m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3


 Joshua Porter
 2 years ago
 Views:
Transcription
1 Chapter 11 Fluids
2 11.1 Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: ρ m V SI Unit of Mass Density: kg/m 3
3 11.1 Mass Density
4 11.1 Mass Density Example 1 Blood as a Fraction of Body Weight The body of a man whose weight is 690 N contains about 5.x103 m 3 of blood. (ρ oo bbbbb ii 1060 kk/m 3 ) (a) Find the blood s weight and m Vρ W mg ( 3 3 )( m 1060kg m ) 5.5 kg ( )( 5.5 kg 9.80m s ) 54 N (b) express it as a percentage of the body weight. 54 N Percentage 100% 690 N 7.8%
5 11. Pressure P F A SI Unit of Pressure? 1 N/m 1Pa Pascal
6 11. Pressure Example The Force on a Swimmer Suppose the pressure acting on the back of a swimmer s hand is 1.x10 5 Pa. The surface area of the back of the hand is 8.4x103 m. (a) Determine the magnitude of the force that acts on it. F P A F PA 5 3 ( N m )( m ) (b) Discuss the direction of the force N Since the water pushes perpendicularly against the back of the hand, the force is directed downward in the drawing. Equilibrium
7 11. Pressure Atmospheric Pressure at Sea Level: 1.013x10 5 Pa 1 atmosphere
8 11.3 Pressure and Depth in a Static Fluid F y P A P A mg 1 0 P A P A + 1 mg m Vρ P A 1 P A + ρ Vg
9 11.3 Pressure and Depth in a Static Fluid V Ah P A P A + ρ Vg 1 P A 1 P A + ρ Ahg P P 1 + ρ hg
10 11.3 Pressure and Depth in a Static Fluid Example 4 The Swimming Hole Points A and B are located a distance of 5.50 m beneath the surface of the water. Find the pressure at each of these two locations.
11 11.3 Pressure and Depth in a Static Fluid P P 1 + ρ gh P atmospheric pressure ( 5 ) ( 3 3 )( Pa kg m 9.80 m s )( 5.50 m) Pa
12 11.4 Pressure Gauges P P 1 + ρ gh P atm ρ gh h Patm ρ g 5 ( Pa) 3 3 ( kg m )( 9.80m s ) m 760 mm
13 11.4 Pressure Gauges P P B P A P A P 1 + ρ gh absolute pressure P Patm ρ gh gauge pressure
14 11.4 Pressure Gauges Systolic Pressure When heart is at peak of its beating cycle Diastolic pressure When heart is at low point of its beating cycle Both are reported as mm of mercury and are relative to atmospheric pressure
15 11.5 Pascal s Principle PASCAL S PRINCIPLE Any change in the pressure applied to a completely enclosed fluid is transmitted undiminished to all parts of the fluid and enclosing walls.
16 11.5 Pascal s Principle P P1 + ρ g ( 0 m) F A F A 1 1 F F1 A A 1
17 11.5 Pascal s Principle Example 7 A Car Lift The input piston has a radius of m and the output plunger has a radius of m. The combined weight of the car and the plunger is 0500 N. Suppose that the input piston has a negligible weight and the bottom surfaces of the piston and plunger are at the same level. What is the required input force?
18 11.5 Pascal s Principle F F 1 A A 1 F ( m) ( m) ( N) π 0500 π 131 N
19 11.6 Archimedes Principle P P 1 ρ gh F ( B P A P 1 A P P 1 )A F B ρ gha V ha F B ρ V g mass of displaced fluid
20 11.6 Archimedes Principle ARCHIMEDES PRINCIPLE Any fluid applies a buoyant force to an object that is partially or completely immersed in it; the magnitude of the buoyant force equals the weight of the fluid that the object displaces: F B Magnitude of buoyant force W fluid displaced Weight of fluid
21 11.6 Archimedes Principle If the object is floating then the magnitude of the buoyant force is equal to the magnitude of its weight.
22 11.6 Archimedes Principle Example 9 A Swimming Raft The raft is made of solid square pinewood. Determine whether the raft floats in water and if so, how much of the raft is beneath the surface.
23 11.6 Archimedes Principle V raft 3 ( 4.0 m)( 4.0 m)( 0.30 m) 4.8 m F ρvg V g max B ρ water water ( 3 )( 3 )( 1000 kg m 4.8m 9.80m s ) N
24 11.6 Archimedes Principle W raft m g ρ V g raft pine raft ( 3 )( 3 )( 550kg m 4.8m 9.80m s ) 6000 N < N The raft floats!
