Physics 207 Lecture 13. Lecture 13


 Cecilia O’Neal’
 6 years ago
 Views:
Transcription
1 Physcs 07 Lecture 3 Goals: Lecture 3 Chapter 0 Understand the relatonshp between moton and energy Defne Potental Energy n a Hooke s Law sprng Develop and explot conservaton of energy prncple n problem solvng Chapter Understand the relatonshp between force, dsplacement and work Assgnment: HW6 due Wednesday, Feb. For Thursday: Read all of Chapter Physcs 07: Lecture 3, Pg Energy mg y= ½ m (v y  v y0 ) mg (y f y ) = ½ m ( v yf v y ) A relatonshp between ydsplacement and change n the yspeed Rearrangng to gve ntal on the left and fnal on the rght ½ m v y + mgy = ½ m v yf + mgy f We now defne mgy as the gravtatonal potental energy Physcs 07: Lecture 3, Pg Page
2 Physcs 07 Lecture 3 Energy Notce that f we only consder gravty as the external force then the x and z veloctes reman constant To ½ m v y + mgy = ½ m v yf + mgy f Add ½ m v x + ½ m v z and ½ m v xf + ½ m v zf ½ m v + mgy = ½ m v f + mgy f where v = v x +v y + v z ½ m v terms are defned to be knetc energes (A scalar quantty of moton) Physcs 07: Lecture 3, Pg 3 Energy If only conservatve forces are present, the total energy (sum of potental, U, and knetc energes, K) ) of a system s conserved For an object n a gravtatonal feld ½ m v y + mgy = ½ m v yf + mgy f K ½ mv U mgy E mech = K + U E mech = K + U = constant K and U may change, but E mech = K + U remans a fxed value. E mech s called mechancal energy Physcs 07: Lecture 3, Pg 4 Page
3 Physcs 07 Lecture 3 Example of a conservatve system: The smple pendulum. Suppose we release a mass m from rest a dstance h above ts lowest possble pont. What s the maxmum speed of the mass and where does ths happen? To what heght h does t rse on the other sde? m h h v Physcs 07: Lecture 3, Pg 5 Example: The smple pendulum. What s the maxmum speed of the mass and where does ths happen? E = K + U = constant and so K s maxmum when U s a mnmum. y y=h y=0 Physcs 07: Lecture 3, Pg 6 Page 3
4 Physcs 07 Lecture 3 Example: The smple pendulum. What s the maxmum speed of the mass and where does ths happen? E = K + U = constant and so K s maxmum when U s a mnmum E = mgh at top E = mgh = ½ mv at bottom of the swng y y=h y=0 h v Physcs 07: Lecture 3, Pg 7 Example: The smple pendulum. To what heght h does t rse on the other sde? E = K + U = constant and so when U s maxmum agan (when K = 0) t wll be at ts hghest pont. E = mgh = mgh or h = h y y=h =h y=0 Physcs 07: Lecture 3, Pg 8 Page 4
5 Physcs 07 Lecture 3 Example The LooptheLoop agan To complete the loop the loop, how hgh do we have to let the release the car? Condton for completng the loop the loop: Crcular moton at the top of the loop (a c = v / R) Use fact that E = U + K = constant! y=0 U b =mgh Recall that g s the source of Car has mass m U=mgR the centrpetal acceleraton and N just goes to zero s the lmtng case. h? Also recall the mnmum R speed at the top s v = (A) R (B) 3R (C) 5/ R (D) 3/ R Physcs 07: Lecture 3, Pg 9 gr Example The LooptheLoop agan Use E = K + U = constant mgh + 0 = mg R + ½ mv mgh = mg R + ½ mgr = 5/ mgr v = gr h = 5/ R h? R Physcs 07: Lecture 3, Pg 0 Page 5
6 Physcs 07 Lecture 3 What speed wll the skateboarder reach halfway down the hll f there s no frcton and the skateboarder starts at rest? Assume we can treat the skateboarder as a pont Assume zero of gravtatonal U s at bottom of the hll R=0 m m = 5 kg 30 R=0 m Example Skateboard y=0 Physcs 07: Lecture 3, Pg What speed wll the skateboarder reach halfway down the hll f there s no frcton and the skateboarder starts at rest? Assume we can treat the skateboarder as pont Assume zero of gravtatonal U s at bottom of the hll R=0 m m = 5 kg 30 R=0 m Example Skateboard Use E = K + U = constant E before = E after 0 + m g R = ½ mv + mgr (sn 30 ) mgr/ = ½ mv gr = v v= (gr) ½ v = (0 x 0) ½ = 0 m/s Physcs 07: Lecture 3, Pg Page 6
