The online of midterm-tests of Fluid Mechanics 1

Size: px
Start display at page:

Download "The online of midterm-tests of Fluid Mechanics 1"

Transcription

1 The online of midterm-tests of Fluid Mechanics 1 1) The information on a can of pop indicates that the can contains 460 ml. The mass of a full can of pop is 3.75 lbm while an empty can weights 80.5 lbf. Determine the specific weight, density and specific gravity of pop. Express your results in BG unit. Answer: γ = lb/ft 3, ρ = slug/ft 3 and SG = ) A tank of oil has a mass of 30 slugs. (a) Determine its weight in pounds and in newtons at the earth s surface. (b) What would be its mass (in slug) and its weight (in pound) if located on the moon s surface where the gravitational attraction is approximately one-sixth that at the earth s surface? Answer: (a) 966 lb and 4290 N, (b) 161 lb. 3) A liquid when poured into a graduated cylinder is found to weight 8 N when occupying a volume of 500 ml (milliliters). Determine its specific weight, density, and specific gravity. Answer: γ = 16 kn/m 3, ρ = kg/m 3 and SG = ) Initially when 1000 ml of water at 10 o C are poured into a glass cylinder the height of the water column is 1000 mm. The water and its container are heated to 70 o C. Assuming no evaporation, what then will be the depth of the water column (h) if the coefficient of thermal expansion for the glass is mm/mm per o C? Let: ρ = kg/m 3 for 10 o C and ρ = kg/m 3 for 70 o C. Answer: h 70 C = mm. 5) A space 16 mm wide between two large plane surface is filled with SAE 30 Western lubricating oil at 35 o C. What force F is required to drag a very thin plate of 0.4 m 2 area between the surface at a speed v = 0.25 m/s (a) if this plate is equally spaced between the two surface? (b) If t = 5 mm? Let: μ at 35 C = 0.81 N s/m 2 Answer: (a) 4.5 N (b) 5.24 N. Fig. 5

2 6) A piston of weight 21 lb slides in a lubricated pipe, as shown in Fig 6. The clearance between piston and pipe is in. If the decelerates at 2.1 ft/s 2 when the speed is 21 ft/s, what is the viscosity of the oil? Answer: μ = lb s/ft 2. 7) A piston having a diameter of 5.48 in and a length of 9.5 in slides downward with a velocity v through a vertical pipe. The downward motion is resisted by an oil film between the piston and the pipe wall. The film thickness is in and the cylinder weights 0.5 lb. Estimate v if the oil viscosity is lb s/ft 2. Assume the velocity distribution in the gap is linear. Answer: v = ft/s. 8) A 40 lb, 0.8 ft diameter, 1 ft tall cylinder tank slides slowly down a ramp with a constant speed of 0.1 ft/s asshowninfig shown Fig. 8. The uniform thickness oil layer on the ramp has a viscosity of 0.2 lb s/ft 2. Determine the angle θ of the ramp. Answer: θ = 7.22 o. Fig. 8 9) Assume that the surface tension force act at an angle θ relative to the water surface as shown in Fig. 9. (a) The mass of the double-edge blade is kg, and the total length of its sides is 206 mm. Determine the value of θ required to maintain equilibrium between the blade weight and the resultant surface tension force. (b) The mass of the single-edge blade is kg, and the total length of its sides is 154 mm. Answer: (a) θ = 24.5 o, (b) T sinθ = sinθ. Fig. 9(a) Fig. 9(b)