25 11.6 Archimedes Principle If the raft is floating: W raft F B 6000 N ρ water V water g 3 ( 1000kg m )( 4.0 m)( 4.0 m) ( 9.80m s ) 6000 N h h 6000 N ( 1000 kg m )( 4.0 m)( 4.0 m)( 9.80m s ) m
26 11.7 Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point changes as time passes. Turbulent flow is an extreme kind of unsteady flow in which the velocity of the fluid particles at a point change erratically in both magnitude and direction.
27 11.7 Fluids in Motion Fluid flow can be compressible or incompressible. Most liquids are nearly incompressible. Fluid flow can be viscous or nonviscous. An incompressible, nonviscous fluid is called an ideal fluid.
28 11.7 Fluids in Motion When the flow is steady, streamlines are often used to represent the trajectories of the fluid particles.
29 11.7 Fluids in Motion Making streamlines with dye and smoke.
30 11.8 The Equation of Continuity The mass of fluid per second that flows through a tube is called the mass flow rate.
31 11.8 The Equation of Continuity m ρv ρ A v t distance m t ρ Av m t 1 ρ 1A1 v1
32 11.8 The Equation of Continuity EQUATION OF CONTINUITY The mass flow rate has the same value at every position along a tube that has a single entry and a single exit for fluid flow. ρ 1A1 v1 ρ Av SI Unit of Mass Flow Rate: kg/s
33 11.8 The Equation of Continuity A v A Incompressible fluid: 1 1 v Volume flow rate Q: Q Av
34 11.8 The Equation of Continuity Example 1 A Garden Hose A garden hose has an unobstructed opening with a cross sectional area of.85x104 m. It fills a bucket with a volume of 8.00x103 m 3 in 30 seconds. Find the speed of the water that leaves the hose through (a) the unobstructed opening and (b) an obstructed opening with half as much area.
35 11.8 The Equation of Continuity (a) Q Av v Q A 3 3 ( m ) ( 30.0 s) m m s (b) A 1v1 Av v A v ( )( 0.936m s) 1.87 m s 1 1 A
36 11.9 Bernoulli s Equation The fluid accelerates toward the lower pressure regions. According to the pressuredepth relationship, the pressure is lower at higher levels, provided the area of the pipe does not change.
37 11.9 Bernoulli s Equation ( F ) s ( F ) s ( P) As ( P P )V W 1 nc ( ) ( ) 1 1 mv + mgy mv mgy W + 1 1
38 11.9 Bernoulli s Equation ( ) ( ) ( ) 1 1 P P V mv + mgy mv mgy ( ) ( ) ( ) 1 1 P P ρ v + ρgy ρv + ρ gy BERNOULLI S EQUATION In steady flow of a nonviscous, incompressible fluid, the pressure, the fluid speed, and the elevation at two points are related by: P ρ v1 + ρgy1 P + ρv + ρgy
39 11.10 Applications of Bernoulli s Equation Example 16 Efflux Speed The tank is open to the atmosphere at the top. Find an expression for the speed of the liquid leaving the pipe at the bottom.
40 11.10 Applications of Bernoulli s Equation P v 0 1 P P atm P ρ v1 + ρgy1 P + ρv + ρgy 1 y y h 1 ρ v ρgh 1 v1 gh
41 For Practice FOC Questions: 1, 4, 9 and 0. Problems: 7, 6, 43, 44 and 65.
Chapter 11. Fluids. continued
Chapter 11 Fluids continued 11.2 Pressure Pressure is the amount of force acting on an area: Example 2 The Force on a Swimmer P = F A SI unit: N/m 2 (1 Pa = 1 N/m 2 ) Suppose the pressure acting on the
More informationm V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3
Chapter Fluids . Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: m V SI Unit of Mass Density: kg/m 3 . Mass Density . Mass Density
More informationFluidi. Copyright 2015 John Wiley & Sons, Inc. All rights reserved.
Fluidi 11.1 Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: m V SI Unit of Mass Density: kg/m3 11.1 Mass Density 11.1 Mass Density
More informationIn steady flow the velocity of the fluid particles at any point is constant as time passes.