7 Physcs 07 Lecture 3 Potental Energy, Energy Transfer and Path A ball of mass m, ntally at rest, s released and follows three dfference paths. All surfaces are frctonless. The ball s dropped. The ball sldes down a straght nclne 3. The ball sldes down a curved nclne After travelng a vertcal dstance h, how do the three speeds compare? 3 h (A) > > 3 (B) 3 > > (C) 3 = = (D) Can t tell Physcs 07: Lecture 3, Pg 3 Potental Energy, Energy Transfer and Path A ball of mass m, ntally at rest, s released and follows three dfference paths. All surfaces are frctonless. The ball s dropped. The ball sldes down a straght nclne 3. The ball sldes down a curved nclne After travelng a vertcal dstance h, how do the three speeds compare? 3 h (A) > > 3 (B) 3 > > (C) 3 = = (D) Can t tell Physcs 07: Lecture 3, Pg 4 Page 7
8 Physcs 07 Lecture 3 Example Skateboard What s the normal force on the skate boarder? N R=0 m m = 5 kg mg R=0 m Physcs 07: Lecture 3, Pg 5 Example Skateboard Now what s the normal force on the skate boarder? N R=0 m m = 5 kg 30 R=0 m 60 mg Σ F r = ma r = m v / R = N mg cos 60 N = m v /R + mg cos 60 N = 5 00 / (0.87) N = =470 Newtons Physcs 07: Lecture 3, Pg 6 Page 8
9 Physcs 07 Lecture 3 Elastc vs. Inelastc Collsons A collson s sad to be elastc when energy as well as momentum s conserved before and after the collson. K before = K after Carts colldng wth a perfect sprng, bllard balls, etc. v Physcs 07: Lecture 3, Pg 7 Elastc vs. Inelastc Collsons A collson s sad to be nelastc when energy s not conserved before and after the collson, but momentum s conserved. K before K after Car crashes, collsons where objects stck together, etc. Physcs 07: Lecture 3, Pg 8 Page 9
10 Physcs 07 Lecture 3 Inelastc collson n D: Example A block of mass M s ntally at rest on a frctonless horzontal surface. A bullet of mass m s fred at the block wth a muzzle velocty (speed) v. The bullet lodges n the block, and the block ends up wth a speed V. What s the ntal energy of the system? What s the fnal energy of the system? Is energy conserved? v V x before after Physcs 07: Lecture 3, Pg 9 Inelastc collson n D: Example What s the momentum of the bullet wth speed v? What s the ntal energy of the system? mv r m v r v r = mv What s the fnal energy of the system? ( m + M )V Is momentum conserved (yes)? m v + M 0 = ( m + M )V Is energy conserved? Examne E before E after mv [( m + M )V]V = mv m ( mv) m + M m v = mv ( m + M ) v No! V before after x Physcs 07: Lecture 3, Pg 0 Page 0
11 Physcs 07 Lecture 3 Example Fully Elastc Collson Suppose I have dentcal bumper cars. One s motonless and the other s approachng t wth velocty v. If they collde elastcally, what s the fnal velocty of each car? Identcal means m = m = m Intally v Green = v and v Red = 0 COM mv + 0 = mv f + mv f v = v f + v f COE ½ mv = ½ mv f + ½ mv f v = v f + v f v = (v f + v f ) = v f +v f v f + v f v f v f = 0 Soln : v f = 0 and v f = v Soln : v f = 0 and v f = v Physcs 07: Lecture 3, Pg Varable force devces: Hooke s Law Sprngs Sprngs are everywhere, (probe mcroscopes, DNA, an effectve nteracton between atoms) F In ths sprng, the magntude of the force ncreases as the sprng s further compressed (a dsplacement). Hooke s Law, F s =  k s s Rest or equlbrum poston s s the amount the sprng s stretched or compressed from t restng poston. Physcs 07: Lecture 3, Pg Page