3 10) Find the pressure at A, B, C and D in Fig. 9. Answer: P A = 374 lb/ft 2, P B = 125 lb/ft 2, P C = P B and P D = 624 lb/ft 2. 11) In Fig. 11 assume the following: atmospheric pressure = 930 mbar (abs); vapor pressure of the alcohol = 110 mbar (abs) x =3.3 m and y = 1.6 m. Compute the reading (a) on the pressure gage and (b) on the manometer. Fig. 10 Fig. 11 Answer: (a) P A, gage = 397 mmhg (vacuum), (b) P manometer = 437 mm. 12) The cylindrical tank with hemispherical ends shown in Fig. 12 contains a volatile liquid and its vapor. The liquid density is 800 kg/m 3, and its vapor density is negligible. The pressure in the vapor is 120 kpa (abs), and the atmospheric pressure is 101 kpa (abs). Determine (a) the gage pressure reading on the pressure gage and (b) the height h of the mercury manometer. Answer: (a) P gage = 26.9 kpa, (b) h = m. Fig ) A closed cylindrical tank filled with water has a hemispherical dome and is connected to an inverted piping system as shown in Fig. 13. The liquid in the top part of the piping system has a specific gravity of 0.8, and the remaining parts of the system are filled with water. If the pressure gage reading at A is 60 kpa, determine: (a) the pressure in pipe B, (b) the pressure head (in mmhg) at the top of the dome (C). Fig. 13 Answer: (a) P B = 103 kpa, (b) h C = 230 mmhg.

4 14) The inclined differential manometer of Fig. 14 contains carbon tetrachoride. Initially the pressure differential between pipes A and B, which contain a brine (SG = 1.1), is zero as illustrated in the figure. It is desired that the manometer give a differential reading of 12 in (measured along the inclined tube) for a pressure differential of 0.1 psi. Determine the required angle of inclination θ. Fig. 14 Answer: θ = 27.8 o. 15) Gate AB in Fig. 15(a) is 16 ft long and 8 ft wide. Neglecting the weight of the gate, (a) compute the water level h for which the gate will start to fall, (b) recomputed the level h by including the weight of the 2 in thick steel which SG steel = Answer: (a) h = 11.7 ft, (b) h = 10.7 ft. Fig. 15(a) Fig. 15(b) 16) The common type of irrigation head gate shown in Fig. 16 is a plate that slides over the opening to a culvert. The coefficient c e of friction between the gate and its sliding ways is 0.6. Find the force required to slid open this 600 lb gate if it is set (a) vertically, (b) on a 2:1 slop (n=2), as is common. Answer: (a) T = 8990 lb, (b) T = 8310 lb. Fig. 16(a) Fig. 16(b)

5 17) A tank with vertical ends contains water and is 6 m long normal to the plane of Fig. 17. The sketch shows a portion of its cross-section where MN is one-quarter of an ellipse with smilaxes b and d. If a = 1.0 m, b = 2.5 m and d = 4 m, find, for the surface represented by MN, the magnitude and position of the line of action of (a) the horizontal component of force, (b) the vertical component of the force, (c) the resultant force and its direction relative to the horizontal. Fig. 17 Answer: (a) h cp = 3.44 m below surface, (b) x cg = m, (c) F R = 933 N and θ = 40.8 o. 18) The rigid gate, OAB, of Fig. 18 is hinged at O and rests against a rigid support at B. What minimum horizontal force, P, is required to hold the gate closed if its width is 3 m? Neglect the weight of the gate and friction in the hinge. The back of the gate is exposed to the atmosphere. Fig. 18 Answer: P = 436 kn. 19) Three gates of negligible weight are used to hold back water in a channel of width b as shown in Fig. 19. The force of the gate against the block for gate (b) is R. Determine (in term of R) the force against the blocks for the other two gates. Answer: F B (a) = 1.17R, F B, (c) = 0.875R. Fig. 19

6 20) The hydrometer shown in Fig. 20 has a mass of kg and the cross-section area of its stem is 290 mm 2. Determine the distance between graduations (on stem) for specific gravities of 1.0 and 0.9. Answer: Δh = 17.2 mm. Fig ) A velocity field is given by V = Axi Ayj, the units of velocity are m/s; x and y are given in meters; A = 0.3 s. (a) Obtain an equation for the streamlines in the xy plane, (b) Plot the streamline passing through hthe point t( (x 0, y 0 ) = (2, 8), (c) Determine the velocity of a particle at the point (2,8), (d) If the particle passing trough the point (x 0, y 0 ) is marked at time t = 0, determine the location of the particle at time t = 6 s, (e) What is the velocity of this particle at time t = 6 s, (f) Show that the equation of the particle path (the pathline) is the same as the equation of the streamline. Answer: (a)lny= -ln x C, (b) xy = x 0 y 0 = 16 m 2, (c) V = 0.6i 2.4j m/s, (d) x = 12.1 m and y = 1.32 m, (e) V = 3.63i j m/s, (f) e At = y 0 /y = x/x 0. 22) The velocity in a certain two-dimensional flow field is given by the equation V = 2xt i + 2yt j, where the velocity is in ft/s when x, y and t are feet and seconds, respectively. Determine expressions for the local and convective components of acceleration in the x and y directions. What is the acceleration at the point x = y = 2 ft at the t = 0 s? Answer: a x, local = 2x, a x, convect = 4xt 2, a = 5.66 ft/s 2. 23) For the solid-propellant rocket in Fig. 23, compute the rate of mass loss of the propellant, assuming the exit gas has a molecular weight of 30. Answer: dm/dt = kg/s. Fig. 23