Chapter 10 Fluids Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point
More informationChapter 10. Solids & Liquids
Chapter 10 Solids & Liquids Next 6 chapters use all the concepts developed in the first 9 chapters, recasting them into a form ready to apply to specific physical systems. 10.1 Phases of Matter, Mass Density
More information11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an
Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior
More informationChapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow
Fluids: substances which flow Chapter 5: Fluids Liquids: take the shape of their container but have a definite volume Gases: take the shape and volume of their container Density m ρ = V Mass Density =
More informationChapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2
Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius
More informationChapter 14  Fluids. Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14  Fluids. Objectives (Ch 14)
Any solid lighter than a fluid will, if placed in the fluid, be so far immersed that the weight of the solid will be equal to the weight of the fluid displaced. Archimedes, On Floating Bodies David J.
More informationChapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian
Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite
More informationChapter 9: Solids and Fluids
Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical
More informationPressure in a fluid P P P P
Fluids Gases (compressible) and liquids (incompressible) density of gases can change dramatically, while that of liquids much less so Gels, colloids, liquid crystals are all oddball states of matter We
More informationPhy 212: General Physics II. Daniel Bernoulli ( )
Phy 1: General Physics II Chapter 14: Fluids Lecture Notes Daniel Bernoulli (1700178) Swiss merchant, doctor & mathematician Worked on: Vibrating strings Ocean tides Kinetic theory Demonstrated that as
More informationTOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant ForcesArchimedes Principle
Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant ForcesArchimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation
More informationChapter 15  Fluid Mechanics Thursday, March 24 th
Chapter 15  Fluid Mechanics Thursday, March 24 th Fluids Static properties Density and pressure Hydrostatic equilibrium Archimedes principle and buoyancy Fluid Motion The continuity equation Bernoulli
More informationFluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion
Chapter 14 Fluids Fluids Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Fluid = Gas or Liquid MFMcGrawPHY45 Chap_14HaFluidsRevised 10/13/01 Densities MFMcGrawPHY45 Chap_14HaFluidsRevised
More informationChapter 14. Fluid Mechanics
Chapter 14 Fluid Mechanics States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite volume nor shape All of these
More informationPhysics 107 HOMEWORK ASSIGNMENT #9
Physics 07 HOMEORK ASSIGNMENT #9 Cutnell & Johnson, 7 th edition Chapter : Problems 6, 8, 33, 40, 44 *6 A 58kg skier is going down a slope oriented 35 above the horizontal. The area of each ski in contact
More informationMECHANICAL PROPERTIES OF FLUIDS
CHAPTER10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure
More informationLiquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...
CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes
More informationPhysics 201 Chapter 13 Lecture 1
Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UWMadison 1 Fluids Density
More informationChapter 15. m. The symbolic equation for mass density is: ρ= m V. Table of Densities
Chapter 15 Density Often you will hear that fiberglass is used for racecars because it is lighter than steel. This is only true if we build two identical bodies, one made with steel and one with fiberglass.
More informationCHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...
CHAPTER 13 FLUIDS Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes Principle! Upthrust!
More informationFluid Mechanics. The atmosphere is a fluid!
Fluid Mechanics The atmosphere is a fluid! Some definitions A fluid is any substance which can flow Liquids, gases, and plasmas Fluid statics studies fluids in equilibrium Density, pressure, buoyancy Fluid
More informationChapter 9. Solids and Fluids. 1. Introduction. 2. Fluids at Rest. 3. Fluid Motion
Chapter 9 Solids and Fluids 1. Introduction 2. Fluids at Rest 3. Fluid Motion 1 States of Matter Solid Liquid Gas Plasma 2 Density and Specific Gravity What is Density? How do I calculate it? What are
More informationChapter 12. Fluid Mechanics. A. The density ρ of a substance of uniform composition is defined as its mass M divided by its volume V.
