# University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1

Size: px
Start display at page:

Download "University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1"

Transcription

1 University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING ME Fluid Mechanics Lecture notes Chapter 1 Introduction and fluid properties Prepared by : Dr. N. Ait Messaoudene Based on: Fundamentals of Fluid Mechanics Munson; Young; Okiishi; Huebsch, 6 th Edition, John Willey and Sons, st semester

2 What is Fluid Mechanics? First, what is a fluid? Three common states of matter are solid, liquid, and gas. A fluid is either a liquid or a gas. If surface effects are not present, flow behaves similarly in all common fluids, whether gases or liquids. Formal definition of a fluid - A fluid is a substance which deforms continuously under the application of a shear stress.

3 Definition of stress - A stress is defined as a force per unit area, acting on an infinitesimal surface element. Stresses have both magnitude (force per unit area) and direction, and the direction is relative to the surface on which the stress acts. There are normal stresses and tangential stresses. Pressure is an example of a normal stress, and acts inward, toward the surface, and perpendicular to the surface. A shear stress is an example of a tangential stress, i.e. it acts along the surface, parallel to the surface. Friction due to fluid viscosity is the primary source of shear stresses in a fluid.

4 Free body diagram for a fluid particle at rest. A fluid at rest can have only normal stresses, since a fluid at rest cannot resist a shear stress. In this case, the sum of all the forces must balance the weight of the fluid element. This condition is known as hydrostatics. Here, pressure is the only normal stress which exists. Free body diagram for a fluid particle in motion. Since the fluid is in motion, it can have both normal and shear stresses, as shown by the free body diagram. The vector sum of all forces acting on the fluid element must equal the mass of the element times its acceleration (Newton's second law).

5 Next, what is Fluid mechanics? Mechanics is essentially the application of the laws of force and motion. Conventionally, it is divided into two branches, statics and dynamics. Applying this to fluids two branches of fluid mechanics: Fluid statics or hydrostatics is the study of fluids at rest. The main equation required for this is Newton's second law for non-accelerating bodies, i.e. Fluid dynamics is the study of fluids in motion. The main equation required for this is Newton's second law for accelerating bodies, i.e.

6 Examples of problems that can be solved using fluid mechanics

7 PROPERTIES OF FLUIDS 1. Density, Specific Weight, Relative Density Density (ρ) = mass per unit volume of substance = δm/δv; [ρ] = [ML -3 ]. Variation of density with temperature for water Specific volume ( v) = Volume of fluid / mass of fluid = 1 / ρ Specific weight (γ) = force exerted by the earth's gravity upon a unit volume of the substance = ρg; [γ] = [ML -2 T -2 ]. Relative density (specific gravity) = ratio of mass density of the substance to that of water at a standard temperature and pressure = ρ/ρ w (non-dimensional).

8 2. Viscosity Viscosity is a measure of the importance of friction in fluid flow. Consider, for example, a fluid in two-dimensional steady shear between two parallel plates, as shown below. The bottom plate is fixed, while the upper plate is moving at a steady speed of U. the velocity of the fluid matches that of the wall at both the top and bottom walls. This is known as the no slip condition In fluid mechanics, shear stress, defined as a tangential force per unit area, is used rather than force itself, and is commonly denoted by τ. In simple shear flow such as this, the shear stress is directly proportional to the rate of deformation of the fluid, which in this case is equal to the slope of the velocity profile τ U/b.

9 Introducing the constant of proportionality μ, which is called the coefficient of viscosity; the Newton's equation of viscosity states that: τ = μ du/dy Fluids that follow the above relation are called Newtonian fluids. The coefficient of viscosity is also known as dynamic viscosity; its dimensions are [μ] = [ML -1 T -1 ] while its SI units are Pa-s. An ideal fluid is one which has zero viscosity, i.e., inviscid or non-viscous. Sometimes, it is more convenient to use kinematic viscosity, denoted by Greek letter "nu", which is simply defined as the viscosity divided by density, i.e. ν= μ/ρ Kinematic viscosity has the dimensions [ν] = [L 2 T -1 ], and its SI units are m 2 /s.

