A. H. Hall, 33, 35 &37, Lendoi
|
|
- Anna Terry
- 3 years ago
- Views:
Transcription
1 7 X x > - z Z »»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < x -X <<»» x? x »7 25 > Q < 6? ? Q # > z ») 7»)-? 6 X < -- < - 9 x/ x ?» -?# } <>6 - -» / % - >- Q < > / < - > # »» 7 7 / > - < < 2 9 7» - q -9 5»- ) - 2- X 7-2 9» - <» z "» <» » Q < - Q» - - " X > X X 5 9? X X " - - < < -» ? ) >9 x >9 - - / 2 5 z - x "» - " 6 " - " x - / ) z Z - - } q Q ) / 5 / X 7? X - z -» 5) - = - X >> 2 < < - - -x ) / 7 -- X » ] <»--> - - ) - < 59 - </ - -#» <<? X - x5? - x X/? x X > - -» - X 9 {) " / Q 25 " "» " %6 - - ] q X <-< - < -x»? < <» x - x 6» x 2 <? 6 6 >»» 6» -» - % >»- - < -? -» >>» / 96 ) 2 " 6 > 6 - X X X > 5 < - Q- x - > x x /? Q - - >>> -» Q- / - ) 7 #<6 - x x x } x - #>x)»?» -» " --» Q> ) 5 x» - -?» - " )- 6» <]» < - 9» - <»»<» < - < -»»»»»» /- = >-» - < x- >- x X 5 X X >»?? X > - # - >» / - -» - < <7?» "» 7>- x>< -X> - = - - < 5=- " < Q < 6 q »?» 6)» - -»2 -- -» -? X 6 q - <X) X / <x» < > >< 5 X? Z ) - / <- " / - / - - <"X<- 29- z? < ] 5 - q > - - Q Q - - -» X»» ) - > - % > 2 x 5» / x » 6 x )» x ) X x >» 2» Q x» X 6/ 6 2/9 5 7 X x 56 x 2 ) x x x x - - <»>- } X x - - x - ) ) x - X Q - ) / - ) - 7 X < - -»» x > - X - - x ) 2 x 2 / >»» - / ~ x 6 6» 7- X - - ] <9 - - X » <» - --»> -- /-q 7 x < » -%?<<»- <? > x > 7»? - " " ) -5 > - > > > " - - <> - 5 x x - - X - 2 Q» # -»» -» -< x > x <» >-»? / - x x x x q { - ) x 7 q " / q Q - - X X - - x > x / - x» z >x 9 x 2? >> ) -» -? x { x»-» {- "» /» X >> 9 > ) 9 27 Z x - -? x - ) ) x - % -» z - q? >» - - 5» +-< X ><> q ) - - q q 2 > 2- - X - x > / xx ] x >» > x 9 7 ) X x q - X x x- - ) 9 >> x#- z < 6 x X - X 7»< X > X X 5 > #» - > 2
2 2 97 x ) - - x - < - x q ) x 9 97 >) 9 X) ) q 9 - )x "x " 2 22 x x - ) x x - - > > -- > -- x x - -- x ) ) - - q - x x x ) 5 2 Q 7 Q < - x < < q ~x 26 - ) x ) ) 9 x x x x x x? x > > - - x x > x x Q - - ) z ) + >" - -xz z ) 9 - x - - ) - ) 9 x q ) ) - x ) z > - - z - 9 " - - X»? < z 2 5 / 9 > = -? << X - 9 /- 2 9 / 6 x x < - X 6 / / + ) ) x 9 5 / 2 / --< < z - " x - > x - ) }> - >) ) " " x x - x - 5 -» > x - [ ] x - > - x ) - x - <? -- ]7 ) <) ] ) - x - ) - x / ) ) x x - - ) - - )- - ) 2 -» - - >- x - - > <- - z x > z 9) < )) - x x > 77» z x ) ) q x- - { ) - x - <- x < Q x x X x - " % < < Q xq x < x" x " " - " 5 z Q - ) z " q x x - > ~~ X [ [ z - x X <> - < z - X / q x z - --
3 2 97 > >) )) - x > {» > - ) > <» ] ] < ><- > << > - < -- - >)> )- - 7<>» <-» - > > - > > >- > < < x - Z = -9? < Z q " - Z ) )> >- " < - <- - - x» < < > ) <? x - ) < 25 " > 2 <- "X }» >> > ) <> < -- ] < < > - {» --»-- > <- < < <<<- - - )< > ]> <» - - ) - - < - >{ - - <> <> <» <» - - > ]> - <-- > -> - X )> - < - < >) <» ]>» > > - )> - - < -» > - - > - > < )> > > - - ) -> - -? - 2 < > <» > x -- <] <) ) - - <- < / <? 7>7 - < < > << - x < 7 <? - < > / <- - < <-» - 7 > <) - < ) ) > q > < - - < >< - " -»x - x ]~< ) < > x ]) - < -) - - -<} <} > - - x " 7 -X >- - - X > ]) > ) x 2 < 2 < " - x )) x x <> #? > > - 2 > - " 5 - -> -»- < <» < > << - ) - >}? > X> X > " -» - < 25 # X) >-- > > -- - " 7 ><» q - << > - - ) <=» [ - x > 2 7 < - x - <>) x > < ] - > > - ) < - <- /) ]?< x < - x q - < ] - < - <X)] - / - - q < ->- x » x > =- - < - - ) ) > > - <x < > < ) < -> x - - q - < ->> x) < - < > <> < - - ) -- - > - < -? <» < - - > - < 7> >» 22 < - - <] Q x z? > > - - ) > > - -» <? > - <» < < > - < ) - - ]> < < - " 5 > x>- 7> - -- ] x ><» 7» - - > q - - > - > -»? > )» - ] ] -> ) - > q > <> < x >) - - ] ] > > < - - < " - - ]»> ))<- ]- 5 >) x <- [-» - >- - < -- < )»- " }-] x q > ) q - -" - x[ < <- < -> - ~ - > > - - > < x -< < - - -> ) - > - ) < - > z ) - - < ) - q » ) ] - -~ )<-- -- < - x - -> - - >- -> < -< ->» >-x -- ))- < )> -< > - - /- - q - > - > - --» X X» < > x ) >-- - ~ > x " > < ]? - - z < » - - /» 5) ~ - / - ])- - q >) ) > < < z > - - " < < > - ]< - - > - q - ] ] > --- <<» < - - }> < - - < q < > " - - > -» -<5 - - " > - > - x - < -/- " <- X ) -" > " - x < -) - < - -- > <- <- )- -< - - >>» x <) - )? - - q ) » - ) <- - - > - - X < > - - ) > x - 5 > x ]>> - - < - - < ] < - ) < < " -" - - -~ " ~ > ~ -> - - -q ~ < < < < { - - x / - < - x - -» > - -- z --» 6 - -< - " - "- X > - X q 5 X )? /- x/ < } q X <> - /6 X 5 <» z < > x - - -»> -x - - > [ - Q x < - <X - q # / -?/ / 7 Q - x 6 -> xx > > - > x = ># X < > / 7 - x " - - x z / 6 z 2/9 / > 6 x