Chapter 12 Fluid Mechanics 12.1 Density A. The density ρ of a substance of uniform composition is defined as its mass M divided by its volume V. That is,! = M V The density of water at 4 o C is 1000 kg/m
More informationPhysics 123 Unit #1 Review
Physics 123 Unit #1 Review I. Definitions & Facts Density Specific gravity (= material / water) Pressure Atmosphere, bar, Pascal Barometer Streamline, laminar flow Turbulence Gauge pressure II. Mathematics
More informationNicholas J. Giordano. Chapter 10 Fluids
Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according
More informationPhysics 201 Chapter 13 Lecture 1
Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UWMadison 1 Fluids Density
More informationChapter 9. Solids and Fluids 9.3 DENSITY AND PRESSURE
9.3 DENSITY AND PRESSURE Chapter 9 Solids and Fluids The density of an object having uniform composition is defined as its mass M divided by its volume V: M V [9.6] SI unit: kilogram per meter cubed (kg/m
More informationFluids. Fluids in Motion or Fluid Dynamics
Fluids Fluids in Motion or Fluid Dynamics Resources: Serway  Chapter 9: 9.79.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT  8: Hydrostatics, Archimedes' Principle,
More informationPhysics  Fluids. Read Page 174 (Density) TQ1. A fluid is what type of matter? TQ2. What is fluid mechanics? TQ3. What is the equation for density?
Homework Procedure: Read pages specified in Honors Physics Essentials by Dan Fullerton. Questions labeled TQ will be questions about the text you read. These TQ s can be answered in one word, one phrase,
More informationPhysics 111. Thursday, November 11, 2004
ics Thursday, ember 11, 2004 Ch 15: Fluids Pascal s Principle Archimede s Principle Fluid Flows Continuity Equation Bernoulli s Equation Toricelli s Theorem Announcements Wednesday, 89 pm in NSC 118/119
More informationFluids, Continuity, and Bernouli
Fluids, Continuity, and Bernouli Announcements: Exam Tomorrow at 7:30pm in same rooms as before. Web page: http://www.colorado.edu/physics/phys1110/phys1110_sp12/ Clicker question 1 A satellite, mass m,
More informationMECHANICAL PROPERTIES OF FLUIDS:
Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is
More informationGeneral Physics I. Lecture 16: Fluid Mechanics. Prof. WAN, Xin ( 万歆 )
General Physics I Lecture 16: Fluid Mechanics Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Motivations Newton s laws for fluid statics? Force pressure Mass density How to treat
More informationSOLUTION According to Equation 11.3, pressure is defined as P= F/ A; therefore, the magnitude of the force on the lid due to the air pressure is
PHYS 3 Fall 07 Week Recitation: Chapter :, 7, 40, 44, 64, 69.. ssm An airtight box has a remoable lid of area.3 0 m and negligible weight. The box is taken up a mountain where the air pressure outside
More informationPage 1. Physics 131: Lecture 23. Today s Agenda. Announcements. States of Matter
Physics 131: Lecture 3 Today s Agenda Description of Fluids at Rest Pressure vs Depth Pascal s Principle: hydraulic forces Archimedes Principle: objects in a fluid Bernoulli s equation Physics 01: Lecture
More informationLecture 8 Equilibrium and Elasticity
Lecture 8 Equilibrium and Elasticity July 19 EQUILIBRIUM AND ELASTICITY CHAPTER 12 Give a sharp blow one end of a stick on the table. Find center of percussion. Baseball bat center of percussion Equilibrium
More informationFluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012
Chapter 14 Fluid Mechanics PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_7_2012 Goals for Chapter 14 To study
More informationFluid Mechanics. Chapter 12. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman
Chapter 12 Fluid Mechanics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 12 To study the concept of density
More informationStudy fluid dynamics. Understanding Bernoulli s Equation.
Chapter Objectives Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Outline 1. Fluid Flow. Bernoulli s Equation 3. Viscosity and Turbulence 1. Fluid Flow An ideal fluid is a fluid that
More informationGeneral Physics I (aka PHYS 2013)
General Physics I (aka PHYS 2013) PROF. VANCHURIN (AKA VITALY) University of Minnesota, Duluth (aka UMD) OUTLINE CHAPTER 12 CHAPTER 19 REVIEW CHAPTER 12: FLUID MECHANICS Section 12.1: Density Section 12.2:
More informationCHEN 3200 Fluid Mechanics Spring Homework 3 solutions
Homework 3 solutions 1. An artery with an inner diameter of 15 mm contains blood flowing at a rate of 5000 ml/min. Further along the artery, arterial plaque has partially clogged the artery, reducing the
More informationCh. 11: Some problems on density, pressure, etc.
Q3 A pirate in a movie is carrying a chest (0.30 m 0.30 m 0.20 m) that is supposed to be filled with gold. To see how ridiculous this is, determine the mass (in kg) of the gold. Q15 A solid concrete block
More informationStates of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!L L. Example 9.