10 Newtonian fluids Typically, as temperature increases, the viscosity will decrease for a liquid, but will increase for a gas.

11 The fluid is non-newtonian if the relation between shear stress and shear strain rate is non-linear. e.g. Latex paint e.g. Toothpaste e.g. Quick sand

12 3. Vapor Pressure Vapor pressure is defined as the pressure at which a liquid will boil (vaporize). Cavitation phenomenon 4. Perfect Gas Law Very often we have fluid flows of gases at, or near, atmospheric pressure. In these cases, it can be considered as a perfect gas (or ideal) obeying to the ideal gas law: P = ρrt ; with R=R g /M g where R is called the perfect gas constant, R g is the Universal gas constant and M g is the gas molecular weight. The universal gas constant is R g 8.31 J/mol 5. Compressibility For most practical purposes liquids may be regarded as incompressible. However, there are certain cases, such as unsteady flow in pipes (e.g., water hammer), where the compressibility should be taken into account. Gases may also be treated as incompressible if the change in density is very small (typically less than 3%). An ideal fluid is an incompressible fluid.

13 6. Surface Tension and Capillarity Surface tension is a property of liquids which is felt at the interface between the liquid and another fluid (typically a gas). Surface tension has dimensions of force per unit length, and always acts parallel to the interface. A soap bubble is a good example to illustrate the effects of surface tension. How does a soap bubble remain spherical in shape? The answer is that there is a higher pressure inside the bubble than outside, much like a balloon. In fact, surface tension in the soap film acts much the same as the tension in the skin of a balloon.

14

15 Example 1. 1

16 Example 1. 2

17 Example 1. 3

18 Example 1. 3

19 Example 1. 4

20 Example 1.5: A standard bearing 500 mm Long and 151 mm in diameter encases a Shaft of 150 mm outer diameter. The oil film enclosed between the shaft and the bearing has a viscosity of 0.9 poise. What is the power lost in friction if the shaft revolves at 240 RPM? Find also the torque developed. Given : μ = 0.9 poise ; n=240 rpm ; l=151mm; dy=0.5mm du=πdn/60=3.14*.150*240/60=1.884 m/s τ = μ du/dy = N/m 2 Shear force F= τ A=339.12*π*.15*.500=79.90 N Power =F*u=79.90*1.884= W Torque=F*D/2 =79.90*.150/2 = Nm

21 Example 1. 6

22 Example 1. 6

23 Example 1. 7

### Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:

11/01/2017 Lecture 3 Properties of Fluids There are thermodynamic properties of fluids like: Pressure, p (N/m 2 ) or [ML -1 T -2 ], Density, ρ (kg/m 3 ) or [ML -3 ], Specific weight, γ = ρg (N/m 3 ) or

### Fluid Mechanics Introduction

Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be

### CHAPTER 1 Fluids and their Properties

FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those

### Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi

Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi WHAT we will learn I. Characterization of Fluids - What is the fluid? (Physical properties of Fluid) II. Behavior of fluids - Fluid

### CE MECHANICS OF FLUIDS UNIT I

CE 6303- MECHANICS OF FLUIDS UNIT I 1. Define specific volume of a fluid and write its unit [N/D-14][M/J-11] Volume per unit mass of a fluid is called specific volume. Unit: m3 / kg. 2. Name the devices

### Petroleum Engineering Dept. Fluid Mechanics Second Stage Dr. Ahmed K. Alshara

Continents Chapter 1. Fluid Mechanics -Properties of fluids -Density, specific gravity, specific volume and Viscosity -Newtonian and non Newtonian fluids -Surface tension Compressibility -Pressure -Cavitations

### 1. The Properties of Fluids

1. The Properties of Fluids [This material relates predominantly to modules ELP034, ELP035] 1.1 Fluids 1.1 Fluids 1.2 Newton s Law of Viscosity 1.3 Fluids Vs Solids 1.4 Liquids Vs Gases 1.5 Causes of viscosity

