# HYDRAULICS STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL HYDRAULICS

Size: px
Start display at page:

Transcription

1 1 STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL

2 Syllabus Hydraulics ( Fluid Mechanics ) Fluid properties, hydrostatics, measurements of flow, Bernoulli's theorem and its application, flow through pipes, flow in open channels, weirs, flumes, spillways, pumps and turbines.

3 C O N T E N T 1. PROPERTIES OF FLUID FLUID PRESSURE 1-4. HYDROSTATIC FORCES ON SURFACES BUOYANCY AND FLOATATION FLUID KINEMATICS FLUID DYNAMICS VISCOUS FLOW AND TURBULENT FLOW FLOW THROUGH PIPES FLOW IN OPEN CHANNEL HYDRAULIC MACHINES-TURBINES HYDRAULIC MACHINES-PUMPS PRACTICE-SET

4 4

5 5 CHAPTER-1 PROPERTIES OF FLUID 1.1 Fluid: Liquids and gasses both are having the property of continuous deformation under the action of shear or tangential forces, this property of continuous deformation is known as flow property, where as this property is not found in solids, hence liquids and gasses both are kept in different category which is for away from solids and this category is known as fluids. A fluid is a substance that deforms continuously under the action of a shear (tangential) stress no matter how small the shear stress may be. Example: (as shown in figure), if a shear stress is applied at any location in a fluid, the element oxxwhich is initially at rest, will move to oyy, then to ozz and so on. The tangential stress in a fluid bo depends on the velocity of deformation, and vanishes as the velocity approaches zero. 1. Fluid is Continuum In macroscopic system of fluid particles the inter molecular distances can be treated as negligible as compare to the characteristics dimension of systems, so therefore we can assume adjacent to one molecule there is another molecule and there is no inter space between them so the entire fluid mass system can be treated as a continuous distribution of mass which is called continuum. 1. Properties of Fluid: 1 cm 1 ne = 1 gram sec 1 m 1 kilogram = 1 metric slug sec 1 ft 1 pound = 1 pound sec

6 6 1 ft 1 pound = 1slug sec M (i) Density/mass density, : V The density of liquids may be considered as constant while that of gasses changes with the variation of pressure and temperature. Atmospheric air 1.1 kg/ m Density of H O 1000 kg/ m Where, : density (kg/m ) M: mass (kg) V: volume (m ) w(water) = 1000 kg/m or 1g/cm ' ' Depends on temperature and Pressure. Temperature Pressure (ii.) Specific Weight or Weight Density As it stands for the force exerted by gravity on a unit volume of a fluid, it has units force per unit volume. SI unit N/ m Weight density depends on the gravitational acceleration and mass density. Since the gravitational acceleration (g) varies from place to place, the specific weight will also vary. The mass density changes with temperature and pressure, hence the specific weight will also depend upon temperature and pressure. weight mg = volume V g Where, : specific weight. (N/m ) m: mass (kg) g: acceleration due to gravity = 9.81 m/s V: volume (m ) w(water) : 9.81 kn/m (iii) Specific volume v: Thus it is reciprocal of specific weight SI unit m / N Metric gravitational system unit V w g Defined as volume per unit weight of a fluid. m / kg( f )

7 7 In the metric absolute system cm / ne or cc/ne In the English gravitational and absolute unit i.e. ft / slug For the problems involving the gas flow specific volume is defined as the volume of the fluid per unit mass, in which it s reciprocal of mass density. SI units m / kg For liquids the,, vary only slightly with the variation of pressure and temperature. It is because of molecular structure of liquids in which the molecules are arranged compactly, (compared to gas) For gasses the values of,, properties vary greatly with variation of either pressure, or temperature or both. It is because to the molecular structure of the gas in which the molecular spacing (i.e. volume) changes considerably due to the pressure and temperature variations. (iv) Specific gravity (G): Defined as the ratio of specific weight or mass density of a fluid to the specific weight or mass density of a standard fluid. For liquid, water is taken as standard fluid. For gas, air is taken as standard fluid. 1 For liquid, G w Where, = specific weight of liquid l w = specific weight of water For gas, g G air g = specific weight of gas air = specific weight of air For, mercury, G = 1.6 For liquids, the standard fluid chosen for comparison is pure HO at 4ºC. For gasses H or air at some specified temperature and pressure. 1.4 Viscosity: When a layer of fluid resist the motion of an adjacent layer such a fundamental property of fluid is called viscosity.