4 5 ) > 6 > 6 ) > 27 7 " - 2 > ) X ) ) 66) X ) )? x q x? < > >X>) <>- Q ) > - - )> < < >-- > X / - < > " < - < x - x)"- - x < x -» > <- < -» > 2 > - )>< ) > - <- - } > ) > -» }» 7 > - ) > -z Z < Q - " - X > Q " X -» - >-- ) < 6 - } >» ) - q? <) < > - > < 9 X 2? -- X - ) ]) ) ?{ $ X "> ) - " ) Q Q Q < x )" <<" " " " " - " < - "- 9 -? ) ) - > < - Q [ - / < 6 ] 26-25< Q q -x <> " x x x x x 67 X 2 q < { x ) x ) - - " - "- - X < "] - - " )- - > / < " 6 - " ) ) " q») > " ) [ > " " x x <> " - <- - - )" X )> < < - ] - X >> > - 7??< [ = - x - ]> X 2-2) < -- - x? ) X - x x ->- / x 5- )- > )5 - - " > - x Q x )-? > x X - " - ) q < - x ) " " X - ) - - q - ) x X X X ) X - --> x - - ] -x > " 29" )) " 27 - / -- " 7 "29 ) x " ] X < x X> ) -> X - 66 " z? - 2 < - > x- x- Q < > 26? X -? x x z X -? - X -- - Q ) ) 2 5 5? x- > - - x x X x- - X 2 - X - x x ) - x 6 < ) - ) >? - >> x X <> x Q - }» > X Q » X ]) - x ) -?) " x - <? # ) < - 6 )> < X X -? - - < x 26 7 X 5 < < - ]< - 7< /- - - ) ]> - -»<< ) " - " - ) x ) > x ) - " - > x - 2 ) 6 x» - < X- > --» < - x - < {? - ~ x < x - - ] > > x» X - ]>- X 2 6 > - x ] x ) - <<- <? 7 ) - " > - " ) " < x - ]> - - ) ) - - z- q < ) - - ] - x ]) 95 x ) / - > 76 ) - 2 )) <» > q - > - - x >> ) x X»> ) < -q - - q ) - - / - - x < < 2 X) ) " - <- z » - - " 2 " - >> >7 ) 7 - )" 2 - -» - -q ) x < - ) 766 > - - ))) 9 >» " - - q ~- 7 q <- - - > X) - ) > - ) -x x - -- < ) " - - > 96 x x > - - Q " - < > - < " x» <» " x ) x x» X - < - 25 X X 77) "» > - Q Q ) " " " - q > [ X x -- x - x > ) ) - -» ]) 2) ) x < q < < ) 2 ) < -< <» - 2 x x q < -- - > - ) ) - - <» x x / - " - - / " " -- ) " -)- <- x»»- ) x " " " " " - - "» - " " " " - / x» - - > - < > " - > <>7 ) /> > - zz? X >- < / < - x Q - Z X» x» " x -»> - x Q - > >? 9 x > x x» ) < ] - ] » - x -? -? x < -- z z % - > z -- ) x» - - 2»? "
5 -< - " x X - -- ) - {/" " - "" ] - ) x -> - - >? > - < -> X >-?X - -- " - ) <> -) > - -» % > X " " "-? "> - ) -- > " -» [ - " ) 2 - x >] - x- = - x - x X <-q < - X " [ > - " 2 < " > > - - X > " -- > [ x X X - - ) [ ] - - -»- - 7 ]) - > <-- -»- )»< ) -- ] > - - } / ) ] -})» - ) [ <> -- -»»< /» - )» ? > [ - - >] - / - -?<>- / > - / -- > <7» 6»- > ]- - [ > X 5 x x q x -> < > " - - ) < Q- - 7 > -- - "> - --x - - > - >7 - ) > 7)7 -- " >" » x <- -- X < x x x--x X X --- x - - X x x - >x 67 - x X - x x 7 -- x X) > - < - -» [ -?> > [ - x <{) >-» - > - ) > x» ] [ z - < )> [ < > " / ) ) ) <» - > > - - ) 7 7 X - X q 27 x X Q 56 Z 5 ) x ) > > / x - ->< z < - <> " [ ]> > - - < > > > ]>?] - > [ ) ]» - 5 x [- ) X - ) < > ) - = > - - < - > > " > - - > z- > -> ]> < X - " - - x - <- " > <? < " x- - x - ) < < - - = -- - " x < - < - > -) << > )[> > / 6 - z x ) -> -" > ] > X > < > <] < - -> x) -»" > > x x x - - < " z < --> <» ) x -] ) - - < >]) -» - - q - -~ - Zx- >- - x ]) Z - x> > - <"» - x > ) > < > - -- X - ) 5> - x - - -» x - - ) ->x " < q x x - < - -» ) > < - x < x» -» > -» - - x - - > - x " - >» ) > - -?? - - " - x > - >» - - )»» - < [ -» / <x X < X -- - )- x - <) - - $ X- -< x > < - <- z- ) x» - x> - < - = -? > > < - - -> z» - < > z " <» ) <- < - ) > - - > < - - < < - < x {- ] - < >>? - / ) <» > -»» 7 - < ] > z " » - < - - z -- > " ) -» / ) - > <) ])» - < x ]) x -» )»»>} ) ) Z -- > > > < - > x > - -» ) - - " - " -» x<- )} - > < { ->< - >) - )<» ) / < <» - - > ) - - < ]) > ) » < - < ) ] - < - - "- < x ] x z - ) ) - [ ) > - ) )) )) " -- Z - - > > >»-> < > )<» )- ) < - >-" > ] < =-< - ]>» z - - > ) < / - x - > - <) ) - [ - x { x< ) < 7 -? - - x ]) - ] x- - < - - -? x? / > > < x ? < > -» x)])? ] >- > <»- - < - >) < > - ) ) - - x x > ]) x /> / Q - - ) - ) < < < - - ) 7 - ><- X > - / - - >5 - - " / x x < - - " - " <x " " ) " " - -) "- " ) " < <» 7 " " - " " ) " -" " > ) - q ] < x / - )< - " " < " - " " -- " - < " " - " - - < " - " x - x - )- -? 7? - z ) - >-- " - x z -- x x " " > q x X <)- - - x - - ) - - > " x - - < x " " " " 29 - " x" x 5 6 / / 7 / 9 z 55 9 Q > ) q z? / Q 2 / X 56» q -? X x -? > X / " X 6 ) - ~- / 5-9 q ) x ) q» 7 / ) x Q 2 7 -» / 5»2 >
6 2 97 x x - / - 6 x > ) -? < x "<> > x "» <> < - - > # x > x > <x < x- < ) > > > -? ]zq > xz> x - < > x - - x x < -- - Q ) x > - <x> ) <> x ] > - -?> x- / < ) >< < x»? {x> - " - > z > - xx x<>» >>» < - z / # x> x - -? qz - - x z z - - x X { - x -> q - x x - - x> x < - " x -- - < x - - < x - - 2»- - x -- x >? - { - < -? < z - z > - z - --» - - > -x x - q? x " < - <-<- - ] />- - - < > x > < x? > - < < > ) < x >»< x > - ]> x - -<- -? "? x > - - >7 <-> - > < < <- < > - - x > > > - > - - ) << <> < <- < - - }- [ - - ) ) ) - " - } < - - <- > ) - - < % < > % >» - <x< x- X?» > " " " < < > -» > = 7?2 x 5 > > ? )-- > 5 5 ~ < 6 6? / /- 2/ < - 2 ) - - < 2 %- --- > 25/ /9 / /9 >/ x x x z / 6 5 -x x x Q - } - < "- q <- - / x> < ) - -) ) > -- ) > { ) < ) -~ - ) - <- )? 