MULTIPLECHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)


 Kristopher Shelton
 2 years ago
 Views:
Transcription
1 MULTIPLECHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b. Velocity. c. Pressure. d. Temperature. e. None of the above.. An ideal fluid a. Is one which obeys Newton's Law of Viscosity. b. Has constant density and viscosity. c. Has zero viscosity and satisfies p = ρrt. d. Is incompressible and satisfies p = ρrt. e. Has zero viscosity and is incompressible. 3. A streamline is a. The line connecting the midpoints of the flow crosssections. b. Defined only in uniform flow. c. Always fixed in space for steady flows. d. Drawn perpendicular to the velocity vector at each point in the flow. e. Always along the path of a particle. 4. The velocity field given by V x i xt j x t k is a. Threedimensional and unsteady. b. Onedimensional and unsteady. c. Onedimensional and steady. d. Twodimensional and unsteady. e. Threedimensional and steady. 5. If a uniform solid body weighs 50 N in air and 30 N in water, its specific gravity is: a b..50 c d e. 1.5
2 6. Two parallel plates, one moving at 4 m/s and the other stationary, are separated by a 5 mmthick layer of oil with specific gravity of 0.80 and kinematic viscosity 1.5E4 m /s. What is the average shear stress in the oil? a. 160 Pa b. 15 Pa c. 100 Pa d. 80 Pa e. 60 Pa 7. Newton s law of viscosity relates a. The normal stress and rate angular deformation b. Shear stress, viscosity and temperature c. Intensity of pressure and rate of angular deformation d. Shear stress and rate of angular deformation e. Viscosity and rate of angular deformation 8. If the weight of a body immersed in a fluid exceeds the buoyant force, then the body will a. Float b. Flip over c. Tend to move downward and it may finally sink d. Rise until its weight equals the buoyant force e. None of the above 9. The location of the centre of pressure of the force caused by the liquid acting on a plane surface submerged in a liquid is a. Always above the centroid. b. Always at the centroid of the surface. c. At the centroid if the surface is horizontal. d. Independent of the inclination of the surface. e. Always below the centroid regardless of the value of the angle of the surface. 10. The horizontal component of the force acting on a submerged curved surface is equal to the a. Weight of the liquid displaced. b. Weight of the liquid vertically above the curved surface. c. Force on a projection of the curved surface on a vertical plane. d. Product of the pressure at the centroid and the curved surface area. e. Weight of the curved surface.
3 FILL IN THE LANKS: (One mark per blank) (Fill in the blanks with the most appropriate word/number or mathematical expression.) There are ten blanks to fill in. Each correct answer is worth one mark. 1. The shear stress τxy is directed in the Y coordinate direction and acts on the plane whose normal is in the X direction.. Reynolds number is the ratio of the inertia force to the VISCOUS force. 3. The buoyancy force that acts on a submerged body is the difference between the weight of fluid above the LOWER surface of the body and the weight of fluid above the UPPER surface of the body. 4. The buoyant force has a magnitude equal to the weight of the fluid DISPLACED by the body and is directed vertically UPWARDS 5. A fluid is a substance that deforms CONTINUOUSLY when subjected to a shear stress no matter how SMALL that shear stress may be. 6. A STREAKLINE is a line joining the present location of all particles that have passed a given point. TRUE AND FALSE QUESTIONS: (One and onehalf marks per answer) (Circle the correct response, TRUE or FALSE) 1. If a perfect gas undergoes an isothermal process, the relationship between pressure and density is P = constant *ρ (TRUE/FALSE).. Random molecular motion makes a more important contribution to the viscosity of a gas than intermolecular cohesion (TRUE/FALSE). 3. In unsteady flows, streamlines show which fluid particles have passed through a given point (TRUE/FALSE). 4. Viscosity is not important in a study of a fluid body at rest (TRUE/FALSE). 5. For the continuum assumption to be valid the Knudsen number must be very small (TRUE/FALSE). 6. Turbulent flow generally occurs for cases involving very slow motions of very viscous fluids in very small diameter tubes (TRUE/FALSE). 7. Shear stresses are not important within the boundary layer (TRUE/FALSE). 8. The Lagrangian Method is concerned with a region or a point in space (TRUE/FALSE). 9. Pipe flows are always laminar if the Reynolds number is less than 000 (TRUE/FALSE). 10. The viscosity of water at 0ᴼC is 1.00x103 kg / (m sec) (TRUE/FALSE).