8 8 Hence, Newton s equation of viscosity. Mathematically, du du Where, = shear stress (N/m ) du = rate of shear strain (1/s) OR rate of shear deformation OR velocity gradient = Co-efficient of namic viscosity or viscosity or viscosity of fluid The relative viscosity of layer which is in contact with the surface is zero. There is the development of velocity gradient in transverse direction of flow ( du.dt) d ( u + du) dt du Angular shear deformation = du. dt tan d du dt (If θ is very small) Rate of angular deformation = Velocity gradient in transverse direction of flow. Unit of : u dt In SI unit, = N.s/m or Pa.s ne sec In CGS unit, 1poise cm kgf sec In MKS unit, m 1N / m 1Pa

9 N S 1 10 poise m 9 1 Centi-poise (=1 cp) = 1 poise( p) 100 Viscosity of water () at 0ºC = 0.01 poise or 1 cp. d dt If is high d is less dt flow is difficult If is less d is high dt flow is easy It means that viscosity is direct measurement of the internal resistance between the two layers in flow. 1.5 Kinematic viscosity, : Defined as the ratio of co-efficient of namic viscosity () to the density () of fluid. Unit of : In SI unit, m /s In CGS unit, cm /sec = stoke 1 Stoke = 10 4 m /s and 1 Centistokes = 1/100 stoke Variation of viscosity with temperature: 1 For Liquid: 0 1 t t : Viscosity of liquid at tºc (in poise) 0 : Viscosity of liquid at 0ºC (in poise), : Constants With increase in temperature, viscosity decreases. Here, cohesive forces predominate, which get reduced with increase in temperature.

10 10 For Gas: 0 t t With increase in temperature, viscosity increases. Here, molecular momentum transfer predominates which increases with increase in temperature. 1.6 Types of fluids: (i) Ideal fluid: Non-viscous, incompressible Surface tension doesn t exist Offers no resistance against flow Also known as imaginary fluid For mathematical analysis, fluids with low viscosity are treated as ideal fluid. Example:- Air, water etc. (ii) Real fluid: Viscous, compressible Surface tension exists Offers resistance against fluid Mostly fluid available in nature are real fluid 1.7 Newtonian fluid: The flow which obey Newton law of viscosity e.g. water, oil, air. du d du ( constant) dl Example: air, water, Glycerin, kerosene etc.

11 Non-Newtonian Fluid: These don t obey Newton s law of viscosity i.e. du Ideal plastic: It has a definite yield stress and a linear relation exists between shear stress ( ) and rate of shear strain du. Thixotropic fluid: It has a definite yield stress and a non-linear relation exists between As shear stress ( ) and rate of shear strain (du/) T Example: Printer s ink 1.9 Bulk modulus, K: Defined as the ratio of compressive stress to volumetric strain. K dp dv dv Where, dp : change in pressure = compressive stress. dv V : Volumetric strain = change in volume original volume K (for water) at normal temperature and pressure = N/m K (for air) at normal temperature and pressure = N/m Hence, air is about 0,000 times more compressible than water. It is temperature dependent Compressibility: It is given as the reciprocal of bulk modulus (K). dv V 1 dp K mass = m = V = constant dv Vd 0 dv V d 1 d. d P If is not changing with respect to pressure d 0 0 d P Fluid is incompressible If is changing with respect to pressure