29 > < - - ) q )) z - - x " 5622 ) ~ -> < - " 722 x ) ] - > }< - x" > 2) > " 969)»» - ] <] 5 - x <> - 62 >- < < 5 ]) ) [x < x < < > -/ > 29 > > < " - )2 6 ]= 57 - < < > > < - 77 > ] - < ) x x ) > ) - - -q x " - - " - - q ) > " ) > 2> - 9 < <><» x x - )- / - <» - >< -- <> <» ] > - / -> 2- = 2 > > -? X 7-5 > ) 6 z - X > <> - > <- -- <<» / >» - <} < >5?-) <») z - x > - <> ) z < )» < - - > ]]- 2 - ) - X / -> - 2 x < >- < x > x ] 2 z 7 2 x - x < >? <) x <- - 7?< - - < < x > > - - < 6 - x " - < q > x- " q q 59 < 22 - ) " - < - " < - > - <> x< <- x x q " x >» < >>) - -x - ) <» - - x x - >> - x x - > q- - > - ) x / {? > = - <x - x < ---? - )? x? < " - - > x x - -< > < - < - - < - - 7> - - ] ]>» 9 - > - > > " 7 - < x > - - X - - / < 25 7 Q - - < - x x - 7 -» >- - - q ] x> 9 ]> ) Q x - q x ) } x)?» )> " - - > x -- x x > x-» < - - " - q x q > -? - - = x ] <> > - - < > < > " - " - < <x x - x < x x 6> q- x / / /7 z / /5 2 2 x q x x Q x - x < < - x " " - >- - / < z - x x x >» ] " 9 - xx-] - 2 x q >» - { ) 5 -- X / - 6 x ] ) > - -) x 6 x -- > - x - - q q - - ) - q » 2 5 x / ] x? ) - - <] " » - ) -? - -» - - ] ) - ) q > q Q 26
7 " [ } = > - - ]) q - - ) x q 5622 ) " ) " x 969) X < [ < 9?< [ " q " ) - " ) x x -) - > 6 - " >x)x < [> [ q < [ / / )» /5 > - ) x Z " x x> " x x > " X -x x x <x x>x x x " x 2 X -? - " - -<> " 5 6 x» x " X ) <» "»" < - ] z x? x 6 x ) q x q - - q 7 9 " Q» <» Qx ] x [ q x x X 2 ) ) > - - x 6 > / x q <- < > < x - x < 2 z - > Xx X 7 > 25 } X < x >2? ) - - X x x) 7 x) " X - - > 6 ) " - -» x - ) ] [ <) - - X ) { < ) - <- > - > - - <> ) )<{ - )» - - xx > > x > ) > " > ) < )? "» - X x 26 < <»» - )? <- x 6 - x x 9 < <- - ) - ) - - > < ) <) ) -» » - X - 7> - > z - [X{ - X X > - x -- " -? 2 ) /» > - -- <» > < - < x- { 2 ) 2 /6 " - " - - -? x < < > 2 /> - -)- < ) - x < ) x - x 26 < 7 > - - < )» q x - 6 x - - <» - > > > X -- - x ]]- > <» - > }> -- - /> ># - q - - x»- - Q q - Q 2 - x- ) x { x > -x - ) 6» ] -- >) - -< < < - - ) z»- > - x ] ) - - ] -? - X x Q - ~ X - - X x - X ) ]- / x - ]> - -- q z 5 6» - < - < - 5 </ < ] - < > - - x [ x» - - <» " ] 7-5 z- > >) 2 2- x -<-- - x> x x - <>x> - # -- x-- " -] << x - -q z > > ] - < x [< q 22 - x ) / X x ) q x x > -» > > - x - ) - - x) q Q - x - x < - }) - 6 x > > < x > - +? - x -» ) -? x > - ) - - " ) > x "») x - x»? - < - - } ) - x - - x) - x q q - < x 5 >?> - <- 5 q x > - - x 2 < - >> q =- - q ) - - x - %- x q - ) ) - X ) -<[ x - - -» $< ] - -? - )> X - < < >" < » - > q x-? z "- - x ] - > < "2 2< - - > x < x q > - > q - Q - -- / x - - x- ) q q - - X - x - )» - >» - < q- - - q " x? x x> x -»/ <) < - x ] ) - x <? - - " x < ) X x x - z - x?5 x x x > -) Q" - " - X ]Q < x 6 Q - #> >» - - < -x - qx x> " ~~~? - -? > x - q ) q x > q - -»= - x "" 96 x» - -» 2? ] - <? - ) -) »» - - z- - x <» x X ]?-? <> x? ]>-- x Q 2 - < - - "» - 7 x> -» x - ] ] x x ] < q? q - [> q ] ] " -- - ) # - - ) - 9 " -» x 9 < xx x " " - x - > x ) )" x Q q 56 x ] >- - z - x -] z <- < z - 7 ) - ) 6 - q 6 < - - ) - Q > - - -» x x "/ z 2- > / 2 x 65 - ) --- x z < > <> <- x? q 25 q -» 5 > " -- - " ) - - x ) ~» " - ) - 99 < - -- x x x " /» - " z / - x? 2 " X- q )» ) 2)? - z 6 Q x " x - x -2 x»- x q ]) q x <> x < 2 - ) - > x <<»- x-»>-< - > x 6 6 ~ - q -] - - -x z » q - - < - - x Z? ) x ) x > x x 7 77» X < q 7 - Z X x - - x q - - ) q x) - x» - >? X x x 6 x - ~ 2» q - x - - z 9 - # # > x x x Z x Q 26
8 - - [ q x ) [ 7 ] " > > " q Q " x " <> " - - )- -5> / <» < >> > < }"- 2 # -- - <» - - -?-? - - q - { > - < -- x> 6 -? - - " x - % x X > < - q>?»»- - " <>Q<»- x? x?% 5> x - >> ?-><?/ q = 2 5 qx " q / Q 2 q <x» - < -> >» 7-- x? <» x? X - - / X Q? " - -» 77 [ q x» 26 < - - q - -? q > - >xq9- x ) x - > x 5? x»-x 9 ) 7 < < > > ~ X " q x x 2 } x - x x > 9 - x? 2 - ><-» - x 2 - q-q 5- " » <> - ~? q / 625»»> < - 2 -< 2 > Q< » X - x ~ 5 <>»» q 7< 9 -» <x 97 x z )~ - 6 " - 6 ~? 5 2 q Z x -2 " 5 2 / 57 >»» 2 Q X >x " 26 " 2?»- > 2 -» > -»5x x)» - } - 7 " - 2) q ) > < » - ~2?? <»? ) 5»» / >» x Q X <> 9 q > " z 27-6 / 29 5 x Q- - 26» x X - > < ? - 9 <?- - X - - >- - 2»-<} -- x <» » >» x - x < - 2 " x < - - > / - >»- - > < - -- q 7»» "?» - /) »< > 7 ) "» x 6 < > > - #/»» -- <-> -?» »» <» ?»» 2 < - x- > ~= " " 7 ] -<» < / ? - ) )- - - x <) > - -? - -» -» 2 -> <? < - - x < -» -> " >-- - -» ~ - 2 [ ->» -? <» / - " >>5? -- 2» - > 5-2» - - 5<= - x / - -?] )»>» 9) <- x x -< }" > <» » 5--> - >» x - ---> " < >» / > - - -"? x»6-2 >» ?=-? " x x ~ >Q -» -- - X»» X )» 5> 5 > < } X - > x<» 7 q? - < -> - 2 q » - "» >?» x x X69 Q - / 75 - > 5 -»- 2 X 75 < 9»» 5 - < 9 <» 7# - 7-2» - ~~- - q 2-5 -? - [ ~ - - " - > ) - - 5?- x -> x ) X 6 -» X»» % - <)» {» 2 < > " > ~ 7 x 29 x 2 - > 5» -» -- " - 7 < >- - - > - X - -<» < -)% - 6»» < x " - " ~ 2 > >< x Q--» - 2» > - > - -< x - ~ 2 6» - q <? <" x - < " 6 " Q x x» />> - 2 ) X - > -? 