12 Physcs 07 Lecture 3 Exercse Hooke s Law 8 m 9 m What s the sprng constant k? 50 kg (A) 50 N/m (B) 00 N/m (C) 400 N/m (D) 500 N/m Physcs 07: Lecture 3, Pg 3 Exercse Hooke s Law 8 m 9 m What s the sprng constant k? 50 kg F sprng ΣF = 0 = F s mg = k s  mg Use k = mg/ s = 500 N /.0 m (A) 50 N/m (B) 00 N/m (C) 400 N/m (D) 500 N/m mg Physcs 07: Lecture 3, Pg 4 Page
13 Physcs 07 Lecture 3 Fs relaton for a foot arch: Force (N) Dsplacement (mm) Physcs 07: Lecture 3, Pg 5 Force vs. Energy for a Hooke s Law sprng F =  k (x x equlbrum ) F = ma = m dv/dt = m (dv/dx dx/dt) = m dv/dx v = mv dv/dx So  k (x x equlbrum ) dx = mv dv Let u = x x eq. & du = dx f xf vf m ku du= mv dv x kx + kx = v x f ku x = mv mv f v v f mv kx + mv = kx + f mv f Physcs 07: Lecture 3, Pg 6 Page 3
14 Physcs 07 Lecture 3 Energy for a Hooke s Law sprng kx + mv = kx + f mv f Assocate ½ kx wth the potental energy of the sprng m U s + K = U + sf K f Hooke s Law sprngs are conservatve so the mechancal energy s constant Physcs 07: Lecture 3, Pg 7 In general: Energy dagrams Energy Ball fallng E mech K U Energy Sprng/Mass system E mech K U y s Physcs 07: Lecture 3, Pg 8 Page 4
15 Physcs 07 Lecture 3 Energy dagrams Sprng/Mass/Gravty system Force sprng alone y mg sprng & gravty m Energy E mech K K U g U sprng U Total y Physcs 07: Lecture 3, Pg 9 Equlbrum Example Sprng: F x = 0 => du / dx = 0 for x=x eq The sprng s n equlbrum poston In general: du / dx = 0 equlbrum for ANY functon establshes U U stable equlbrum unstable equlbrum Physcs 07: Lecture 3, Pg 30 Page 5
16 Physcs 07 Lecture 3 Comment on Energy Conservaton We have seen that the total knetc energy of a system undergong an nelastc collson s not conserved. Mechancal energy s lost: Heat (frcton) Bendng of metal and deformaton Knetc energy s not conserved by these nonconservatve forces occurrng durng the collson! Momentum along a specfc drecton s conserved when there are no external forces actng n ths drecton. In general, easer to satsfy conservaton of momentum than energy conservaton. Physcs 07: Lecture 3, Pg 3 Lecture 3 Assgnment: HW6 due Wednesday / For Monday: Read all of chapter Physcs 07: Lecture 3, Pg 3 Page 6
Physics 207, Lecture 13, Oct. 15. Energy
Physcs 07 Lecture 3 Physcs 07, Lecture 3, Oct. 5 Goals: Chapter 0 Understand the relatonshp between moton and energy Dene Potental Energy n a Hooke s Law sprng Deelop and explot conseraton o energy prncple
More informationPhysics 207: Lecture 20. Today s Agenda Homework for Monday
Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems
More informationStudy Guide For Exam Two
Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 0106 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force
More informationChapter 8: Potential Energy and The Conservation of Total Energy
Chapter 8: Potental Energy and The Conservaton o Total Energy Work and knetc energy are energes o moton. K K K mv r v v F dr Potental energy s an energy that depends on locaton. Dmenson F x d U( x) dx
More informationChapter 3 and Chapter 4
Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy
More informationin state i at t i, Initial State E = E i
Physcs 01, Lecture 1 Today s Topcs n More Energy and Work (chapters 7 & 8) n Conservatve Work and Potental Energy n Sprng Force and Sprng (Elastc) Potental Energy n Conservaton of Mechanc Energy n Exercse
More informationPHYSICS 231 Review problems for midterm 2
PHYSICS 31 Revew problems for mdterm Topc 5: Energy and Work and Power Topc 6: Momentum and Collsons Topc 7: Oscllatons (sprng and pendulum) Topc 8: Rotatonal Moton The nd exam wll be Wednesday October
More informationPHYSICS 231 Lecture 18: equilibrium & revision