### Theory and Fundamental of Fluid Mechanics

1 2 Lecture (1) on Fayoum University Theory and Fundamental of Fluid Mechanics By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical

### Introduction to Marine Hydrodynamics

1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first

### Petroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara

Continents Petroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara Chapter 1. Fluid Mechanics -Properties of fluids -Density, specific gravity, specific volume and

### AMME2261: Fluid Mechanics 1 Course Notes

Module 1 Introduction and Fluid Properties Introduction Matter can be one of two states: solid or fluid. A fluid is a substance that deforms continuously under the application of a shear stress, no matter

### Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

### Lecturer, Department t of Mechanical Engineering, SVMIT, Bharuch

Fluid Mechanics By Ashish J. Modi Lecturer, Department t of Mechanical Engineering, i SVMIT, Bharuch Review of fundamentals Properties of Fluids Introduction Any characteristic of a system is called a

### 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

### Fluid Properties and Units

Fluid Properties and Units CVEN 311 Continuum Continuum All materials, solid or fluid, are composed of molecules discretely spread and in continuous motion. However, in dealing with fluid-flow flow relations

### COURSE NUMBER: ME 321 Fluid Mechanics I. Fluid: Concept and Properties

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid: Concept and Properties Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 What is Fluid Mechanics? Fluid mechanics

### MECHANICAL PROPERTIES OF FLUIDS:

Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is

### An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction

1 An-Najah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies

### Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

Reading Assignments Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 1 You can find the answers of some of the following

### Liquids and solids are essentially incompressible substances and the variation of their density with pressure is usually negligible.

Properties of Fluids Intensive properties are those that are independent of the mass of a system i.e. temperature, pressure and density. Extensive properties are those whose values depend on the size of

### Fluids and their Properties

Chapter (1) Fluids and their Properties Dr. KHALIL MAHMOUD ALASTAL Eng.Mohammed AbuRahma Eng.Reem Sbaih 2017 Newton s Law of Viscosity: - / Non-Newtonian Fluids: - Mass Density: - / Specific weight: -

### Welcome to MECH 280. Ian A. Frigaard. Department of Mechanical Engineering, University of British Columbia. Mech 280: Frigaard

Welcome to MECH 280 Ian A. Frigaard Department of Mechanical Engineering, University of British Columbia Lectures 1 & 2: Learning goals/concepts: What is a fluid Apply continuum hypothesis Stress and viscosity

### P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid.

CEE 3310 Thermodynamic Properties, Aug. 27, 2010 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

### Differential relations for fluid flow

Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow

### We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from

Chapter 1. Introduction 1.1 Some Characteristics of Fluids We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from scientific or engineering point of view. In

### Please remember all the unit that you use in your calculation. There are no marks for correct answer without unit.

CHAPTER 1 : PROPERTIES OF FLUIDS What is fluid? A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called

### A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:

### Chapter 1: Basic Concepts

What is a fluid? A fluid is a substance in the gaseous or liquid form Distinction between solid and fluid? Solid: can resist an applied shear by deforming. Stress is proportional to strain Fluid: deforms

### CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

### 1 FLUIDS AND THEIR PROPERTIES

FLUID MECHANICS CONTENTS CHAPTER DESCRIPTION PAGE NO 1 FLUIDS AND THEIR PROPERTIES PART A NOTES 1.1 Introduction 1.2 Fluids 1.3 Newton s Law of Viscosity 1.4 The Continuum Concept of a Fluid 1.5 Types

### Chapter 1 Fluid Characteristics

Chapter 1 Fluid Characteristics 1.1 Introduction 1.1.1 Phases Solid increasing increasing spacing and intermolecular liquid latitude of cohesive Fluid gas (vapor) molecular force plasma motion 1.1.2 Fluidity