2-7 >- Q > ]? --<» " < x x 6-2 / --»»9 2 "" -- 2-< - " -? - - ~~ --- ~ - x q - 5> " - / 29 x- - >2 x -9 > < 52» " 6 < < ) 9 " 7 ~ - - <» -» > 2) x - <2 - x- z -» 7 - x 2 5 x x x q <»» x < > 5» 95 - <>2 ) x z x 6 -- x» x 5»» -- - / 6»»>?»2 - ~7 - -X» x > > 2 -» >-- 2 x x x ~ 2 x 27 ~ » > x 2 - X9 " x -/? 5 - < - 2 " " -< x / 2 - / 2 << 27 " x x z x x x q - -<>2 - x X x X << Q ~ 2< x -x - 2 x 5 / x " - x - X 9 6 x 7 z? ? z ~ z 5 Q q -7 6 " 576 > 9 / - ) 5 " )» - x - - x - q 59 " 2 95 x? )»- 6 x ~ - x x > »» X - > < 2 -- x 9 Q - Q 7-9 X x 2 2 q< <> ~ x 9 2 >< 2 55 ) >» x $ q q - Q <» X q - X q 2 - / 2 6 x? Z 9 -» Z < >» > - 27 > x x - 5 / 9 x» x << <> << - x ) q - $ »> z X < 5-9 > 2 ~ - x x 6 " 5 -? <- ) Q ~ - - > -»- - < 2 q z ?> - <5>» x 6 X } Q- %» > x #>75 q x - / q - - " " " 7 > - <- 2Q 7 Q - <» ->2 - x x x 5-6»»»-- < q -x < 6 >}<7 } 25 " ) Q- 6-2 ~ Q x 7 Q -? ~ )/ > 7 -q - Q Q "" < - $ x) - >» ) X > >< -x x - x> >< z- - -? >x 2 -» - < < " " - q <5 x - 6 "< x - -< 2 < 7 x 6 X» < )» - q - < - 6 /- - <>2 x "?» X <? -?> - x><<» < 6 76 <x» »»-- <) " /» 2 - x» ) 2 " Q -»> q 67 - " )» - x 2~ x ) 2?» - - " - q ~ ~ Q > x6 - ~ < > 2 " - 69» " - --<2 /- - x x - < - < " 7 x» - 6 Q >»< q ~ < 9? - -- {9 2 " x " q ]x $ x x ~~] ~ 55 - # < ~ " >"? 2~<> 22 6 > 5 < -» z z- - -<>2 2 < -> - - >< x 7 2 ~ - ) 2 >» < -2 q - - x» ~ - - > > - q - < x 729? " - < x x <) " x < 9-6 / 5 - $ - 7 ~ 2 Q» x x - > - " x - 2 ~ - 9 q 29 2 > -» 2 5 ~ - " " - -» >»- - - X-- <x? <<2 < x x» x < --) x - x- 2 x ]< x - x» Q <Q - 7» < - - x » 2 x »<» <- x < ~- - 77? ~ ~ " < x 7-» ~~~ x 2? - 9 "?» X<» x x x - <)» " x #- <)- 2 > 6 59 " - " Q» 6)» -- 2 q " " x - " - {> {> > - <x) x 2)? < 67 " - - ~ > »< / - ~ - 2 -? X 7" x ) 26 -» < - " 7 " ~ -- - $» 2 " x x -- 9 < ~ ~ 2-6" - z) / x -- - < <x- x 2»?-7» x x? - 27 < x» Z 52 " < q 7 " - <>Q " " - x "<<>~ -7 - ) 2-2 q » ""? x - q ~~ 57 x < 9 25 " " - 2 <>X- " - / -"? q 7 - q x 5 7 " ~ >- < > Q - -» x- < < ~2 > - - < " %) X <» ) -2 x x> - "?? 5) " /-- 2 " x " x- 2 q - x- <> >~577 x -?»-? 7 x 7 27 ~ 7 2 <» " - X -» 5-2 > 2 q Q q q / - 2» - >< ) » <»- 2 - X2 2 #» < < - q x> "» x» - 52 "» < x» - X " » X - ) ~ -< q < - ~ " x x - X x x > ~» - > <- - > )) < -< x / X - " x -» -x x " > < q»» > Z» - -> -62» - x 7~"x -? q 2 2 Z» - 2 < 9" 5 - Q 6 x < - "< q» > q 26 /» 2 > - X " - 27? 5 > x - > q> > X z -x X? q 7 " 72 " x } - - q q > Q q / - x } x - 7? X X xx - - x 9 x ?-»x > / q - x - > 9» -- q - ~ " x - q 96 7 x 7 -» Q x q z x x >»» ? -x < 2-2 "» x < - 2 > 7 " " " - 9 < x 2 % < <» 7» 5 > > X 55 ] » x 2 > 2 5 Q 79 x» 5?7? 5 Q Q < 7 5 2» < 5 < 5 5 x < > > % Q »=» x > > < <- 6 - " < ] < > x-» > < - < < > x <? » > - / <> {» < -» <»- X - - -» ) < <» >/ -- < > 7 99? - ) - ) 7? < " -»» > < - <» <5 < - ) >- <» =» z - 29 $ > /»><- - 9 x #) < 97 % -q - 7» >> - - x» [ X
Q SON,' (ESTABLISHED 1879L
( < 5(? Q 5 9 7 00 9 0 < 6 z 97 ( # ) $ x 6 < ( ) ( ( 6( ( ) ( $ z 0 z z 0 ) { ( % 69% ( ) x 7 97 z ) 7 ) ( ) 6 0 0 97 )( 0 x 7 97 5 6 ( ) 0 6 ) 5 ) 0 ) 9%5 z» 0 97 «6 6» 96? 0 96 5 0 ( ) ( ) 0 x 6 0
II&Ij <Md Tmlaiiiiiit, aad once in Ihe y a w Teataa m i, the vmb thatalmta oot Uiaapirit world. into as abode or wotld by them- CooTBOtioa
382 4 7 q X
Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.
» ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z
' Liberty and Umou Ono and Inseparablo "
3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <
A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any
Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»
Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n.
- - - 0 x ] - ) ) -? - Q - - z 0 x 8 - #? ) 80 0 0 Q ) - 8-8 - ) x ) - ) -] ) Q x?- x - - / - - x - - - x / /- Q ] 8 Q x / / - 0-0 0 x 8 ] ) / - - /- - / /? x ) x x Q ) 8 x q q q )- 8-0 0? - Q - - x?-
LOWELL WEEKLY JOURNAL
Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q
oenofc : COXT&IBCTOEU. AU skaacst sftwer thsa4 aafcekr will be ehat«s«ai Bi. C. W. JUBSSOS. PERFECT THBOUGH SDFFEBISG. our
x V - --- < x x 35 V? 3?/ -V 3 - ) - - [ Z8 - & Z - - - - - x 0-35 - 3 75 3 33 09 33 5 \ - - 300 0 ( -? 9 { - - - -- - < - V 3 < < - - Z 7 - z 3 - [ } & _ 3 < 3 ( 5 7< ( % --- /? - / 4-4 - & - % 4 V 2
Two Posts to Fill On School Board
Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83
LOWELL WEEKLY JOURNAL
G $ G 2 G ««2 ««q ) q «\ { q «««/ 6 «««««q «] «q 6 ««Z q «««Q \ Q «q «X ««G X G ««? G Q / Q Q X ««/«X X «««Q X\ «q «X \ / X G XX «««X «x «X «x X G X 29 2 ««Q G G «) 22 G XXX GG G G G G G X «x G Q «) «G
P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,.