4 SHORT NUMERICAL PROLEMS: (Answer these problems in the space allotted.) 1. Determine the value of (PA  P) in Pa. Where: h1 = 0 cm h = 10 cm h3 = 15 cm h4 = 10 cm (0 Marks) g = 9.81 m/s P Am = P m The Line of common pressure in the manometer U is Am m. Therefore, for constant density liquids: From table: = 680 kg/m 3 gasoline = 998 kg/m 3 HO = 13,550 kg/m 3 Hg P P h h h Am A 4 gasoline HO 3 Hg P P h m 1 gasoline A 1 gasoline 4 gasoline HO 3 Hg A 1 gasoline 4 gasoline HO 3 Hg A 1 4 gasoline HO 3 Hg and 0 P P h h h h P P h h h h P P ( h h ) h h ( ) g g 0.15 g gasoline HO , kpa Hg
5 The tank shown in the figure below has a hemispherical dome of 1 m radius as part of its top surface. The tank is completely closed and contains pressurized water at 0ᴼC. A pressure gage is located on the top surface as shown and has a reading of 50 kpa gage pressure. Determine the net horizontal and vertical components of the force that the water on the inside and the air on the outside exert on just the dome portion of the top. (0 Marks) As the pressure gauge registers gauge pressure, the air pressure contribution on the inside of the tank is cancelled by the air pressure on the outside of the tank. As it is a hemispherical dome, the net horizontal component of the force applied by the pressurized water is zero since the dome is symmetric. The net vertical force applied by the pressurized water can be determined by finding the net vertical force created by a column of water of height so as to create a hydrostatic force equal to 50 kpa at the top of the tank. Or, g h HO h or h = 5.54 m. Using 3 HO 998 kg/m from table The total vertical force will be equal to the weight of water that would fill a column of that height with a diameter of metres plus the weight of water that would fill the inside of the hemisphere. F V HO gv T Thus, the total volume of water is Total Volume Volume of Cylinder + Volume of hemisphere 3 VT R h R / m 3 Then the vertical force applied by the water on the dome = V T * ρ g = 8.33 * 998 * 9.81 F v = Newtons = 806 kn in the upward direction.
MULTIPLECHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)
Test Midterm 1 F2013 MULTIPLECHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct nswer in the Questions Below.) 1. The absolute viscosity µ of a fluid is primarily a function
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More informationChapter 1 INTRODUCTION
Chapter 1 INTRODUCTION 11 The Fluid. 12 Dimensions. 13 Units. 14 Fluid Properties. 1 11 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid
More informationFluid Mechanics. du dy
FLUID MECHANICS Technical English  I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's
More informationFE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)
Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.
More informationME3560 Tentative Schedule Fall 2018
ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read
More informationFluid Mechanics Testbank By David Admiraal
Fluid Mechanics Testbank By David Admiraal This testbank was created for an introductory fluid mechanics class. The primary intentions of the testbank are to help students improve their performance on
More informationME3560 Tentative Schedule Spring 2019
ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to
More informationFormulae that you may or may not find useful. E v = V. dy dx = v u. y cp y = I xc/a y. Volume of an entire sphere = 4πr3 = πd3
CE30 Test 1 Solution Key Date: 26 Sept. 2017 COVER PAGE Write your name on each sheet of paper that you hand in. Read all questions very carefully. If the problem statement is not clear, you should ask
More informationChapter 9: Solids and Fluids
Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical
More informationME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4. (Buoyancy and Viscosity of water)
ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4 (Buoyancy and Viscosity of water) 16. BUOYANCY Whenever an object is floating in a fluid or when it is completely submerged in
More informationFluid Mechanics. Forces on Fluid Elements. Fluid Elements  Definition:
Fluid Mechanics Chapter 2: Fluid Statics Lecture 3 Forces on Fluid Elements Fluid Elements  Definition: Fluid element can be defined as an infinitesimal region of the fluid continuum in isolation from
More informations and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I
Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum
More informationChapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian
Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite
More informationUNIT II. Buoyancy and Kinematics of Fluid Motion
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : FM(15A01305) Year & Sem: IIB.Tech & ISem Course & Branch: B.Tech 
More informationSteven Burian Civil & Environmental Engineering September 25, 2013
Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session
More informationBACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)
No. of Printed Pages : 6 BME028 BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) TermEnd Examination December, 2011 00792 BME028 : FLUID MECHANICS Time : 3 hours
More informationstorage tank, or the hull of a ship at rest, is subjected to fluid pressure distributed over its surface.