PHYSICS 231 Lecture 18: equlbrum & revson Remco Zegers Walkn hour: Thursday 11:3013:30 am Helproom 1 gravtaton Only f an object s near the surface of earth one can use: F gravty =mg wth g=9.81 m/s 2
More informationConservation of Energy
Lecture 3 Chapter 8 Physcs I 0.3.03 Conservaton o Energy Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcsall.html 95.4, Fall 03,
More informationCHAPTER 8 Potential Energy and Conservation of Energy
CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and nonconservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated
More informationChapter 8. Potential Energy and Conservation of Energy
Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and nonconservatve forces Mechancal Energy Conservaton of Mechancal
More informationEMU Physics Department
Physcs 0 Lecture 8 Potental Energy and Conservaton Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aovgun.com Denton o Work W q The work, W, done by a constant orce on an object s dened as the product
More informationLecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics
Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn
More informationYou will analyze the motion of the block at different moments using the law of conservation of energy.
Physcs 00A Homework 7 Chapter 8 Where s the Energy? In ths problem, we wll consder the ollowng stuaton as depcted n the dagram: A block o mass m sldes at a speed v along a horzontal smooth table. It next
More informationPage 1. Physics 131: Lecture 14. Today s Agenda. Things that stay the same. Impulse and Momentum Nonconstant forces
Physcs 131: Lecture 14 Today s Agenda Imulse and Momentum Nonconstant forces Imulsemomentum momentum thm Conservaton of Lnear momentum Eternal/Internal forces Eamles Physcs 201: Lecture 1, Pg 1 Physcs
More informationWeek3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity
Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1s tme nterval. The velocty of the partcle
More informationPHYS 1441 Section 002 Lecture #16
PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Nonconservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!
More informationPhysics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1
Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. MultPartcle
More informationRecitation: Energy, Phys Energies. 1.2 Three stones. 1. Energy. 1. An acorn falling from an oak tree onto the sidewalk.
Rectaton: Energy, Phys 207. Energy. Energes. An acorn fallng from an oak tree onto the sdewalk. The acorn ntal has gravtatonal potental energy. As t falls, t converts ths energy to knetc. When t hts the
More informationSpring Force and Power
Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems
More informationWeek 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2
Lnear omentum Week 8: Chapter 9 Lnear omentum and Collsons The lnear momentum of a partcle, or an object that can be modeled as a partcle, of mass m movng wth a velocty v s defned to be the product of
More informationPHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014
PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 WorkKnetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o
More informationPhysics 181. Particle Systems
Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system
More informationChapter 07: Kinetic Energy and Work
Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.
More informationPhysics 207 Lecture 6
Physcs 207 Lecture 6 Agenda: Physcs 207, Lecture 6, Sept. 25 Chapter 4 Frames of reference Chapter 5 ewton s Law Mass Inerta s (contact and noncontact) Frcton (a external force that opposes moton) Free
More informationFirst Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.
Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act
More informationPeriod & Frequency. Work and Energy. Methods of Energy Transfer: Energy. WorkKE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?
Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F
More information10/23/2003 PHY Lecture 14R 1
Announcements. Remember  Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 94 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth
More informationK = 100 J. [kg (m/s) ] K = mv = (0.15)(36.5) !!! Lethal energies. m [kg ] J s (Joule) Kinetic Energy (energy of motion) E or KE.
Knetc Energy (energy of moton) E or KE K = m v = m(v + v y + v z ) eample baseball m=0.5 kg ptche at v = 69 mph = 36.5 m/s K = mv = (0.5)(36.5) [kg (m/s) ] Unts m [kg ] J s (Joule) v = 69 mph K = 00 J
More informationGround Rules. PC1221 Fundamentals of Physics I. Linear Momentum, cont. Linear Momentum. Lectures 17 and 18. Linear Momentum and Collisions
PC Fundamentals of Physcs I Lectures 7 and 8 Lnear omentum and Collsons Dr Tay Seng Chuan Ground Rules Swtch off your handphone and pager Swtch off your laptop computer and keep t No talkng whle lecture
More informationPhysics for Scientists and Engineers. Chapter 9 Impulse and Momentum
Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum
More informationChapter 8 Potential Energy and Conservation of Energy Important Terms (For chapters 7 and 8)
Pro. Dr. I. Nasser Chapter8_I November 3, 07 Chapter 8 Potental Energy and Conservaton o Energy Important Terms (For chapters 7 and 8) conservatve orce: a orce whch does wor on an object whch s ndependent
More informationPage 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved.
Physcs 3: Lecture 5 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum
More informationAngular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004
Angular Momentum and Fxed Axs Rotaton 8.01t Nov 10, 2004 Dynamcs: Translatonal and Rotatonal Moton Translatonal Dynamcs Total Force Torque Angular Momentum about Dynamcs of Rotaton F ext Momentum of a
More informationTIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam Secton Verson October 8, 03 Total Weght: 00 ponts. Check your examnaton or completeness pror to startng. There are a total o nne
More information9/19/2013. PHY 113 C General Physics I 11 AM12:15 PM MWF Olin 101
PHY 3 C General Physcs I AM:5 PM MF Oln 0 Plan or Lecture 8: Chapter 8  Conservaton o energy. Potental and knetc energy or conservatve orces. Energy and nonconservatve orces 3. Power PHY 3 C Fall 03
More informationChapter 7. Potential Energy and Conservation of Energy
Chapter 7 Potental Energy and Conservaton o Energy 1 Forms o Energy There are many orms o energy, but they can all be put nto two categores Knetc Knetc energy s energy o moton Potental Potental energy
More informationConservation of Energy
Conservaton o nergy The total energy o a system can change only by amounts o energy that are transerred nto or out o the system W mec th nt Ths s one o the great conservaton laws n nature! Other conservaton
More informationEnergy and Energy Transfer
Energy and Energy Transer Chapter 7 Scalar Product (Dot) Work Done by a Constant Force F s constant over the dsplacement r 1 Denton o the scalar (dot) product o vectors Scalar product o unt vectors = 1
More information10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 913, 1516
0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 93, 56. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03  Lecture 7 0/4/03
More informationPHYS 1441 Section 002 Lecture #15
PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam
More informationτ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1
A mass s attached to a long, massless rod. The mass s close to one end of the rod. Is t easer to balance the rod on end wth the mass near the top or near the bottom? Hnt: Small α means sluggsh behavor
More informationCHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)
CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: mgk F 1 x O