Elasticity Chapter 9 Solids and Fluids Archimedes Principle Bernoulli s Equation Solid Liquid Gas Plasmas States of Matter Solids: Stress and Strain Solids: Stress and Strain Stress = Measure of force
More informationDEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS
DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B3: LUIDS Essential Idea: luids cannot be modelled as point particles. Their distinguishable response to compression from solids creates a set
More informationStates of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!
Elasticity Chapter 9 Solids and Fluids Archimedes Principle Bernoulli s Equation Solid Liquid Gas Plasmas States of Matter 1 2 Solids: Stress and Strain Solids: Stress and Strain Stress = Measure of force
More informationChapter 11: Fluids. ρ = Density: Pressure: F P = P atm = Pa = 1 atm. Pressure: Pressure in a Static Fluid: P2 = P1+
Chapter 11: Fluids Density: ρ = m V ρ = 1. 1 water 3 kg m 3 Pressure: Pressure: F P = P atm =1.13 1 5 Pa = 1 atm A Pressure in a Static Fluid: P = P1+ ρ gh Pascal s Principle: Any change in the pressure
More informationChapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation
Chapter 9 Solids and Fluids Elasticity Archimedes Principle Bernoulli s Equation States of Matter Solid Liquid Gas Plasmas Solids: Stress and Strain Stress = Measure of force felt by material Stress= Force
More informationf= flow rate (m 3 /s) A = crosssectional area of the pipe (m 2 ) v= flow speed (m/s)
Fluid Mechanics Flow Rate and Continuity Equation If you have a pipe that is flowing a liquid you will have a flow rate. The flow rate is the volume of fluid that passes any particular point per unit of
More information! =!"#$% exerted by a fluid (liquid or gas) !"#$ =!"# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME
FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME PRESSURE, P! =!"#$%!"#! exerted by a fluid (liquid or gas) Thermodynamic importance of pressure One of two independent
More informationStates of matter. Density high > high >> low (pressure dependent)
Fluids States of matter Solids Fluids crystalline amorphous liquids gasses Interatomic forces strong > strong >> very weak Density high > high >> low (pressure dependent) Density is an important material
More informationChapter 9. Solids and Fluids
Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Atoms or molecules are held in specific locations By electrical forces Vibrate about
More informationPhysics 207 Lecture 18
Physics 07, Lecture 8, Nov. 6 MidTerm Mean 58.4 (64.6) Median 58 St. Dev. 6 (9) High 94 Low 9 Nominal curve: (conservative) 8000 A 679 B or A/B 346 C or B/C 933 marginal 98 D Physics 07: Lecture 8,
More informationρ mixture = m mixture /V = (SG antifreeze ρ water V antifreeze + SG water ρ water V water )/V, so we get
CHAPTER 10 1. When we use the density of granite, we have m = ρv = (.7 10 3 kg/m 3 )(1 10 8 m 3 ) =.7 10 11 kg.. When we use the density of air, we have m = ρv = ρlwh = (1.9 kg/m 3 )(5.8 m)(3.8 m)(.8 m)
More informationChapter 18 Fluids Pearson Education, Inc. Slide 181
Chapter 18 Fluids Slide 181 Section 18.1: Forces in a fluid We dealt with solid objects in the previous chapters. We now turn our attention to liquids and gasses. Liquids and gasses are collectively called
More informationChapter 11  Fluids in Motion. Sections 79
Chapter  Fluids in Motion Sections 79 Fluid Motion The lower falls at Yellowstone National Park: the water at the top of the falls passes through a narrow slot, causing the velocity to increase at that
More informationChapter 9 Fluids. Pressure
Chapter 9 Fluids States of Matter  Solid, liquid, gas. Fluids (liquids and gases) do not hold their shapes. In many cases we can think of liquids as being incompressible. Liquids do not change their volume
More informationChapter 9. Solids and Fluids
Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium
More informationFinal Mock Exam PH 2211D
Final Mock Exam PH 2211D April 18, 2015 You will have 2 hours to complete this exam. You must answer 8 questions to make a perfect score of 80. 1 Chapter Concept Summary Equations: Cutnell & Johnson
More informationPhysics 106 Lecture 13. Fluid Mechanics
Physics 106 Lecture 13 Fluid Mechanics SJ 7 th Ed.: Chap 14.1 to 14.5 What is a fluid? Pressure Pressure varies with depth Pascal s principle Methods for measuring pressure Buoyant forces Archimedes principle