7 24) The open tank in the Fig. 24 contains water at 20 C. For incompressible flow, (a) derive an analytic expression for dh/dt in terms of (Q 1, Q 2, Q 3 ), (b) If h is constant, determine V 2 for the given data if V 1 = 3 m/s and Q3 = 0.01 m 3 /s. Answer: (a) dh/dt = [Q 1 + Q 2 + Q 3 ] / [πd 2 /4], (b) V 2 = 4.13 m/s. Fig ) Consider the steady flow in a water pipe joint shown in the diagram. The areas are: A 1 = A 2 = 0.2 m 2 and A 3 = 0.15 m 2. In addition, fluid is lost out of a hole at point 4, estimated at a rate of 0.1 m 3 /s. The average speeds at sections point 1 and 3 are V 1 = 5 m/s, V 3 = 12 m/s, respectively. Find the velocity at section point 2. Fig. 25 Answer: V2 = 4.5 m/s. 26) Water at 20 C flowa through a 5 cm diameter pipe which has a 180 o vertical bend, as in Fig. 26. The total length of pipe between flanges 1 and 2 is 75 cm. When the weight flow rate is 230 N/s, P1 = 165 kpa an p2 = 134 kpa. Neglecting g pipe p weight, determine the total force which the flanges must withstand for this flow. Fig. 26 Answer: F x, flange = 750 N and F y, flange = 14 N. 27) Determine the magnitude and direction of the x and y components of the anchoring force required to hold in place the horizontal 180 o elbow and nozzle combination shown in Fig. 27. Also determine the magnitude and direction of the x and y components of the reaction force exerted by 180 o elbow and nozzle on the flowing water. Answer: F Ax = 1890 lb, F Ay = 0, F x = 1890 lb, F y = 0. Fig. 27

8 28) A 20 o C water jet strikes a vane on a tank with frictionless wheels, as shown. The jet turns and falls into the tank without spilling. If θ = 30 o, estimate the horizontal force F needed to hold the tank stationary. Answer: F = 106 lb. Fig ) Water at 20 o C exits to the standard sea-level atmosphere through the spit nozzle in Fig. 29. Duct areas are A 1 = 0.02 m 2 and A 2 = A 3 = m 2. If P1 = 135 kpa (abs) and the flow rate is Q 1 = Q 3 = 275 m 3 /h, compute the force on the flange bolts at section 1 Fig. 29 Answer: F bolt = 3100 N. 30) A metal container 2 ft high, with an inside cross-sectional area of 1 ft 2, weight 5 lb when empty. The container is placed on a scale and water flows in through an opening in the top and out through the two equal-area openings in the sides as shown in the diagram. Under steady flow conditions, the height of the water in the tank is h = 1.9 ft. What does the scale indicate? Fig. 30 Answer: F y = 143 lb. 31) A small lawn sprinkler is shown in the sketch below. At an inlet gage pressure of 20 kpa, the total volume flow rate of water through the sprinkler is 7.5 lpm and it rotates at 30 rpm. The diameter of each jet is 4 mm. Calculate the jet speed relative to each sprinkler nozzle. Evaluate the friction torque at the sprinkler pivot. Answer: T f = N m. Fig. 31 Good Luck: By Dr. Bundit Krittacom

4 Mechanics of Fluids (I)

4 Mechanics of Fluids (I) 1. The x and y components of velocity for a two-dimensional flow are u = 3.0 ft/s and v = 9.0x ft/s where x is in feet. Determine the equation for the streamlines and graph representative streamlines in