Hydrostatic Forces on Submerged Plane Surfaces Hydrostatic forces mean forces exerted by fluid at rest.  A plate exposed to a liquid, such as a gate valve in a dam, the wall of a liquid storage tank,
More informationFluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding
Fluid Mechanics HOOKE'S LAW If deformation is small, the stress in a body is proportional to the corresponding strain. In the elasticity limit stress and strain Stress/strain = Const. = Modulus of elasticity.
More information6. Basic basic equations I ( )
6. Basic basic equations I (4.24.4) Steady and uniform flows, streamline, streamtube One, two, and threedimensional flow Laminar and turbulent flow Reynolds number System and control volume Continuity
More informationFluid: Air and water are fluids that exert forces on the human body.
Fluid: Air and water are fluids that exert forces on the human body. term fluid is often used interchangeably with the term liquid, from a mechanical perspective, Fluid: substance that flows when subjected
More information11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an
Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior
More informationFluid Mechanics Discussion. Prepared By: Dr.Khalil M. AlAstal Eng.Ahmed S. AlAgha Eng.Ruba M. Awad
Discussion Prepared By: Dr.Khalil M. AlAstal Eng.Ahmed S. AlAgha Eng.Ruba M. Awad 20142015 Chapter (1) Fluids and their Properties Fluids and their Properties Fluids (Liquids or gases) which a substance
More informationR09. d water surface. Prove that the depth of pressure is equal to p +.
Code No:A109210105 R09 SET1 B.Tech II Year  I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal
More informationPhysics 207 Lecture 18
Physics 07, Lecture 8, Nov. 6 MidTerm Mean 58.4 (64.6) Median 58 St. Dev. 6 (9) High 94 Low 9 Nominal curve: (conservative) 8000 A 679 B or A/B 346 C or B/C 933 marginal 98 D Physics 07: Lecture 8,
More informationChapter 14. Fluid Mechanics
Chapter 14 Fluid Mechanics States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite volume nor shape All of these
More informationACE Engineering College
ACE Engineering College Ankushapur (V), Ghatkesar (M), R.R.Dist 501 301. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * MECHANICS OF FLUIDS & HYDRAULIC
More informationCHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.
CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,
More informationAP Physics Laboratory #6.1: Analyzing Terminal Velocity Using an Interesting Version of Atwood s Machine
AP Physics Laboratory #6.1: Analyzing Terminal Velocity Using an Interesting Version of Atwood s Machine Name: Date: Lab Partners: PURPOSE The purpose of this Laboratory is to study a system as it approaches
More informationS.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100
Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum
More informationNicholas J. Giordano. Chapter 10 Fluids
Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according
More informationPressure in stationary and moving fluid Lab Lab On On Chip: Lecture 2
Pressure in stationary and moving fluid LabOnChip: Lecture Lecture plan what is pressure e and how it s distributed in static fluid water pressure in engineering problems buoyancy y and archimedes law;
More informationCE MECHANICS OF FLUIDS
CE60  MECHANICS OF FLUIDS (FOR III SEMESTER) UNIT II FLUID STATICS & KINEMATICS PREPARED BY R.SURYA, M.E Assistant Professor DEPARTMENT OF CIVIL ENGINEERING DEPARTMENT OF CIVIL ENGINEERING SRI VIDYA COLLEGE
More informationChapter 9. Solids and Fluids. 1. Introduction. 2. Fluids at Rest. 3. Fluid Motion
Chapter 9 Solids and Fluids 1. Introduction 2. Fluids at Rest 3. Fluid Motion 1 States of Matter Solid Liquid Gas Plasma 2 Density and Specific Gravity What is Density? How do I calculate it? What are
More informationEric G. Paterson. Spring 2005
Eric G. Paterson Department of Mechanical and Nuclear Engineering Pennsylvania State University Spring 2005 Reading and Homework Read Chapter 3. Homework Set #2 has been posted. Due date: Friday 21 January.