More information11/4/2003 PHY Lecture 16 1
Announcements 1. Exams will be returned at the end of class. You may rework the exam for up to 1 extra credit points. Turn in your old exam and your new work (clearly indicated). Due 11/11/3. You may sign
More informationMock Exam III PH 201, PH 221
Mock Exam III PH 201, PH 221 April 12, 2015 You will have 1 hour to complete this exam, and must answer 7 of the problems correctly to make a perfect score. 1 Chapter Concept Summary Equations: Cutnell
More information5. is made of a different material than bar two
Example Problems: Bar one has a Young s modulus that is bigger than that of bar Two. This means that bar one: 1. is longer than bar two 2. is shorter than bar two 3. has a greater crosssectional area
More information10  FLUID MECHANICS Page 1
0  FLUID MECHANICS Page Introduction Fluid is a matter in a state which can flow. Liquids, gases, molten metal and tar are examples of fluids. Fluid mechanics is studied in two parts: ( i ) Fluid statics
More informationChapter 5(Section1) Friction in Solids and Liquids
Chapter 5(Section1) Friction in Solids and Liquids Que 1: Define friction. What are its causes? Ans : Friction: When two bodies are in contact with each other and if one body is made to move then the
More informationChapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas
Chapter 9 States of Matter Solids and Fluids Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium
More informationIntroductory Physics PHYS101
Introductory Physics PHYS101 Dr Richard H. Cyburt Office Hours Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 3846006 My email: rcyburt@concord.edu TRF 9:3011:00am
More informationFluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding
Fluid Mechanics HOOKE'S LAW If deformation is small, the stress in a body is proportional to the corresponding strain. In the elasticity limit stress and strain Stress/strain = Const. = Modulus of elasticity.
More informationPhysics 153 Introductory Physics II. Week One: FLUIDS. Dr. Joseph J. Trout
Physics 153 Introductory Physics II Week One: FLUIDS Dr. Joseph J. Trout joseph.trout@drexel.edu 6103486495 States (Phases) of Matter: Solid: Fixed shape. Fixed size. Even a large force will not readily
More informationPhysics 101: Lecture 18 Fluids II
Exam III Physics 101: Lecture 18 Fluids II Textbook Sections 9.6 9.8 Physics 101: Lecture 18, Pg 1 Review Static Fluids Pressure is force exerted by molecules bouncing off container P = F/A Gravity/weight
More informationBarometer Fluid rises until pressure at A, due its weight, equals atmospheric pressure at B. Unit: mm Hg (millimeters that mercury rises)
FLUID MECHANICS The study of the properties of fluids resulting from the action forces. Fluid a liquid, gas, or plasma We will only consider incompressible fluids i.e. liquids Pressure P F A (normal force)
More informationPhysical Sciences 2: Assignments for Oct Oct 31 Homework #7: Elasticity and Fluid Statics Due Tuesday, Oct 31, at 9:30AM
Physical Sciences 2: Assignments for Oct. 24  Oct 31 Homework #7: Elasticity and Fluid Statics Due Tuesday, Oct 31, at 9:30AM After completing this homework, you should Be able to describe what is meant
More informationChapter 9. Solids and Fluids (c)
Chapter 9 Solids and Fluids (c) EXAMPLE A small swimming pool has an area of 0 square meters. A wooden 4000kg statue of density 500 kg/m 3 is then floated on top of the pool. How far does the water rise?
More informationAnswers to test yourself questions
Answers to test yourself questions Option B B Rotational dynamics ( ω + ω )t Use 0 ( +.).0 θ to get θ 46. 46 rad. Use ω ω0 + αθ to get ω.0 +. 4 and so ω 7.8 7 rad s. Use ω ω0 + αθ to get.4. + α 0 π. Hence
More informationChapter 3 Fluid Statics
Chapter 3 Fluid Statics 3.1 Pressure Pressure : The ratio of normal force to area at a point. Pressure often varies from point to point. Pressure is a scalar quantity; it has magnitude only It produces
More informationLecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009
Physics 111 Lecture 27 (Walker: 15.57) Fluid Dynamics Nov. 9, 2009 Midterm #2  Monday Nov. 16 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.89) Chap. 13 (not 13.68) Chap.