More informationDisplacement at any time. Velocity at any displacement in the xdirection u 2 = v ] + 2 a x ( )
The Language of Physcs Knematcs The branch of mechancs that descrbes the moton of a body wthout regard to the cause of that moton (p. 39). Average velocty The average rate at whch the dsplacement vector
More informationSUMMARY Phys 2113 (General Physics I) Compiled by Prof. Erickson. v = r t. v = lim t 0. p = mv. a = v. a = lim
SUMMARY Phys 2113 (General Physcs I) Compled by Prof. Erckson Poston Vector (m): r = xˆx + yŷ + zẑ Average Velocty (m/s): v = r Instantaneous Velocty (m/s): v = lm 0 r = ṙ Lnear Momentum (kg m/s): p =
More informationEN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st
EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to
More informationPY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg
PY2101 Classcal Mechancs Dr. Síle Nc Chormac, Room 215 D Kane Bldg s.ncchormac@ucc.e Lectures stll some ssues to resolve. Slots shared between PY2101 and PY2104. Hope to have t fnalsed by tomorrow. Mondays
More informationcoordinates. Then, the position vectors are described by
Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,
More informationPart C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis
Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta
More informationPhysics 131: Lecture 16. Today s Agenda
Physcs 131: Lecture 16 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton t o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum
More informationChapter 11 Angular Momentum
Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle
More informationLinear Momentum and Collisions
Lnear Momentum and Collsons Chater 9 Lnear Momentum [kg m/s] x y mv x mv y Newton s nd Law n terms o momentum: Imulse I  [kg m/s] I t t Fdt I = area under curve bounded by t axs ImulseMomentum Theorem
More informationChapter Seven  Potential Energy and Conservation of Energy
Chapter Seven  Potental Energy and Conservaton o Energy 7 1 Potental Energy Potental energy. e wll nd that the potental energy o a system can only be assocated wth specc types o orces actng between members
More informationPhysics 111 Final Exam, Fall 2013, Version A
Physcs 111 Fnal Exam, Fall 013, Verson A Name (Prnt): 4 Dgt ID: Secton: Honors Code Pledge: For ethcal and farness reasons all students are pledged to comply wth the provsons of the NJIT Academc Honor
More information10/9/2003 PHY Lecture 11 1
Announcements 1. Physc Colloquum today The Physcs and Analyss of Nonnvasve Optcal Imagng. Today s lecture Bref revew of momentum & collsons Example HW problems Introducton to rotatons Defnton of angular
More informationPhysics 5153 Classical Mechanics. Principle of Virtual Work1
P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal
More informationPhysics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.
Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays
More informationPhysics 105: Mechanics Lecture 13
Physcs 05: Mechancs Lecture 3 Wenda Cao NJIT Physcs Department Momentum and Momentum Conseraton Momentum Impulse Conseraton o Momentum Collsons Lnear Momentum A new undamental quantty, lke orce, energy
More informationLinear Momentum. Center of Mass.
Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html
More informationPhysics 101 Lecture 9 Linear Momentum and Collisions
Physcs 0 Lecture 9 Lnear Momentum and Collsons Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum and Collsons q q q q q q q Conseraton o Energy Momentum Impulse Conseraton o Momentum D Collsons
More information11. Dynamics in Rotating Frames of Reference
Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons
More informationChapter 3. r r. Position, Velocity, and Acceleration Revisited
Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector
More informationA Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph
A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular
More informationEMU Physics Department.