? ( # [ ( 8? [ > 3 Q [ ««> » 9 Q { «33 Q> 8 \ \ 3 3 3> Q»«9 Q ««« 3 8 3 8 X \ [ 3 ( ( Z ( Z 3( 9 9 > < < > >? 8 98 ««3 ( 98 < # # Q 3 98? 98 > > 3 8 9 9 ««««> 3 «>
a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r?
? 9 > 25? < ( x x 52 ) < x ( ) ( { 2 2 8 { 28 ] ( 297 «2 ) «2 2 97 () > Q ««5 > «? 2797 x 7 82 2797 Q z Q (
LOWELL WEEKI.Y JOURINAL
/ $ 8) 2 {!»!» X ( (!!!?! () ~ x 8» x /»!! $?» 8! ) ( ) 8 X x /! / x 9 ( 2 2! z»!!»! ) / x»! ( (»»!» [ ~!! 8 X / Q X x» ( (!»! Q ) X x X!! (? ( ()» 9 X»/ Q ( (X )!» / )! X» x / 6!»! }? ( q ( ) / X! 8 x»
MANY BILLS OF CONCERN TO PUBLIC
- 6 8 9-6 8 9 6 9 XXX 4 > -? - 8 9 x 4 z ) - -! x - x - - X - - - - - x 00 - - - - - x z - - - x x - x - - - - - ) x - - - - - - 0 > - 000-90 - - 4 0 x 00 - -? z 8 & x - - 8? > 9 - - - - 64 49 9 x - -
LOWELL WEEKLY JOURNAL.
Y $ Y Y 7 27 Y 2» x 7»» 2» q» ~ [ } q q $ $ 6 2 2 2 2 2 2 7 q > Y» Y >» / Y» ) Y» < Y»» _»» < Y > Y Y < )»» >» > ) >» >> >Y x x )»» > Y Y >>»» }> ) Y < >» /» Y x» > / x /»»»»» >» >» >»» > > >» < Y /~ >
E S T A B L IS H E D. n AT Tnn G.D.O. r.w.-bal'eu. e d n e s d a y. II GRANVILLE HOUSE. GATJDICK ROAD. MEADS. EASTBOUENk
K q X k K 5 ) ) 5 / K K x x) )? //? q? k X z K 8 5 5? K K K / / $8 ± K K K 8 K / 8 K K X k k X ) k k /» / K / / / k / ] 5 % k / / k k? Z k K ] 8 K K K )» 5 ) # 8 q»)kk q»» )88{ k k k k / k K X 8 8 8 ]
and A L T O S O L O LOWELL, MICHIGAN, THURSDAY, OCTCBER Mrs. Thomas' Young Men Good Bye 66 Long Illness Have Sport in
5 7 8 x z!! Y! [! 2 &>3 x «882 z 89 q!!! 2 Y 66 Y $ Y 99 6 x x 93 x 7 8 9 x 5$ 4 Y q Q 22 5 3 Z 2 5 > 2 52 2 $ 8» Z >!? «z???? q > + 66 + + ) ( x 4 ~ Y Y»» x ( «/ ] x ! «z x( ) x Y 8! < 6 x x 8 \ 4\
Governor Green Triumphs Over Mudslinging
; XXX 6 928 - x 22 5 Q 0 x 2- Q- & & x 30 - x 93000000 95000000 50 000 x 0:30 7 7 2 x q 9 0 0:30 2;00 7:30 9 ( 9 & ( ( - ( - 225000 x ( ( 800 ) - 70000 200000 - x ; 200-0: 3333 0850; 778: 5-38 090; 002;
LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES
? (») /»» 9 F ( ) / ) /»F»»»»»# F??»»» Q ( ( »»» < 3»» /» > > } > Q ( Q > Z F 5
1871. twadaa t, 30 cta. pat Haa;fe,ttaw Spiritism. From Uis luport of tie vision, and in U e n i e h t i a d i W A C h r f i
V < > X Q x X > >! 5> V3 23 3 - - - : -- { - -- (!! - - - -! :- 4 -- : -- -5--4 X -
OWELL WEEKLY JOURNAL
Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --
County Council Named for Kent
\ Y Y 8 9 69 6» > 69 ««] 6 : 8 «V z 9 8 x 9 8 8 8?? 9 V q» :: q;; 8 x () «; 8 x ( z x 9 7 ; x >«\ 8 8 ; 7 z x [ q z «z : > ; ; ; ( 76 x ; x z «7 8 z ; 89 9 z > q _ x 9 : ; 6? ; ( 9 [ ) 89 _ ;»» «; x V
i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER
N k Q2 90 k ( < 5 q v k 3X3 0 2 3 Q :: Y? X k 3 : \ N 2 6 3 N > v N z( > > :}9 [ ( k v >63 < vq 9 > k k x k k v 6> v k XN Y k >> k < v Y X X X NN Y 2083 00 N > N Y Y N 0 \ 9>95 z {Q ]k3 Q k x k k z x X
LOWHLL #WEEKLY JOURNAL.
# F 7 F --) 2 9 Q - Q - - F - x $ 2 F? F \ F q - x q - - - - )< - -? - F - - Q z 2 Q - x -- - - - 3 - % 3 3 - - ) F x - \ - - - - - q - q - - - - -z- < F 7-7- - Q F 2 F - F \x -? - - - - - z - x z F -
A b r i l l i a n t young chemist, T h u r e Wagelius of N e w Y o r k, ac. himself with eth
6 6 0 x J 8 0 J 0 z (0 8 z x x J x 6 000 X j x "" "" " " x " " " x " " " J " " " " " " " " x : 0 z j ; J K 0 J K q 8 K K J x 0 j " " > J x J j z ; j J q J 0 0 8 K J 60 : K 6 x 8 K J :? 0 J J K 0 6% 8 0
LOWELL WEEKLY JOURNAL.
Y 5 ; ) : Y 3 7 22 2 F $ 7 2 F Q 3 q q 6 2 3 6 2 5 25 2 2 3 $2 25: 75 5 $6 Y q 7 Y Y # \ x Y : { Y Y Y : ( \ _ Y ( ( Y F [ F F ; x Y : ( : G ( ; ( ~ x F G Y ; \ Q ) ( F \ Q / F F \ Y () ( \ G Y ( ) \F
W i n t e r r e m e m b e r t h e W O O L L E N S. W rite to the M anageress RIDGE LAUNDRY, ST. H E LE N S. A uction Sale.
> 7? 8 «> ««0? [ -! ««! > - ««>« ------------ - 7 7 7 = - Q9 8 7 ) [ } Q ««
r/lt.i Ml s." ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died.