More information

ME3560 Tentative Schedule Spring 2019

ME3560 Tentative Schedule Spring 2019 ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to

More information

ME3560 Tentative Schedule Fall 2018

ME3560 Tentative Schedule Fall 2018 ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read

More information

MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =-6 (1/2) 2 = -3/2 m/s

MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =-6 (1/2) 2 = -3/2 m/s MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER ) FALL 018 1) For the velocity fields given below, determine: i) Whether the flow field is one-, two-, or three-dimensional, and why. ii) Whether the flow

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.

More information

Fluids and their Properties

Fluids and their Properties Chapter (1) Fluids and their Properties Dr. KHALIL MAHMOUD ALASTAL Eng.Mohammed AbuRahma Eng.Reem Sbaih 2017 Newton s Law of Viscosity: - / Non-Newtonian Fluids: - Mass Density: - / Specific weight: -

More information

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

More information

Therefore, the control volume in this case can be treated as a solid body, with a net force or thrust of. bm # V

Therefore, the control volume in this case can be treated as a solid body, with a net force or thrust of. bm # V When the mass m of the control volume remains nearly constant, the first term of the Eq. 6 8 simply becomes mass times acceleration since 39 CHAPTER 6 d(mv ) CV m dv CV CV (ma ) CV Therefore, the control

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING. Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : II-I- B. Tech Year : 0 0 Course Coordinator

More information

Fluid Mechanics Discussion. Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad

Fluid Mechanics Discussion. Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad Discussion Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad 2014-2015 Chapter (1) Fluids and their Properties Fluids and their Properties Fluids (Liquids or gases) which a substance

More information

Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016

Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016 Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 01 May 4/ 016 Second year Mech. Time :180 min. Examiner:Dr.Mohamed Elsharnoby Attempt

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1-1 The Fluid. 1-2 Dimensions. 1-3 Units. 1-4 Fluid Properties. 1 1-1 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

UNIT I FLUID PROPERTIES AND STATICS

UNIT I FLUID PROPERTIES AND STATICS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: II-B.Tech & I-Sem Course & Branch:

More information

Chapter Four fluid flow mass, energy, Bernoulli and momentum

Chapter Four fluid flow mass, energy, Bernoulli and momentum 4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering

More information

Q1 Give answers to all of the following questions (5 marks each):

Q1 Give answers to all of the following questions (5 marks each): FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored

More information

FE Exam Fluids Review October 23, Important Concepts

FE Exam Fluids Review October 23, Important Concepts FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning

More information

Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118

Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118 CVEN 311-501 (Socolofsky) Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118 Name: : UIN: : Instructions: Fill in your name and

More information

Consider a control volume in the form of a straight section of a streamtube ABCD.

Consider a control volume in the form of a straight section of a streamtube ABCD. 6 MOMENTUM EQUATION 6.1 Momentum and Fluid Flow In mechanics, the momentum of a particle or object is defined as the product of its mass m and its velocity v: Momentum = mv The particles of a fluid stream

More information

AER210 VECTOR CALCULUS and FLUID MECHANICS. Quiz 4 Duration: 70 minutes

AER210 VECTOR CALCULUS and FLUID MECHANICS. Quiz 4 Duration: 70 minutes AER210 VECTOR CALCULUS and FLUID MECHANICS Quiz 4 Duration: 70 minutes 26 November 2012 Closed Book, no aid sheets Non-programmable calculators allowed Instructor: Alis Ekmekci Family Name: Given Name:

More information

Chapter 4 DYNAMICS OF FLUID FLOW

Chapter 4 DYNAMICS OF FLUID FLOW Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

More information

1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g)

1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g) 1.4 Perform the following unit conversions: 0.05 ft 1 in. (a) 1L 61in. 1L 1ft (b) 1kJ 650 J 10 J 1Btu 1.0551kJ 0.616 Btu (c) 41 Btu/h 0.15 kw 1kW 1h 600 s 778.17 ft lbf 1Btu ft lbf 99.596 s (d) g 78 s