More informationHalliday/Resnick/Walker 7e Chapter 14
HRW 7e Chapter 4 Page of 8 Halliday/Resnick/Walker 7e Chapter 4. The air inside pushes outard ith a force given by p i A, here p i is the pressure inside the room and A is the area of the indo. Similarly,
More informationPhysics 220: Classical Mechanics
Lecture /33 Phys 0 Physics 0: Classical Mechanics Lecture: MWF 8:40 am 9:40 am (Phys 4) Michael Meier mdmeier@purdue.edu Office: Phys Room 38 Help Room: Phys Room schedule on course webpage Office Hours:
More informationChapter 10. Solids and Fluids
Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the
More informationChapter 1 INTRODUCTION
Chapter 1 INTRODUCTION 11 The Fluid. 12 Dimensions. 13 Units. 14 Fluid Properties. 1 11 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid
More informationPhysics 11: Additional Equations for the Final Celebration
Physics 11: Additional Equations for the Final Celebration Work: W = Fd cosθ Chapter 10: Energy and Work The unit of work is the Joule (J). 1 J = 1 Nm = 1 kg m /s Work can be +, , or 0. Work Energy Theorem:
More informationPhysics 201, Lecture 26
Physics 201, Lecture 26 Today s Topics n Fluid Mechanics (chapter 14) n Review: Pressure n Buoyancy, Archimedes s Principle (14.4) n Fluid Dynamics, Bernoulli s Equation (14.5,14.6) n Applications of Fluid
More informationChapter (6) Energy Equation and Its Applications
Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation
More informationFLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE
VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE? How can a plane fly? How does a perfume spray work? What is the venturi effect? Why does a
More informationPhysics 202 Homework 2
Physics 202 Homework 2 Apr 10, 2013 1. An airplane wing is designed so that the speed of the air across the top of the 192 kn wing is 251 m/s when the speed of the air below the wing is 225 m/s. The density
More information43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms,
43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, A) her moment of inertia increases and her rotational kinetic energy remains the same.
More informationMass of fluid leaving per unit time
5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.
More informationI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
MECHNICS O LUIDS luids are both liquids and gases. The common property of fluids is that the particles can be separated easily (liquids do not have their own shape etc.). Real fluids have something like
More informationPressure in stationary and moving fluid. LabOnChip: Lecture 2
Pressure in stationary and moving fluid LabOnChip: Lecture Fluid Statics No shearing stress.no relative movement between adjacent fluid particles, i.e. static or moving as a single block Pressure at
More informationPhysics 110 Third Hour Exam
Physics 110 Third Hour Exam Name: Answer Key Part I Short answers: Answer all questions with only one response in the margin.(3 pts each for a total of 30 pts). Note: for partial credit write a clear phrase
More informationLecture 30 (Walker: ) Fluid Dynamics April 15, 2009
Physics 111 Lecture 30 (Walker: 15.67) Fluid Dynamics April 15, 2009 Midterm #2  Monday April 20 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.89) Chap. 13 (not 13.68)
More informationPressure in stationary and moving fluid Lab Lab On On Chip: Lecture 2
Pressure in stationary and moving fluid LabOnChip: Lecture Lecture plan what is pressure e and how it s distributed in static fluid water pressure in engineering problems buoyancy y and archimedes law;
More informationPhysics 111 P 2 A = P 1. A + mg = P 1. A + ρ( AΔh)g. Wednesday, 89 pm in NSC 118/119 Sunday, 6:308 pm in CCLIR 468.
ics Announcements day, ember 11, 011 C5: Fluids Pascal s Principle Archimede s Principle Fluid Flows Continuity Equation Bernoulli s Equation Toricelli s Theorem Wednesday, 89 pm in NSC 118/119 Sunday,
More informationReminder: HW #10 due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade)
Reminder: HW #0 due Thursday, Dec, :59 p.m. (last HW that contributes to the final grade) Recitation Quiz # tomorrow (last Recitation Quiz) Formula Sheet for Final Exam posted on Bb Last Time: Pressure
More informationStevens High School AP Physics II Work for Notschool
1. (AP SAMPLE QUESTION) An ideal fluid is flowing with a speed of 12 cm/s through a pipe of diameter 5 cm. The pipe splits into three smaller pipes, each with a diameter of 2 cm. What is the speed of the
More informationMULTIPLECHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)
MULTIPLECHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.
More informationMomentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics
Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Momentum Collisions between objects can be evaluated using the laws of conservation of energy and of momentum. Momentum
More informationFluid Dynamics. Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number
Fluid Dynamics Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number Fluids in Motion steady or laminar flow, if each particle of the
More information