### ch-01.qxd 8/4/04 2:33 PM Page 1 Part 1 Basic Principles of Open Channel Flows

ch-01.qxd 8/4/04 2:33 PM Page 1 Part 1 Basic Principles of Open Channel Flows ch-01.qxd 8/4/04 2:33 PM Page 3 Introduction 1 Summary The introduction chapter reviews briefly the basic fluid properties

### Introduction and Fundamental Concepts (Lectures 1-7)

Introduction and Fundamental Concepts (Lectures -7) Q. Choose the crect answer (i) A fluid is a substance that (a) has the same shear stress at a point regardless of its motion (b) is practicall incompressible

### Fluid Mechanics-61341

An-Najah National University College of Engineering Fluid Mechanics-61341 Chapter [1] Fundamentals 1 The Book (Elementary Fluid Mechanics by Street, Watters and Vennard) Each chapter includes: Concepts

### Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,

CHAPTER1: Basic Definitions, Zeroth, First, and Second Laws of Thermodynamics 1.1. Definitions What does thermodynamic mean? It is a Greeks word which means a motion of the heat. Water is a liquid substance

### Steven Burian Civil & Environmental Engineering September 25, 2013

Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

### s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I

Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum

### Fluid Mechanics Abdusselam Altunkaynak

Fluid Mechanics Abdusselam Altunkaynak 1. Unit systems 1.1 Introduction Natural events are independent on units. The unit to be used in a certain variable is related to the advantage that we get from it.

### CHAPTER (2) FLUID PROPERTIES SUMMARY DR. MUNZER EBAID MECH.ENG.DEPT.

CHAPTER () SUMMARY DR. MUNZER EBAID MECH.ENG.DEPT. 08/1/010 DR.MUNZER EBAID 1 System Is defined as a given quantity of matter. Extensive Property Can be identified when it is Dependent on the total mass

### MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.

### HYDRAULICS STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL HYDRAULICS

1 STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL Syllabus Hydraulics ( Fluid Mechanics ) Fluid properties, hydrostatics, measurements of flow, Bernoulli's theorem and its application, flow

### Class Notes Fall 2014

57:020 Fluid Mechanics Class Notes Fall 2014 Prepared by: Professor Fred Stern Typed by: Stephanie Schrader (Fall 1999) Corrected by: Jun Shao (Fall 2003, Fall 2005) Corrected by: Jun Shao, Tao Xing (Fall

### ME3250 Fluid Dynamics I

ME3250 Fluid Dynamics I Section I, Fall 2012 Instructor: Prof. Zhuyin Ren Department of Mechanical Engineering University of Connecticut Course Information Website: http://www.engr.uconn.edu/~rzr11001/me3250_f12/

### BFC FLUID MECHANICS BFC NOOR ALIZA AHMAD

BFC 10403 FLUID MECHANICS CHAPTER 1.0: Principles of Fluid 1.1 Introduction to Fluid Mechanics 1.2 Thermodynamic Properties of a Fluid: Density, specific weight, specific gravity, viscocity (kelikatan)berat

### COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COURSE: GEC 223 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the

### ENGR 292 Fluids and Thermodynamics

ENGR 292 Fluids and Thermodynamics Scott Li, Ph.D., P.Eng. Mechanical Engineering Technology Camosun College Jan.13, 2017 Review of Last Class Course Outline Class Information Contact Information, Website

### Review of Fluid Mechanics

Chapter 3 Review of Fluid Mechanics 3.1 Units and Basic Definitions Newton s Second law forms the basis of all units of measurement. For a particle of mass m subjected to a resultant force F the law may

### 10.52 Mechanics of Fluids Spring 2006 Problem Set 3

10.52 Mechanics of Fluids Spring 2006 Problem Set 3 Problem 1 Mass transfer studies involving the transport of a solute from a gas to a liquid often involve the use of a laminar jet of liquid. The situation

### Fluid Engineering Mechanics

Fluid Engineering Mechanics Chapter Fluid Properties: Density, specific volume, specific weight, specific gravity, compressibility, viscosity, measurement of viscosity, Newton's equation of viscosity,

### Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

### LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS:

LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: 1.0 INTRODUCTION TO FLUID AND BASIC EQUATIONS 2.0 REYNOLDS NUMBER AND CRITICAL VELOCITY 3.0 APPROACH TOWARDS REYNOLDS NUMBER REFERENCES Page 1 of

### FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

### Lubrication and Journal Bearings

UNIVERSITY OF HAIL College of Engineering Department of Mechanical Engineering Chapter 12 Lubrication and Journal Bearings Text Book : Mechanical Engineering Design, 9th Edition Dr. Badreddine AYADI 2016

### MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

Test Midterm 1 F2013 MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct nswer in the Questions Below.) 1. The absolute viscosity µ of a fluid is primarily a function

### ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4. (Buoyancy and Viscosity of water)

ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4 (Buoyancy and Viscosity of water) 16. BUOYANCY Whenever an object is floating in a fluid or when it is completely submerged in

### Contents. I Introduction 1. Preface. xiii

Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

### INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

INTRODUCTION DEFINITION OF FLUID plate solid F at t = 0 t > 0 = F/A plate U p F fluid t 0 t 1 t 2 t 3 FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

### ACE Engineering College

ACE Engineering College Ankushapur (V), Ghatkesar (M), R.R.Dist 501 301. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * MECHANICS OF FLUIDS & HYDRAULIC

### Fluid Mechanics. Jim Emery 9/3/ Bernoulli s Law 2. 2 Torricelli s Law 3. 3 Time to Empty a Tank 3. 4 Viscosity 4. 5 The Acceleration 5

Fluid Mechanics Jim Emery 9/3/2010 Contents 1 Bernoulli s Law 2 2 Torricelli s Law 3 3 Time to Empty a Tank 3 4 Viscosity 4 5 The Acceleration 5 6 The Equation of Motion Due to Cauchy 7 7 The Deformation

### Fundamentals of Fluid Mechanics

Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

### PHYSICAL MECHANISM OF CONVECTION

Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

### MECHANICAL PROPERTIES OF FLUIDS

CHAPTER-10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure

### Homework of chapter (1) (Solution)

بسم اهلل الرمحن الرحيم The Islamic University of Gaza, Civil Engineering Department, Fluid mechanics-discussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Mohammed H El Nazli Eng. Sarah R Rostom First

### Dynamic (absolute) Viscosity

Viscosity Taken from: http://www.engineeringtoolbox.com/dynamic-absolute-kinematic-viscosity-d_412.html The viscosity of a fluid is an important property in the analysis of liquid behavior and fluid motion

### E80. Fluid Measurement The Wind Tunnel Lab. Experimental Engineering.

Fluid Measurement The Wind Tunnel Lab http://twistedsifter.com/2012/10/red-bull-stratos-space-jump-photos/ Feb. 13, 2014 Outline Wind Tunnel Lab Objectives Why run wind tunnel experiments? How can we use

### Summary PHY101 ( 2 ) T / Hanadi Al Harbi

الكمية Physical Quantity القانون Low التعريف Definition الوحدة SI Unit Linear Momentum P = mθ be equal to the mass of an object times its velocity. Kg. m/s vector quantity Stress F \ A the external force

### 11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

### ME3560 Tentative Schedule Spring 2019

ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to

### Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

### Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

### This chapter is a study of the shear stress as a function of the shear rate for Newtonian and non-newtonian biological materials.