More information

2 Navier-Stokes Equations

2 Navier-Stokes Equations 1 Integral analysis 1. Water enters a pipe bend horizontally with a uniform velocity, u 1 = 5 m/s. The pipe is bended at 90 so that the water leaves it vertically downwards. The input diameter d 1 = 0.1

More information

CVEN Fall 2009 Examination 1 October 5, :00 pm 8:40 pm

CVEN Fall 2009 Examination 1 October 5, :00 pm 8:40 pm NAME (print): CVEN 311 502 Fall 2009 Examination 1 October 5, 2009 7:00 pm 8:40 pm This is a closed book examination. You are allowed to use one letter sized (8 ½ x 11 ) formula sheet with writing on one

More information

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

More information

Homework of chapter (1) (Solution)

Homework of chapter (1) (Solution) بسم اهلل الرمحن الرحيم The Islamic University of Gaza, Civil Engineering Department, Fluid mechanics-discussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Mohammed H El Nazli Eng. Sarah R Rostom First

More information

Atmospheric pressure. 9 ft. 6 ft

Atmospheric pressure. 9 ft. 6 ft Name CEE 4 Final Exam, Aut 00; Answer all questions; 145 points total. Some information that might be helpful is provided below. A Moody diagram is printed on the last page. For water at 0 o C (68 o F):

More information

The Bernoulli Equation

The Bernoulli Equation The Bernoulli Equation The most used and the most abused equation in fluid mechanics. Newton s Second Law: F = ma In general, most real flows are 3-D, unsteady (x, y, z, t; r,θ, z, t; etc) Let consider

More information

DIMENSIONS AND UNITS

DIMENSIONS AND UNITS DIMENSIONS AND UNITS A dimension is the measure by which a physical variable is expressed quantitatively. A unit is a particular way of attaching a number to the quantitative dimension. Primary Dimension

More information

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces

More information

Fluid Mechanics Introduction

Fluid Mechanics Introduction Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be

More information

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

More information

Hydrostatics. ENGR 5961 Fluid Mechanics I: Dr. Y.S. Muzychka

Hydrostatics. ENGR 5961 Fluid Mechanics I: Dr. Y.S. Muzychka 1 Hydrostatics 2 Introduction In Fluid Mechanics hydrostatics considers fluids at rest: typically fluid pressure on stationary bodies and surfaces, pressure measurements, buoyancy and flotation, and fluid

More information

Fluid Mechanics. du dy

Fluid Mechanics. du dy FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

More information

Campus Mail Box. Circle One: Richards 03 Richards 04 Lui 05 Lui - 06

Campus Mail Box. Circle One: Richards 03 Richards 04 Lui 05 Lui - 06 ES 202 - Exam I Winter 2002-2003 Richards/Lui Name: Campus Mail Box Circle One: Richards 03 Richards 04 Lui 05 Lui - 06 Problem 1 Problem 2 ( 10 ) ( 45 ) Problem 3 ( 45 ) TOTAL ( 100 ) General Comments

More information

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118 CVEN 311-501 (Socolofsky) Fluid Dynamics Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118 Name: : UIN: : Instructions: Fill in your name and UIN in the space

More information

10.52 Mechanics of Fluids Spring 2006 Problem Set 3

10.52 Mechanics of Fluids Spring 2006 Problem Set 3 10.52 Mechanics of Fluids Spring 2006 Problem Set 3 Problem 1 Mass transfer studies involving the transport of a solute from a gas to a liquid often involve the use of a laminar jet of liquid. The situation

More information

Fluid Dynamics Midterm Exam #2 November 10, 2008, 7:00-8:40 pm in CE 110

Fluid Dynamics Midterm Exam #2 November 10, 2008, 7:00-8:40 pm in CE 110 CVEN 311-501 Fluid Dynamics Midterm Exam #2 November 10, 2008, 7:00-8:40 pm in CE 110 Name: UIN: Instructions: Fill in your name and UIN in the space above. There should be 11 pages including this one.

More information

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

Approximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C.

Approximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C. Appendix FLUID MECHANICS Approximate physical properties of selected fluids All properties are given at pressure 101. kn/m and temperature 15 C. Liquids Density (kg/m ) Dynamic viscosity (N s/m ) Surface

More information

5 ENERGY EQUATION OF FLUID MOTION

5 ENERGY EQUATION OF FLUID MOTION 5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws

More information

INTRODUCTION TO FLUID MECHANICS June 27, 2013

INTRODUCTION TO FLUID MECHANICS June 27, 2013 INTRODUCTION TO FLUID MECHANICS June 27, 2013 PROBLEM 3 (1 hour) A perfect liquid of constant density ρ and constant viscosity µ fills the space between two infinite parallel walls separated by a distance

More information

Mass of fluid leaving per unit time

Mass of fluid leaving per unit time 5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.

More information

Fluid Mechanics-61341

Fluid Mechanics-61341 An-Najah National University College of Engineering Fluid Mechanics-61341 Chapter [2] Fluid Statics 1 Fluid Mechanics-2nd Semester 2010- [2] Fluid Statics Fluid Statics Problems Fluid statics refers to

More information

2 Internal Fluid Flow

2 Internal Fluid Flow Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.

More information

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.

More information

Rate of Flow Quantity of fluid passing through any section (area) per unit time

Rate of Flow Quantity of fluid passing through any section (area) per unit time Kinematics of Fluid Flow Kinematics is the science which deals with study of motion of liquids without considering the forces causing the motion. Rate of Flow Quantity of fluid passing through any section

More information

CIVE HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University

CIVE HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University CIVE 401 - HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University Problems with and are considered moderate and those with are the longest and most difficult. In 2018 solve the problems with

More information

MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) Test Midterm 1 F2013 MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct nswer in the Questions Below.) 1. The absolute viscosity µ of a fluid is primarily a function

More information

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION INTRODUCTION DEFINITION OF FLUID plate solid F at t = 0 t > 0 = F/A plate U p F fluid t 0 t 1 t 2 t 3 FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

storage tank, or the hull of a ship at rest, is subjected to fluid pressure distributed over its surface.

storage tank, or the hull of a ship at rest, is subjected to fluid pressure distributed over its surface. Hydrostatic Forces on Submerged Plane Surfaces Hydrostatic forces mean forces exerted by fluid at rest. - A plate exposed to a liquid, such as a gate valve in a dam, the wall of a liquid storage tank,

More information

CHAPTER 2 Fluid Statics

CHAPTER 2 Fluid Statics Chapter / Fluid Statics CHPTER Fluid Statics FE-type Eam Review Problems: Problems - to -9. (C). (D). (C).4 ().5 () The pressure can be calculated using: p = γ h were h is the height of mercury. p= γ h=

More information

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMOYNAMICS, FLUI AN PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. SELF ASSESSMENT EXERCISE No.1 FLUI MECHANICS HYROSTATIC FORCES

More information

PROPERTIES OF FLUIDS

PROPERTIES OF FLUIDS Unit - I Chapter - PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pa-s To find : Shear stress. Step - : Calculate the shear stress at various

More information

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

More information

CHEN 3200 Fluid Mechanics Spring Homework 3 solutions

CHEN 3200 Fluid Mechanics Spring Homework 3 solutions Homework 3 solutions 1. An artery with an inner diameter of 15 mm contains blood flowing at a rate of 5000 ml/min. Further along the artery, arterial plaque has partially clogged the artery, reducing the

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour Basic Equations in fluid Dynamics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Description of Fluid

More information

Part A: 1 pts each, 10 pts total, no partial credit.

Part A: 1 pts each, 10 pts total, no partial credit. Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: -3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,

More information

R09. d water surface. Prove that the depth of pressure is equal to p +.

R09. d water surface. Prove that the depth of pressure is equal to p +. Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

More information

Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10

Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10 Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10 ft by 10 ft by 8 ft, and then compute this mass in

More information

Applications of Hydrostatics

Applications of Hydrostatics Applications of Hydrostatics Pressure measurement with hydrostatics Mercury Barometer - This is a device used to measure the local atmospheric pressure, p a. As seen in the sketch, it is formed by inverting

More information

CHAPTER 2 Pressure and Head

CHAPTER 2 Pressure and Head FLUID MECHANICS Gaza, Sep. 2012 CHAPTER 2 Pressure and Head Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Introduce the concept of pressure. Prove it has a unique value at any particular elevation.