More informationPressure in stationary and moving fluid. LabOnChip: Lecture 2
Pressure in stationary and moving fluid LabOnChip: Lecture Fluid Statics No shearing stress.no relative movement between adjacent fluid particles, i.e. static or moving as a single block Pressure at
More informationAMME2261: Fluid Mechanics 1 Course Notes
Module 1 Introduction and Fluid Properties Introduction Matter can be one of two states: solid or fluid. A fluid is a substance that deforms continuously under the application of a shear stress, no matter
More informationChapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow
Fluids: substances which flow Chapter 5: Fluids Liquids: take the shape of their container but have a definite volume Gases: take the shape and volume of their container Density m ρ = V Mass Density =
More informationFluids. Fluids in Motion or Fluid Dynamics
Fluids Fluids in Motion or Fluid Dynamics Resources: Serway  Chapter 9: 9.79.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT  8: Hydrostatics, Archimedes' Principle,
More informationQ1 Give answers to all of the following questions (5 marks each):
FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored
More informationApproximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C.
Appendix FLUID MECHANICS Approximate physical properties of selected fluids All properties are given at pressure 101. kn/m and temperature 15 C. Liquids Density (kg/m ) Dynamic viscosity (N s/m ) Surface
More informationTOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant ForcesArchimedes Principle
Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant ForcesArchimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation
More informationProf. Scalo Prof. Vlachos Prof. Ardekani Prof. Dabiri 08:30 09:20 A.M 10:30 11:20 A.M. 1:30 2:20 P.M. 3:30 4:20 P.M.
Page 1 Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (1 point if not circled, or circled incorrectly): Prof. Scalo Prof. Vlachos
More informationWhat s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube
PHYS 101 Lecture 29x  Viscosity 29x  1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced
More informationChapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2
Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius
More informationMECHANICAL PROPERTIES OF FLUIDS
CHAPTER10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure
More informationFluid Mechanics61341
AnNajah National University College of Engineering Fluid Mechanics61341 Chapter [2] Fluid Statics 1 Fluid Mechanics2nd Semester 2010 [2] Fluid Statics Fluid Statics Problems Fluid statics refers to
More informationMECHANICAL PROPERTIES OF FLUIDS:
Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is
More informationPhysics 201 Chapter 13 Lecture 1
Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UWMadison 1 Fluids Density
More informationIntroduction to Marine Hydrodynamics
1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first
More informationUNIT I FLUID PROPERTIES AND STATICS
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: IIB.Tech & ISem Course & Branch:
More informationChapter 9. Solids and Fluids
Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Atoms or molecules are held in specific locations By electrical forces Vibrate about
More informationFluid Mechanics II Viscosity and shear stresses
Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small
More informationChapter 3 Fluid Statics
Chapter 3 Fluid Statics 3.1 Pressure Pressure : The ratio of normal force to area at a point. Pressure often varies from point to point. Pressure is a scalar quantity; it has magnitude only It produces
More informationThe general rules of statics (as applied in solid mechanics) apply to fluids at rest. From earlier we know that:
ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 2 Pressure This section will study the forces acting on or generated by fluids at rest. Objectives Introduce the concept
More informationPHYSICS HYDROSTATICS FORM 5
Pressure Pressure is defined as force per unit area. Pressure = Force Area Pressure = Newton (metre) 2 1 Pa = 1N/m 2 Which of the following exerts a greater pressure? A woman of mass 70kg stepping on your
More informationBenha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016
Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 01 May 4/ 016 Second year Mech. Time :180 min. Examiner:Dr.Mohamed Elsharnoby Attempt
More informationChapter 10. Solids and Fluids
Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the
More informationChapter 9. Solids and Fluids
Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium
More informationLecture 8 Equilibrium and Elasticity
Lecture 8 Equilibrium and Elasticity July 19 EQUILIBRIUM AND ELASTICITY CHAPTER 12 Give a sharp blow one end of a stick on the table. Find center of percussion. Baseball bat center of percussion Equilibrium
More informationPhysics 123 Unit #1 Review
Physics 123 Unit #1 Review I. Definitions & Facts Density Specific gravity (= material / water) Pressure Atmosphere, bar, Pascal Barometer Streamline, laminar flow Turbulence Gauge pressure II. Mathematics
More informationFluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion
Chapter 14 Fluids Fluids Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Fluid = Gas or Liquid MFMcGrawPHY45 Chap_14HaFluidsRevised 10/13/01 Densities MFMcGrawPHY45 Chap_14HaFluidsRevised
More information10  FLUID MECHANICS Page 1
0  FLUID MECHANICS Page Introduction Fluid is a matter in a state which can flow. Liquids, gases, molten metal and tar are examples of fluids. Fluid mechanics is studied in two parts: ( i ) Fluid statics
More informationFE Exam Fluids Review October 23, Important Concepts
FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning
More informationChapter 11. Fluids. continued
Chapter 11 Fluids continued 11.2 Pressure Pressure is the amount of force acting on an area: Example 2 The Force on a Swimmer P = F A SI unit: N/m 2 (1 Pa = 1 N/m 2 ) Suppose the pressure acting on the
More informationHydrostatics. ENGR 5961 Fluid Mechanics I: Dr. Y.S. Muzychka
1 Hydrostatics 2 Introduction In Fluid Mechanics hydrostatics considers fluids at rest: typically fluid pressure on stationary bodies and surfaces, pressure measurements, buoyancy and flotation, and fluid
More informationUniversity of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1
University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING ME 311  Fluid Mechanics Lecture notes Chapter 1 Introduction and fluid properties Prepared by : Dr. N. Ait Messaoudene Based
More informationCPO Science Foundations of Physics. Unit 8, Chapter 27
CPO Science Foundations of Physics Unit 8, Chapter 27 Unit 8: Matter and Energy Chapter 27 The Physical Properties of Matter 27.1 Properties of Solids 27.2 Properties of Liquids and Fluids 27.3 Properties
More informationChapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas
Chapter 9 States of Matter Solids and Fluids Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium
More informationCHAPTER 28 PRESSURE IN FLUIDS
CHAPTER 8 PRESSURE IN FLUIDS EXERCISE 18, Page 81 1. A force of 80 N is applied to a piston of a hydraulic system of crosssectional area 0.010 m. Determine the pressure produced by the piston in the hydraulic
More information150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces
Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with
More informationPhysics 220: Classical Mechanics
Lecture /33 Phys 0 Physics 0: Classical Mechanics Lecture: MWF 8:40 am 9:40 am (Phys 4) Michael Meier mdmeier@purdue.edu Office: Phys Room 38 Help Room: Phys Room schedule on course webpage Office Hours:
More informationRecap: Static Fluids
Recap: Static Fluids Archimedes principal states that the buoyant force acting on an object is equal to the weight of fluid displaced. If the average density of object is greater than density of fluid
More informationChapter 10  Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain
Question 10.1: Explain why The blood pressure in humans is greater at the feet than at the brain Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though
More informationCHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...
CHAPTER 13 FLUIDS Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes Principle! Upthrust!
More informationFLUID MECHANICS. Gaza. Chapter CHAPTER 44. Motion of Fluid Particles and Streams. Dr. Khalil Mahmoud ALASTAL
FLUID MECHANICS Gaza Chapter CHAPTER 44 Motion of Fluid Particles and Streams Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Introduce concepts necessary to analyze fluids in motion. Identify differences
More informationMechanical Engineering Programme of Study
Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel
More informationPrinciples of Convection
Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid
More informationPhysics 107 HOMEWORK ASSIGNMENT #9
Physics 07 HOMEORK ASSIGNMENT #9 Cutnell & Johnson, 7 th edition Chapter : Problems 6, 8, 33, 40, 44 *6 A 58kg skier is going down a slope oriented 35 above the horizontal. The area of each ski in contact
More informationMM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =6 (1/2) 2 = 3/2 m/s
MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER ) FALL 018 1) For the velocity fields given below, determine: i) Whether the flow field is one, two, or threedimensional, and why. ii) Whether the flow
More informationPressure in a fluid P P P P
Fluids Gases (compressible) and liquids (incompressible) density of gases can change dramatically, while that of liquids much less so Gels, colloids, liquid crystals are all oddball states of matter We
More informationm V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3
Chapter 11 Fluids 11.1 Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: ρ m V SI Unit of Mass Density: kg/m 3 11.1 Mass Density
More informationLiquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...
CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes
More informationPHYSICAL MECHANISM OF CONVECTION
Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter
More informationIntroduction to Marine Hydrodynamics
1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering Shanghai Jiao Tong University
More informationAnNajah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction
1 AnNajah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies
More informationCE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART  A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
More informationINSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad  00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : III B. Tech Year : 0 0 Course Coordinator
More information1 Fluid Statics. 1.1 Fluid Properties. Fluid
1 Fluid Statics 1.1 Fluid Properties Fluid A fluid is a substance, which deforms when subjected to a force. A fluid can offer no permanent resistance to any force causing change of shape. Fluid flow under
More informationGeneral Physics I (aka PHYS 2013)
General Physics I (aka PHYS 2013) PROF. VANCHURIN (AKA VITALY) University of Minnesota, Duluth (aka UMD) OUTLINE CHAPTER 12 CHAPTER 19 REVIEW CHAPTER 12: FLUID MECHANICS Section 12.1: Density Section 12.2:
More informationChapter 15  Fluid Mechanics Thursday, March 24 th
Chapter 15  Fluid Mechanics Thursday, March 24 th Fluids Static properties Density and pressure Hydrostatic equilibrium Archimedes principle and buoyancy Fluid Motion The continuity equation Bernoulli
More information10.52 Mechanics of Fluids Spring 2006 Problem Set 3
10.52 Mechanics of Fluids Spring 2006 Problem Set 3 Problem 1 Mass transfer studies involving the transport of a solute from a gas to a liquid often involve the use of a laminar jet of liquid. The situation
More informationStatic Forces on SurfacesBuoyancy. Fluid Mechanics. There are two cases: Case I: if the fluid is above the curved surface:
Force on a Curved Surface due to Hydrostatic Pressure If the surface is curved, the forces on each element of the surface will not be parallel (normal to the surface at each point) and must be combined
More informationρ mixture = m mixture /V = (SG antifreeze ρ water V antifreeze + SG water ρ water V water )/V, so we get
CHAPTER 10 1. When we use the density of granite, we have m = ρv = (.7 10 3 kg/m 3 )(1 10 8 m 3 ) =.7 10 11 kg.. When we use the density of air, we have m = ρv = ρlwh = (1.9 kg/m 3 )(5.8 m)(3.8 m)(.8 m)
More informationFluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture  9 Fluid Statics Part VI
Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture  9 Fluid Statics Part VI Good morning, I welcome you all to this session of Fluid
More informationThe online of midtermtests of Fluid Mechanics 1
The online of midtermtests of Fluid Mechanics 1 1) The information on a can of pop indicates that the can contains 460 ml. The mass of a full can of pop is 3.75 lbm while an empty can weights 80.5 lbf.
More informationPART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG
1 PART 1B EXPERIMENTAL ENGINEERING SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) EXPERIMENT T3 (LONG) BOUNDARY LAYERS AND DRAG OBJECTIVES a) To measure the velocity
More informationPhysics 207 Lecture 20. Chapter 15, Fluids
Chapter 15, Fluids This is an actual photo of an iceberg, taken by a rig manager for Global Marine Drilling in St. Johns, Newfoundland. The water was calm and the sun was almost directly overhead so that
More informationHOW TO GET A GOOD GRADE ON THE MME 2273B FLUID MECHANICS 1 EXAM. Common mistakes made on the final exam and how to avoid them
HOW TO GET A GOOD GRADE ON THE MME 2273B FLUID MECHANICS 1 EXAM Common mistakes made on the final exam and how to avoid them HOW TO GET A GOOD GRADE ON THE MME 2273B EXAM Introduction You now have a lot
More informationDetailed Outline, M E 320 Fluid Flow, Spring Semester 2015
Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous
More information