Lecture 10 and Flow (Ch. 6) This chapter is a study of the shear stress as a function of the shear rate for Newtonian and non-newtonian biological materials. 1 Lecture 10 and Flow (Ch. 6) When a fluid

### ME3560 Tentative Schedule Fall 2018

ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read

### MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =-6 (1/2) 2 = -3/2 m/s

MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER ) FALL 018 1) For the velocity fields given below, determine: i) Whether the flow field is one-, two-, or three-dimensional, and why. ii) Whether the flow

### HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the

### Chapter 3 Non-Newtonian fluid

Chapter 3 Non-Newtonian fluid 3-1. Introduction: The study of the deformation of flowing fluids is called rheology; the rheological behavior of various fluids is sketchen Figure 3-1. Newtonian fluids,

### Sliding Contact Bearings

Sliding Contact Bearings Classification of Bearings 1. According to the direction of load to be supported. The bearings under this group are classified as: (a) Radial bearings (b) Thrust bearings. In radial

### Fluid Mechanics. Spring 2009

Instructor: Dr. Yang-Cheng Shih Department of Energy and Refrigerating Air-Conditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 1-1 General Remarks 1-2 Scope

### TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

### Fluid Mechanics Discussion. Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad

Discussion Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad 2014-2015 Chapter (1) Fluids and their Properties Fluids and their Properties Fluids (Liquids or gases) which a substance

### Physics 141 Rotational Motion 2 Page 1. Rotational Motion 2

Physics 141 Rotational Motion 2 Page 1 Rotational Motion 2 Right handers, go over there, left handers over here. The rest of you, come with me.! Yogi Berra Torque Motion of a rigid body, like motion of

### CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

### Introduction to Heat and Mass Transfer. Week 10

Introduction to Heat and Mass Transfer Week 10 Concentration Boundary Layer No concentration jump condition requires species adjacent to surface to have same concentration as at the surface Owing to concentration

### Empirical Co - Relations approach for solving problems of convection 10:06:43

Empirical Co - Relations approach for solving problems of convection 10:06:43 10:06:44 Empirical Corelations for Free Convection Use T f or T b for getting various properties like Re = VL c / ν β = thermal

### 1.060 Engineering Mechanics II Spring Problem Set 1

1.060 Engineering Mechanics II Spring 2006 Due on Tuesday, February 21st Problem Set 1 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group

### INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.

Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : II-I- B. Tech Year : 0 0 Course Coordinator

### Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Agricultural Science 1B Principles & Processes in Agriculture Mike Wheatland (m.wheatland@physics.usyd.edu.au) Outline - Lectures weeks 9-12 Chapter 6: Balance in nature - description of energy balance

### Convective Mass Transfer

Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

### REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology

REE 307 Fluid Mechanics II Lecture 1 Sep 27, 2017 Dr./ Ahmed Mohamed Nagib Elmekawy Zewail City for Science and Technology Course Materials drahmednagib.com 2 COURSE OUTLINE Fundamental of Flow in pipes

### Principles of Convection

Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

### Exercise: concepts from chapter 10

Reading:, Ch 10 1) The flow of magma with a viscosity as great as 10 10 Pa s, let alone that of rock with a viscosity of 10 20 Pa s, is difficult to comprehend because our common eperience is with s like

### Notes 4: Differential Form of the Conservation Equations

Low Speed Aerodynamics Notes 4: Differential Form of the Conservation Equations Deriving Conservation Equations From the Laws of Physics Physical Laws Fluids, being matter, must obey the laws of Physics.

### MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring Dr. Jason Roney Mechanical and Aerospace Engineering

MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring 2003 Dr. Jason Roney Mechanical and Aerospace Engineering Outline Introduction Kinematics Review Conservation of Mass Stream Function

### 3. FORMS OF GOVERNING EQUATIONS IN CFD

3. FORMS OF GOVERNING EQUATIONS IN CFD 3.1. Governing and model equations in CFD Fluid flows are governed by the Navier-Stokes equations (N-S), which simpler, inviscid, form is the Euler equations. For

### Signature: (Note that unsigned exams will be given a score of zero.)

Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.

### Stress, Strain, and Viscosity. San Andreas Fault Palmdale

Stress, Strain, and Viscosity San Andreas Fault Palmdale Solids and Liquids Solid Behavior: Liquid Behavior: - elastic - fluid - rebound - no rebound - retain original shape - shape changes - small deformations

### 150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces

Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with

### Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations