Bohos Street, Dokk, Gza EGYP abdelrehmz@yahoo.com Abstract: - A numercal

More information

q v = - K h = kg/ν units of velocity Darcy's Law: K = kρg/µ HYDRAULIC CONDUCTIVITY, K Proportionality constant in Darcy's Law

q v = - K h = kg/ν units of velocity Darcy's Law: K = kρg/µ HYDRAULIC CONDUCTIVITY, K Proportionality constant in Darcy's Law Darcy's Law: q v - K h HYDRAULIC CONDUCTIVITY, K m/s K kρg/µ kg/ν units of velocity Proportionality constant in Darcy's Law Property of both fluid and medium see D&S, p. 62 HYDRAULIC POTENTIAL (Φ): Φ g

More information

MANY BILLS OF CONCERN TO PUBLIC

MANY BILLS OF CONCERN TO PUBLIC - 6 8 9-6 8 9 6 9 XXX 4 > -? - 8 9 x 4 z ) - -! x - x - - X - - - - - x 00 - - - - - x z - - - x x - x - - - - - ) x - - - - - - 0 > - 000-90 - - 4 0 x 00 - -? z 8 & x - - 8? > 9 - - - - 64 49 9 x - -

More information