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Chapter 3 Fluid Statics

Chapter 3 Fluid Statics Chapter 3 Fluid Statics 3.1 Pressure Pressure : The ratio of normal force to area at a point. Pressure often varies from point to point. Pressure is a scalar quantity; it has magnitude only It produces

More information

CE Final Exam. December 12, Name. Student I.D.

CE Final Exam. December 12, Name. Student I.D. CE 100 - December 12, 2009 Name Student I.D. This exam is closed book. You are allowed three sheets of paper (8.5 x 11, both sides) of your own notes. You will be given three hours to complete four problems.

More information

Lagrangian description from the perspective of a parcel moving within the flow. Streamline Eulerian, tangent line to instantaneous velocity field.

Lagrangian description from the perspective of a parcel moving within the flow. Streamline Eulerian, tangent line to instantaneous velocity field. Chapter 2 Hydrostatics 2.1 Review Eulerian description from the perspective of fixed points within a reference frame. Lagrangian description from the perspective of a parcel moving within the flow. Streamline

More information

Formulae that you may or may not find useful. E v = V. dy dx = v u. y cp y = I xc/a y. Volume of an entire sphere = 4πr3 = πd3

Formulae that you may or may not find useful. E v = V. dy dx = v u. y cp y = I xc/a y. Volume of an entire sphere = 4πr3 = πd3 CE30 Test 1 Solution Key Date: 26 Sept. 2017 COVER PAGE Write your name on each sheet of paper that you hand in. Read all questions very carefully. If the problem statement is not clear, you should ask

More information

Fluid Mechanics Testbank By David Admiraal

Fluid Mechanics Testbank By David Admiraal Fluid Mechanics Testbank By David Admiraal This testbank was created for an introductory fluid mechanics class. The primary intentions of the testbank are to help students improve their performance on

More information

Q1. Which of the following is the correct combination of dimensions for energy?

Q1. Which of the following is the correct combination of dimensions for energy? Tuesday, June 15, 2010 Page: 1 Q1. Which of the following is the correct combination of dimensions for energy? A) ML 2 /T 2 B) LT 2 /M C) MLT D) M 2 L 3 T E) ML/T 2 Q2. Two cars are initially 150 kilometers

More information

Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

More information

JNTU World. Subject Code: R13110/R13

JNTU World. Subject Code: R13110/R13 Set No - 1 I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E) Time: 3 hours Max. Marks: 70 Question

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

CHAPTER 28 PRESSURE IN FLUIDS

CHAPTER 28 PRESSURE IN FLUIDS CHAPTER 8 PRESSURE IN FLUIDS EXERCISE 18, Page 81 1. A force of 80 N is applied to a piston of a hydraulic system of cross-sectional area 0.010 m. Determine the pressure produced by the piston in the hydraulic

More information

Department of Civil Engineering Hydraulics and Water Resources Division Application and Solution I

Department of Civil Engineering Hydraulics and Water Resources Division Application and Solution I Question 1: The Specific weight of water is 1000 /. Using this given value, find the specific mass of water in SI units (g= m/s ). Solution 1: The specific mass of water in SI units: 1 N 1000 m 9810 Nm

More information

Chapter 6. Losses due to Fluid Friction

Chapter 6. Losses due to Fluid Friction Chapter 6 Losses due to Fluid Friction 1 Objectives ä To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. ä To correlate this in terms of

More information

Unit C-1: List of Subjects

Unit C-1: List of Subjects Unit C-: List of Subjects The elocity Field The Acceleration Field The Material or Substantial Derivative Steady Flow and Streamlines Fluid Particle in a Flow Field F=ma along a Streamline Bernoulli s

More information

2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B.