Physcs 0 Lecture 9 Lnear Momentum and Collsons Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum q Conseraton o Energy q Momentum q Impulse q Conseraton o Momentum q D Collsons
More informationPhysics 111: Mechanics Lecture 11
Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 RgdBody Rotaton
More informationSpring 2002 Lecture #13
4450 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallelas Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the mdterm
More informationPhysics 106a, Caltech 11 October, Lecture 4: Constraints, Virtual Work, etc. Constraints
Physcs 106a, Caltech 11 October, 2018 Lecture 4: Constrants, Vrtual Work, etc. Many, f not all, dynamcal problems we want to solve are constraned: not all of the possble 3 coordnates for M partcles (or
More informationPhysics 2A Chapters 6  Work & Energy Fall 2017
Physcs A Chapters 6  Work & Energy Fall 017 These notes are eght pages. A quck summary: The workenergy theorem s a combnaton o Chap and Chap 4 equatons. Work s dened as the product o the orce actng on
More informationPHYS 705: Classical Mechanics. Newtonian Mechanics
1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]
More informationENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15
NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound
More informationONEDIMENSIONAL COLLISIONS
Purpose Theory ONEDIMENSIONAL COLLISIONS a. To very the law o conservaton o lnear momentum n onedmensonal collsons. b. To study conservaton o energy and lnear momentum n both elastc and nelastc onedmensonal
More informationCHAPTER 7 ENERGY BALANCES SYSTEM SYSTEM. * What is energy? * Forms of Energy.  Kinetic energy (KE)  Potential energy (PE) PE = mgz
SYSTM CHAPTR 7 NRGY BALANCS 1 7.17. SYSTM nergy & 1st Law of Thermodynamcs * What s energy? * Forms of nergy  Knetc energy (K) K 1 mv  Potental energy (P) P mgz  Internal energy (U) * Total nergy,
More informationCHAPTER 10 ROTATIONAL MOTION
CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n xy plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The
More informationChapter 7: Conservation of Energy
Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant
More informationClassical Mechanics Virtual Work & d Alembert s Principle
Classcal Mechancs Vrtual Work & d Alembert s Prncple Dpan Kumar Ghosh UMDAE Centre for Excellence n Basc Scences Kalna, Mumba 400098 August 15, 2016 1 Constrants Moton of a system of partcles s often
More informationWeek 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product
The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the
More informationPhysics 114 Exam 2 Fall 2014 Solutions. Name:
Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,
More informationPhysics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian1
P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the
More informationPlease initial the statement below to show that you have read it
EN40: Dynamcs and Vbratons Mdterm Examnaton Thursday March 5 009 Dvson of Engneerng rown Unversty NME: Isaac Newton General Instructons No collaboraton of any knd s permtted on ths examnaton. You may brng
More informationWeek 6, Chapter 7 Sect 15
Week 6, Chapter 7 Sect 15 Work and Knetc Energy Lecture Quz The frctonal force of the floor on a large sutcase s least when the sutcase s A.pushed by a force parallel to the floor. B.dragged by a force
More informationPhysics 115. Molecular motion and temperature Phase equilibrium, evaporation
Physcs 115 General Physcs II Sesson 9 Molecular moton and temperature Phase equlbrum, evaporaton R. J. Wlkes Emal: phy115a@u.washngton.edu Home page: http://courses.washngton.edu/phy115a/ 4/14/14 Physcs
More informationPHYS 1443 Section 002
PHYS 443 Secton 00 Lecture #6 Wednesday, Nov. 5, 008 Dr. Jae Yu Collsons Elastc and Inelastc Collsons Two Dmensonal Collsons Center o ass Fundamentals o Rotatonal otons Wednesday, Nov. 5, 008 PHYS PHYS
More informationPhysics 114 Exam 2 Spring Name:
Physcs 114 Exam Sprng 013 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red wth the amount beng
More information1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F)
EN40: Dynacs and Vbratons Hoework 4: Work, Energy and Lnear Moentu Due Frday March 6 th School of Engneerng Brown Unversty 1. The Rydberg potental s a sple odel of atoc nteractons. It specfes the potental
More informationWork is the change in energy of a system (neglecting heat transfer). To examine what could
Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes
More informationHow does the momentum before an elastic and an inelastic collision compare to the momentum after the collision?
Experent 9 Conseraton o Lnear Moentu  Collsons In ths experent you wll be ntroduced to the denton o lnear oentu. You wll learn the derence between an elastc and an nelastc collson. You wll explore how
More informationModeling of Dynamic Systems
Modelng of Dynamc Systems Ref: Control System Engneerng Norman Nse : Chapters & 3 Chapter objectves : Revew the Laplace transform Learn how to fnd a mathematcal model, called a transfer functon Learn how
More informationChapter 5. Answers to Even Numbered Problems m kj. 6. (a) 900 J (b) (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J. 10.