$ / / - (\ \ - ) # -/ ( - ( [ & - - - - \ - - ( - - - - & - ( ( / - ( \) Q & - - { Q ( - & - ( & q \ ( - ) Q - - # & - - - & - - - $ - 6 - & # - - - & -- - - - & 9 & q - / \ / - - - -)- - ( - - 9 - - -
. ^e Traveler in taesnok. i the IHilty.-^ifStiiart. BbUaaoa aad WalL.""ras 'crossing a mountain»h ch w e are A«ply inteiwted. Add
x 8[ x [qqq xq F x & R FX G NR F XN R X ( F R Y
PanHomc'r I'rui;* :".>r '.a'' W"»' I'fltolt. 'j'l :. r... Jnfii<on. Kslaiaaac. <.T i.. %.. 1 >
5 28 (x / &» )»(»»» Q ( 3 Q» (» ( (3 5» ( q 2 5 q 2 5 5 8) 5 2 2 ) ~ ( / x {» /»»»»» (»»» ( 3 ) / & Q ) X ] Q & X X X x» 8 ( &» 2 & % X ) 8 x & X ( #»»q 3 ( ) & X 3 / Q X»»» %» ( z 22 (»» 2» }» / & 2 X
A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding
- G Y Y 8 9 XXX G - Y - Q 5 8 G Y G Y - - * Y G G G G 9 - G - - : - G - - ) G G- Y G G q G G : Q G Y G 5) Y : z 6 86 ) ; - ) z; G ) 875 ; ) ; G -- ) ; Y; ) G 8 879 99 G 9 65 q 99 7 G : - G G Y ; - G 8
LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort
- 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [
A L T O SOLO LOWCLL. MICHIGAN, THURSDAY. DECEMBER 10,1931. ritt. Mich., to T h e Heights. Bos" l u T H I S COMMl'NiTY IN Wilcox
G 093 < 87 G 9 G 4 4 / - G G 3 -!! - # -G G G : 49 q» - 43 8 40 - q - z 4 >» «9 0-9 - - q 00! - - q q!! ) 5 / : \ 0 5 - Z : 9 [ -?! : ) 5 - - > - 8 70 / q - - - X!! - [ 48 - -!
M E M P H I S, T E N N., S A T U E D A Y, OCTOBER 8, 1870.
5 L V 8 5 x - L : L Q ) L - \ \ Q Q - V 84 z < L L 4 Y z ( (
AanumntBAasciAs. l e t e s auas trasuarbe, amtima*. pay Bna. aaeh t!iacttign. Xat as eling te Trndi'aBd^glit!
- [ - --- --- ~ - 5 4 G 4? G 8 0 0 0 7 0 - Q - - - 6 8 7 2 75 00 - [ 7-6 - - Q - ] z - 9 - G - 0 - - z / - ] G / - - 4-6 7 - z - 6 - - z - - - - - - G z / - - - G 0 Zz 4 z4 5? - - Z z 2 - - {- 9 9? Z G
LOWELL. MICHIGAN, OCTOBER morning for Owen J. Howard, M last Friday in Blodpett hospital.
G GG Y G 9 Y- Y 77 8 Q / x -! -} 77 - - # - - - - 0 G? x? x - - V - x - -? : : - q -8 : : - 8 - q x V - - - )?- X - - 87 X - ::! x - - -- - - x -- - - - )0 0 0 7 - - 0 q - V -
Ayuntamiento de Madrid
9 v vx-xvv \ ü - v q v ó - ) q ó v Ó ü " v" > - v x -- ü ) Ü v " ñ v é - - v j? j 7 Á v ü - - v - ü
LOWELL WEEKLY JOURNAL
W WY R G «( 5 R 5 Y q YG R ««W G WY Y 7 W \(\ 5 R ( W R R W ) W «W W W W< W ) W 53 R R Y 4 RR \ \ ( q ) W W X R R RY \ 73 «\ 2 «W R RG ( «q ) )[ 5 7 G ««R q ] 6 ) X 5 5 x / ( 2 3 4 W «(«\Y W Q RY G G )
V o l u m e 5, N u m b e r 5 2, 1 6 P a g e s. Gold B e U ClUt Stamps Double Stamp D a y E v e r y Wednesday
1 6 5 J 9 6 " " z k ; k x k k k z z k j " " ( k " " k 8 1959 " " x k j 5 25 ; ; k k qz ; x 13 x k * k ( ) k k : qz 13 k k k j ; q k x ; x 615 26 ( : k z 113 99751 z k k q ; 15 k k k j q " " k j x x ( *»
Wayfarer Traveler. The. Laura. Most of us enjoy. Family and multi-generational travel. The Luxury of Togetherness. Happy Traveling, Owner s
6, z j Kw x w 8- x - w w w; x w w z, K, x -, w w w, w! x w j w w x z w w J w w w, w w w x w w w w 6, w q, w x, w x x, w Q, w 3-, w,, -w 6 ;, w x w w-- w j -, -, x, - -,, -,, w,, w w w, w w w, - w, w,,
Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI
Lecture 8 Analyzing the diffusion weighted signal Room CSB 272 this week! Please install AFNI http://afni.nimh.nih.gov/afni/ Next lecture, DTI For this lecture, think in terms of a single voxel We re still
" W I T H M: A. L I G E T O ' W ^ P L D IST O ISTE -A-IsTD G H! A-I^IT Y IPO PL A.LI-i. :
: D D! Y : V Y JY 4 96 J z z Y &! 0 6 4 J 6 4 0 D q & J D J» Y j D J & D & Y = x D D DZ Z # D D D D D D V X D DD X D \ J D V & Q D D Y D V D D? q ; J j j \V ; q» 0 0 j \\ j! ; \?) j: ; : x DD D J J j ;
Department of mathematics MA201 Mathematics III
Department of mathematics MA201 Mathematics III Academic Year 2015-2016 Model Solutions: Quiz-II (Set - B) 1. Obtain the bilinear transformation which maps the points z 0, 1, onto the points w i, 1, i
d A L. T O S O U LOWELL, MICHIGAN. THURSDAY, DECEMBER 5, 1929 Cadillac, Nov. 20. Indignation
) - 5 929 XXX - $ 83 25 5 25 $ ( 2 2 z 52 $9285)9 7 - - 2 72 - - 2 3 zz - 9 86 - - - - 88 - q 2 882 q 88 - - - - - - ( 89 < - Q - 857-888 - - - & - - q - { q 7 - - - - q - - - - - - q - - - - 929 93 q
LOWELL WEEKLY JOURNAL
: Y J G V $ 5 V V G Y 2 25 Y 2» 5 X # VG q q q 6 6 X J 6 $3 ( 6 2 6 2 6 25 3 2 6 Y q 2 25: JJ JJ < X Q V J J Y J Q V (» Y V X Y? G # V Y J J J G J»Y ) J J / J Y Y X ({ G #? J Y ~» 9? ) < ( J VY Y J G (
.1 "patedl-righl" timti tame.nto our oai.c iii C. W.Fiak&Co. She ftowtt outnal,
J 2 X Y J Y 3 : > Y 6? ) Q Y x J Y Y // 6 : : \ x J 2 J Q J Z 3 Y 7 2 > 3 [6 2 : x z (7 :J 7 > J : 7 (J 2 J < ( q / 3 6 q J $3 2 6:J : 3 q 2 6 3 2 2 J > 2 :2 : J J 2 2 J 7 J 7 J \ : q 2 J J Y q x ( ) 3:
LOWELL WEEKLY JOURNAL
KY Y 872 K & q $ < 9 2 q 4 8 «7 K K K «> 2 26 8 5 4 4 7»» 2 & K q 4 [«5 «$6 q X «K «8K K88 K 7 ««$25 K Q ««q 8 K K Y & 7K /> Y 8«#»«Y 87 8 Y 4 KY «7««X & Y» K ) K K 5 KK K > K» Y Y 8 «KK > /» >» 8 K X
LOWELL WEEKLY JOURNAL
Y G y G Y 87 y Y 8 Y - $ X ; ; y y q 8 y $8 $ $ $ G 8 q < 8 6 4 y 8 7 4 8 8 < < y 6 $ q - - y G y G - Y y y 8 y y y Y Y 7-7- G - y y y ) y - y y y y - - y - y 87 7-7- G G < G y G y y 6 X y G y y y 87 G
Closed-Form Solution Of Absolute Orientation Using Unit Quaternions
Closed-Form Solution Of Absolute Orientation Using Unit Berthold K. P. Horn Department of Computer and Information Sciences November 11, 2004 Outline 1 Introduction 2 3 The Problem Given: two sets of corresponding
Compatible Systems and Charpit s Method
MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 28 Lecture 5 Compatible Systems Charpit s Method In this lecture, we shall study compatible systems of first-order PDEs the Charpit s method for solving
an;'. Union One aud lnsopftrabls.'' LOWELL. MICflTGAN, WKDM SDAV, MAY I I is: LOW.NATIONAL 1>AXK ullv tn , ,800.