2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B. CHAPTER 03 1. Write Newton's second law of motion. YOUR ANSWER: F = ma 2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False 3.Streamwise

More information

ME332 FLUID MECHANICS LABORATORY (PART II)

ME332 FLUID MECHANICS LABORATORY (PART II) ME332 FLUID MECHANICS LABORATORY (PART II) Mihir Sen Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 Version: April 2, 2002 Contents Unit 5: Momentum transfer

More information

ACE Engineering College

ACE Engineering College ACE Engineering College Ankushapur (V), Ghatkesar (M), R.R.Dist 501 301. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * MECHANICS OF FLUIDS & HYDRAULIC

More information

4 Finite Control Volume Analysis Introduction Reynolds Transport Theorem Conservation of Mass

4 Finite Control Volume Analysis Introduction Reynolds Transport Theorem Conservation of Mass iv 2.3.2 Bourdon Gage................................... 92 2.3.3 Pressure Transducer................................ 93 2.3.4 Manometer..................................... 95 2.3.4.1 Piezometer................................

More information

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 7 Reading Assignment R1. Read the section Common Dimensionless Groups

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

) = slugs/ft 3. ) = lb ft/s. ) = ft/s

) = slugs/ft 3. ) = lb ft/s. ) = ft/s 1. Make use of Tables 1. in the text book (See the last page in this assignent) to express the following quantities in SI units: (a) 10. in./in, (b) 4.81 slugs, (c).0 lb, (d) 7.1 ft/s, (e) 0.04 lb s/ft.

More information

!! +! 2!! +!"!! =!! +! 2!! +!"!! +!!"!"!"

!! +! 2!! +!!! =!! +! 2!! +!!! +!!!! Homework 4 Solutions 1. (15 points) Bernoulli s equation can be adapted for use in evaluating unsteady flow conditions, such as those encountered during start- up processes. For example, consider the large

More information

Page 1. Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.)

Page 1. Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Page 1 Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Vlachos Prof. Ardekani

More information

Engineering Thermodynamics. Chapter 1. Introductory Concepts and Definition

Engineering Thermodynamics. Chapter 1. Introductory Concepts and Definition 1.1 Introduction Chapter 1 Introductory Concepts and Definition Thermodynamics may be defined as follows : Thermodynamics is an axiomatic science which deals with the relations among heat, work and properties

More information

All questions are of equal value. No marks are subtracted for wrong answers.

All questions are of equal value. No marks are subtracted for wrong answers. (1:30 PM 4:30 PM) Page 1 of 6 All questions are of equal value. No marks are subtracted for wrong answers. Record all answers on the computer score sheet provided. USE PENCIL ONLY! Black pen will look

More information

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

More information

Physics 3 Summer 1990 Lab 7 - Hydrodynamics

Physics 3 Summer 1990 Lab 7 - Hydrodynamics Physics 3 Summer 1990 Lab 7 - Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure

More information

Petroleum Engineering Dept. Fluid Mechanics Second Stage Dr. Ahmed K. Alshara

Petroleum Engineering Dept. Fluid Mechanics Second Stage Dr. Ahmed K. Alshara Continents Chapter 1. Fluid Mechanics -Properties of fluids -Density, specific gravity, specific volume and Viscosity -Newtonian and non Newtonian fluids -Surface tension Compressibility -Pressure -Cavitations

More information

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola CONCEPTS AND DEFINITIONS Prepared by Engr. John Paul Timola ENGINEERING THERMODYNAMICS Science that involves design and analysis of devices and systems for energy conversion Deals with heat and work and

More information

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Chapter 14 Fluids Fluids Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Fluid = Gas or Liquid MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised 10/13/01 Densities MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised

More information

Lecture 4. Differential Analysis of Fluid Flow Navier-Stockes equation

Lecture 4. Differential Analysis of Fluid Flow Navier-Stockes equation Lecture 4 Differential Analysis of Fluid Flow Navier-Stockes equation Newton second law and conservation of momentum & momentum-of-momentum A jet of fluid deflected by an object puts a force on the object.

More information

FLOW MEASUREMENT IN PIPES EXPERIMENT

FLOW MEASUREMENT IN PIPES EXPERIMENT University of Leicester Engineering Department FLOW MEASUREMENT IN PIPES EXPERIMENT Page 1 FORMAL LABORATORY REPORT Name of the experiment: FLOW MEASUREMENT IN PIPES Author: Apollin nana chaazou Partner

More information

Chapter 3 Bernoulli Equation

Chapter 3 Bernoulli Equation 1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around

More information