Answers to Even Numbered Problems Chapter 5. 3.6 m 4..6 J 6. (a) 9 J (b).383 8. (a) 3.9 J (b) (c) (d) 3.9 J. 6 m s. (a) 68 J (b) 84 J (c) 5 J (d) 48 J (e) 5.64 m s 4. 9. J 6. (a). J (b) 5. m s (c) 6.3
More informationPHYSICS 203NYA05 MECHANICS
PHYSICS 03NYA05 MECHANICS PROF. S.D. MANOLI PHYSICS & CHEMISTRY CHAMPLAIN  ST. LAWRENCE 790 NÉRÉETREMBLAY QUÉBEC, QC GV 4K TELEPHONE: 48.656.69 EXT. 449 EMAIL: smanol@slc.qc.ca WEBPAGE: http:/web.slc.qc.ca/smanol/
More informationp p +... = p j + p Conservation Laws in Physics q Physical states, process, and state quantities: Physics 201, Lecture 14 Today s Topics
Physcs 0, Lecture 4 Conseraton Laws n Physcs q Physcal states, process, and state quanttes: Today s Topcs Partcle Syste n state Process Partcle Syste n state q Lnear Moentu And Collsons (Chapter 9.9.4)
More informationLecture 22: Potential Energy
Lecture : Potental Energy We have already studed the workenergy theorem, whch relates the total work done on an object to the change n knetc energy: Wtot = KE For a conservatve orce, the work done by
More informationSupplemental Instruction sessions next week
Homework #4 Wrtten homework due now Onlne homework due on Tue Mar 3 by 8 am Exam 1 Answer keys and scores wll be posted by end of the week Supplemental Instructon sessons next week Wednesday 8:45 10:00
More informationSCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ
s SCHOOL OF COMPUTING, ENGINEERING ND MTHEMTICS SEMESTER EXMINTIONS 011/01 DYNMICS ME47 DR. N.D.D. MICHÉ Tme allowed: THREE hours nswer: ny FOUR from SIX questons Each queston carres 5 marks Ths s a CLOSEDBOOK
More informationMechanics Cycle 3 Chapter 9++ Chapter 9++
Chapter 9++ More on Knetc Energy and Potental Energy BACK TO THE FUTURE I++ More Predctons wth Energy Conservaton Revst: Knetc energy for rotaton Potental energy M total g y CM for a body n constant gravty
More informationRETURN ONLY THE SCANTRON SHEET!
Andrzej Czajkowsk PHY/ exam Page out o Prncples o Physcs I PHY PHY Instructor: Dr. Andrzej Czajkowsk Fnal Exam December Closed book exam pages questons o equal value 5 correct answers pass the test! Duraton:
More informationPhysics 2A Chapter 3 HW Solutions
Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C
More informationName (print neatly): Section #: First, write your name on this sheet and on the Scantron Card. The Physics faculty would like to help you do well:
Name (prnt neatly): Secton #: Physcs 111 Exam Frst, wrte your name on ths sheet and on the Scantron Card. The Physcs faculty would lke to help you do well: 1. Budget your tme: 80 mnutes/0 questons=4 mn
More informationCenter of Mass and Linear Momentum
PH 2212A Fall 2014 Center of Mass and Lnear Momentum Lectures 1415 Chapter 9 (Hallday/Resnck/Walker, Fundamentals of Physcs 9 th edton) 1 Chapter 9 Center of Mass and Lnear Momentum In ths chapter we
More informationAP Physics 1 & 2 Summer Assignment
AP Physcs 1 & 2 Summer Assgnment AP Physcs 1 requres an exceptonal profcency n algebra, trgonometry, and geometry. It was desgned by a select group of college professors and hgh school scence teachers
More informationAngular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 )
Angular momentum Instructor: Dr. Ho Lam TAM ( 譚海嵐 ) Physcs Enhancement Programme or Gted Students The Hong Kong Academy or Gted Educaton and Department o Physcs, HKBU Department o Physcs Hong Kong Baptst
More information