Y v N Y Y \\ «\ v R v R F RN «x vv 2 R F RN N # Z qr $ $ $2 2 2 X R 2 2
Pithy P o i n t s Picked I ' p and Patljr Put By Our P e r i p a tetic Pencil Pusher VOLUME X X X X. Lee Hi^h School Here Friday Ni^ht
G G QQ K K Z z U K z q Z 22 x z - z 97 Z x z j K K 33 G - 72 92 33 3% 98 K 924 4 G G K 2 G x G K 2 z K j x x 2 G Z 22 j K K x q j - K 72 G 43-2 2 G G z G - -G G U q - z q - G x) z q 3 26 7 x Zz - G U-
..«W- tn^zmxmmrrx/- NEW STORE. Popular Goods at Popular D. E. SPRING, Mas just opened a large fdo.k of DRY GOODS & GROCERIES,
B y «X }() z zxx/ X y y y y )3 y «y
Additional Practice Lessons 2.02 and 2.03
Additional Practice Lessons 2.02 and 2.03 1. There are two numbers n that satisfy the following equations. Find both numbers. a. n(n 1) 306 b. n(n 1) 462 c. (n 1)(n) 182 2. The following function is defined
Bidiagonal pairs, Tridiagonal pairs, Lie algebras, and Quantum Groups
Bidiagonal pairs, Tridiagonal pairs, Lie algebras, and Quantum Groups Darren Funk-Neubauer Department of Mathematics and Physics Colorado State University - Pueblo Pueblo, Colorado, USA darren.funkneubauer@colostate-pueblo.edu
2.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS. differential equations with the initial values y(x 0. ; l.
Numerical Methods II UNIT.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS.1.1 Runge-Kutta Method of Fourth Order 1. Let = f x,y,z, = gx,y,z be the simultaneous first order
1 h 9 e $ s i n t h e o r y, a p p l i c a t i a n
T : 99 9 \ E \ : \ 4 7 8 \ \ \ \ - \ \ T \ \ \ : \ 99 9 T : 99-9 9 E : 4 7 8 / T V 9 \ E \ \ : 4 \ 7 8 / T \ V \ 9 T - w - - V w w - T w w \ T \ \ \ w \ w \ - \ w \ \ w \ \ \ T \ w \ w \ w \ w \ \ w \
SPIRITUALISM. forces. of Spirit, A n stiy a e d f r o m a C o m m o n rhey. n o d and H en so S ta n d p o in t. Lea d s i 1 T U A L I.S M.
~ 3 : K G V 7 G GG 2 3 9 3» < V ; j z_! V 9 7 ' ; > : ; _ < - «-] 88 _ K _ [ -] ZZ - - _ [ ) G K < ' - - ( - '! j () - -] < : : < :?! q z ; [ > # : - 2 - - j ; :!_ - ] ' z ; : j G - j j - [ _ j! { q -
Homework 1/Solutions. Graded Exercises
MTH 310-3 Abstract Algebra I and Number Theory S18 Homework 1/Solutions Graded Exercises Exercise 1. Below are parts of the addition table and parts of the multiplication table of a ring. Complete both
Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example:
Polynomials Monomials: 10, 5x, 3x 2, x 3, 4x 2 y 6, or 5xyz 2. A monomial is a product of quantities some of which are unknown. Polynomials: 10 + 5x 3x 2 + x 3, or 4x 2 y 6 + 5xyz 2. A polynomial is a
Homework 9 Solutions to Selected Problems
Homework 9 Solutions to Selected Problems June 11, 2012 1 Chapter 17, Problem 12 Since x 2 + x + 4 has degree 2 and Z 11 is a eld, we may use Theorem 17.1 and show that f(x) is irreducible because it has
MEMORIAL UNIVERSITY OF NEWFOUNDLAND
MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS Section 5. Math 090 Fall 009 SOLUTIONS. a) Using long division of polynomials, we have x + x x x + ) x 4 4x + x + 0x x 4 6x
Chapter 2: Heat Conduction Equation
-1 General Relation for Fourier s Law of Heat Conduction - Heat Conduction Equation -3 Boundary Conditions and Initial Conditions -1 General Relation for Fourier s Law of Heat Conduction (1) The rate of
Example 1. Show that the shaded triangle is a (3, 4, 5) triangle.
Example 1. Show that the shaded triangle is a (3, 4, 5) triangle. Solution to Example 1. Show that the shaded triangle C is a (3, 4, 5)-triangle. E D t C 4 T t 4 4 Solution. Suppose each side of the square
LOWELL WEEKLY JOURNAL.
> LLL KLY L L x L L L L G K Y F 7 2 K LKL Y K «F «««««q 5 $ ) / «2 K) ««) 74 «G > x «LY K «! «KL K K K K K! ««x > x K! K ) 2 K «X! «K LK >> < >«««) «< >>«K«KLK < «4! «««#> ««!
M5 Simple Beam Theory (continued)
M5 Simple Beam Theory (continued) Reading: Crandall, Dahl and Lardner 7.-7.6 In the previous lecture we had reached the point of obtaining 5 equations, 5 unknowns by application of equations of elasticity
A.dr.rwarded to foreiirti count rie will be f 7 SOperann.. rsri--.-j- -.?- .JULY. 12, lsiii).,11,111. yc:tl crst.iif. lit. J. lor Sale... Kb l.
E E b g b E x Y b p p g b 2 x $ p 2 p p 6 p x b b p x p pp 5 b x b p Y Yg g pg 2 Dp g pb? xp p g G 2 p p x D D p 59 E 9pp b b x xp D p p? 8 5 2 pp E x z b x? p p Z 2 p p x p 9 p x p p EE E EY E G E p EQ
MATH Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 17
Dr. Pedro V squez UPRM P. V squez (UPRM) Conferencia 1/ 17 Quadratic programming MATH 6026 Equality constraints A general formulation of these problems is: min x 2R nq (x) = 1 2 x T Qx + x T c (1) subjec
and Union One end Inseparable." LOWELL. MICHIGAN. WEDNESDAY. JUNE HUMPHBHT'S HOMEOPATHIC SPECIFICS
Y J B B BD Y DDY 8 B F B F x F D > q q j 8 8 J 4 8 8 24 B j 88 4 4 4 8 q 8 bb B 6 B q B b b b B 4 B D J B B b B
" W I T H M I A L I O E T O W A R D istolste A N D O H A P l t T Y F O B, A I j L. ; " * Jm MVERSEO IT.
P Y V V 9 G G G -PP - P V P- P P G P -- P P P Y Y? P P < PG! P3 ZZ P? P? G X VP P P X G - V G & X V P P P V P» Y & V Q V V Y G G G? Y P P Y P V3»! V G G G G G # G G G - G V- G - +- - G G - G - G - - G
Integration - Past Edexcel Exam Questions
Integration - Past Edexcel Exam Questions 1. (a) Given that y = 5x 2 + 7x + 3, find i. - ii. - (b) ( 1 + 3 ) x 1 x dx. [4] 2. Question 2b - January 2005 2. The gradient of the curve C is given by The point
1. A polynomial p(x) in one variable x is an algebraic expression in x of the form
POLYNOMIALS Important Points 1. A polynomial p(x) in one variable x is an algebraic expression in x of the form p(x) = a nx n +a n-1x n-1 + a 2x 2 +a 1x 1 +a 0x 0 where a 0, a 1, a 2 a n are constants
L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank
G k y $5 y / >/ k «««# ) /% < # «/» Y»««««?# «< >«>» y k»» «k F 5 8 Y Y F G k F >«y y
ACHD Roadways to Bikeways Update June Hills Gate Dr. Ec ho Summit Pl. Star Ridge Ln. Sunrise View Ln. Eagle Pointe Pl.
v U v G G q G G z j v Q v v v v v v G v U v v v z K K z v J v v v G v v 16 z z v q v G v J J K:\_j\20\20987 - U\\ 1-4_24. - - 3:46 6/2/2017 O ( O) O z O O v v v v J J J G v O G J v z zz G v v Q zz / /
MATH 19520/51 Class 5
MATH 19520/51 Class 5 Minh-Tam Trinh University of Chicago 2017-10-04 1 Definition of partial derivatives. 2 Geometry of partial derivatives. 3 Higher derivatives. 4 Definition of a partial differential
MATH Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 17
MATH 6026 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 17 Quadratic programming uemath 6026 Equality constraints A general formulation of these problems is: min x 2R nq (x) = 1 2 x T Qx + x
JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 3 (First order equations (C)) A.J.Hobson
JUST THE MATHS UNIT NUMBER 15.3 ORDINARY DIFFERENTIAL EQUATIONS 3 (First order equations (C)) by A.J.Hobson 15.3.1 Linear equations 15.3.2 Bernouilli s equation 15.3.3 Exercises 15.3.4 Answers to exercises
' '-'in.-i 1 'iritt in \ rrivfi pr' 1 p. ru
V X X Y Y 7 VY Y Y F # < F V 6 7»< V q q $ $» q & V 7» Q F Y Q 6 Q Y F & Q &» & V V» Y V Y [ & Y V» & VV & F > V } & F Q \ Q \» Y / 7 F F V 7 7 x» > QX < #» > X >» < F & V F» > > # < q V 6 & Y Y q < &
Computations/Applications
Computations/Applications 1. Find the inverse of x + 1 in the ring F 5 [x]/(x 3 1). Solution: We use the Euclidean Algorithm: x 3 1 (x + 1)(x + 4x + 1) + 3 (x + 1) 3(x + ) + 0. Thus 3 (x 3 1) + (x + 1)(4x
Module 2: First-Order Partial Differential Equations
Module 2: First-Order Partial Differential Equations The mathematical formulations of many problems in science and engineering reduce to study of first-order PDEs. For instance, the study of first-order
MATH 614 Dynamical Systems and Chaos Lecture 3: Classification of fixed points.
MATH 614 Dynamical Systems and Chaos Lecture 3: Classification of fixed points. Periodic points Definition. A point x X is called a fixed point of a map f : X X if f(x) = x. A point x X is called a periodic
1 First Order Ordinary Differential Equation
1 Ordinary Differential Equation and Partial Differential Equations S. D. MANJAREKAR Department of Mathematics, Loknete Vyankatrao Hiray Mahavidyalaya Panchavati, Nashik (M.S.), India. shrimathematics@gmail.com
THE I Establiifrad June, 1893
89 : 8 Y Y 2 96 6 - - : - 2 q - 26 6 - - q 2 2 2 4 6 4«4 ' V () 8 () 6 64-4 '2" () 6 ( ) * 'V ( 4 ) 94-4 q ( / ) K ( x- 6% j 9*V 2'%" 222 27 q - - K 79-29 - K x 2 2 j - -% K 4% 2% 6% ' K - 2 47 x - - j
HIGHER-ORDER THEORIES
HIGHER-ORDER THEORIES THIRD-ORDER SHEAR DEFORMATION PLATE THEORY LAYERWISE LAMINATE THEORY J.N. Reddy 1 Third-Order Shear Deformation Plate Theory Assumed Displacement Field µ u(x y z t) u 0 (x y t) +
Sect Least Common Denominator
4 Sect.3 - Least Common Denominator Concept #1 Writing Equivalent Rational Expressions Two fractions are equivalent if they are equal. In other words, they are equivalent if they both reduce to the same
Unit IV State of stress in Three Dimensions
Unit IV State of stress in Three Dimensions State of stress in Three Dimensions References Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength
MTH310 EXAM 2 REVIEW
MTH310 EXAM 2 REVIEW SA LI 4.1 Polynomial Arithmetic and the Division Algorithm A. Polynomial Arithmetic *Polynomial Rings If R is a ring, then there exists a ring T containing an element x that is not
s f o r s o l v i n g t h e n o n l i n
M M R M q q D O : q 7 8 q q q M q x- q M M M 9 R R D O : 78 / x q D MO : M 7 9 8 / D q P F x z M q M q D T P - z P G S F q q q q q q q D q q PZ w - z q - P q q q w q q q w q q w z q - w P w q w w - w w
IOAN ŞERDEAN, DANIEL SITARU
Romanian Mathematical Magazine Web: http://www.ssmrmh.ro The Author: This article is published with open access. TRIGONOMETRIC SUBSTITUTIONS IN PROBLEM SOLVING PART IOAN ŞERDEAN, DANIEL SITARU Abstract.
EVALUATING A POLYNOMIAL
EVALUATING A POLYNOMIAL Consider having a polynomial p(x) = a + a 1 x + a 2 x 2 + + a n x n which you need to evaluate for many values of x. How do you evaluate it? This may seem a strange question, but
'g$-y- )4r0---aooaOC- r. o. A9.Heo'i.OMaoa)a.9. w?s. R ; : ; 09a:.aaa'. L31ia. a.j-rf-boam- WaTaB Z. rf5. ,at. f2 OOMS09r.)tafi.aaatrnvrtt.f.ai. l"s!
P K PD K D 0 D X P P Z $ X P R YR D z x R x P K 0 K x K K 0 x 0 0 0 0 0 Z x 0 0 0 0 0 x x 0 00 0 P 0 K K 0 0 0 K K 0 0 0 K K X G Z 0 0 0 K 0 0 P x x q P x R 0 0 K0 x q x P 0 0 P G 00 R 0 K x 0 0 0 Z 0
Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt
Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain
Exercise 1: Inertia moment of a simple pendulum
Exercise : Inertia moment of a simple pendulum A simple pendulum is represented in Figure. Three reference frames are introduced: R is the fixed/inertial RF, with origin in the rotation center and i along
Two-dimensional flow in a porous medium with general anisotropy
Two-dimensional flow in a porous medium with general anisotropy P.A. Tyvand & A.R.F. Storhaug Norwegian University of Life Sciences 143 Ås Norway peder.tyvand@umb.no 1 Darcy s law for flow in an isotropic
AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1
AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Non-conservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01
Simplified Analytical Model of a Six-Degree-of-Freedom Large-Gap Magnetic Suspension System
NASA Technical Memorandum 112868 Simplified Analytical Model of a Six-Degree-of-Freedom Large-Gap Magnetic Suspension System Nelson J. Groom Langley Research Center, Hampton, Virginia June 1997 National