12 1 Liquid d 0 0 Fluid is compressible d P Compressible Pressure Density H 1atm O 998 kg/ m 100 atm 100 kg/ m 5kg/ m % change % 998 very less 0 Therefore, liquid are treated as incompressible Gas: Highly compressible Vobject Mach number ( M a ) Vsound [If mach number 0. gas are treated as incompressible] The reciprocal of compressibility is called Bulk modulus of elasticity 1.11 Surface tension: Fluids are having very important property by virtue of which it is minimize its surface area upto its certain limit, such a property of fluids is known as surface tension Basic cause of surface tension is cohesion Mathematically F unit N/m L Where, : surface tension (N/m) T : tensile force (N) L : Length (m) It is temperature dependent and decreases with rise in temperature. It is also dependent on the fluid in contact with the liquid surface.

13 1 Case I: Pressure Intensity inside a liquid a droplet: P i = inner pressure P o = outer pressure P P P = excess pressure i o R ( R) P. R A c = circumferential area P. R. R [Surface tension circumferential area] P R Case II Pressure Intensity inside a soap bubble: 4 P R 4 R P R R, (4R) P. R Case III: Surface tension on a liquid jet considers a jet of length l, and diameter d. Force due to pressure = P L d Force due to surface tension = L At equilibrium P L d = L L P L d d Where, P Pressure intensity inside the jet (N/m ) Surface tension (N/m)

14 L Length of jet (Assumed) d Diameter of Jet Wetting and Non-wetting liquids: It depends on both cohesion and adhesion It is mutual property of liquid-surface If Adhesion >>>> cohesion (wetting) (water glass) o o For Hg o o H O For water 0 If cohesion >>>> Adhesion (Non-wetting) (Hg-glass) o [ 10º 140º ] Classroom Coaching Program Postal Coaching Program Online Test Series To buy Complete Course Materials Contact : , Website :

15 15

### Fluid Mechanics Introduction

Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be

### Introduction to Marine Hydrodynamics

1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first

### CHAPTER 1 Fluids and their Properties

FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those

### Fluid Mechanics Abdusselam Altunkaynak

Fluid Mechanics Abdusselam Altunkaynak 1. Unit systems 1.1 Introduction Natural events are independent on units. The unit to be used in a certain variable is related to the advantage that we get from it.

### Chapter 1 Fluid Characteristics

Chapter 1 Fluid Characteristics 1.1 Introduction 1.1.1 Phases Solid increasing increasing spacing and intermolecular liquid latitude of cohesive Fluid gas (vapor) molecular force plasma motion 1.1.2 Fluidity

### 1. The Properties of Fluids

1. The Properties of Fluids [This material relates predominantly to modules ELP034, ELP035] 1.1 Fluids 1.1 Fluids 1.2 Newton s Law of Viscosity 1.3 Fluids Vs Solids 1.4 Liquids Vs Gases 1.5 Causes of viscosity

### ENGR 292 Fluids and Thermodynamics

ENGR 292 Fluids and Thermodynamics Scott Li, Ph.D., P.Eng. Mechanical Engineering Technology Camosun College Jan.13, 2017 Review of Last Class Course Outline Class Information Contact Information, Website

### COURSE NUMBER: ME 321 Fluid Mechanics I. Fluid: Concept and Properties

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid: Concept and Properties Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 What is Fluid Mechanics? Fluid mechanics

### 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

### Fluid Properties and Units

Fluid Properties and Units CVEN 311 Continuum Continuum All materials, solid or fluid, are composed of molecules discretely spread and in continuous motion. However, in dealing with fluid-flow flow relations

### A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:

### Review of Fluid Mechanics

Chapter 3 Review of Fluid Mechanics 3.1 Units and Basic Definitions Newton s Second law forms the basis of all units of measurement. For a particle of mass m subjected to a resultant force F the law may

### P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid.

CEE 3310 Thermodynamic Properties, Aug. 27, 2010 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

### Petroleum Engineering Dept. Fluid Mechanics Second Stage Dr. Ahmed K. Alshara

Continents Chapter 1. Fluid Mechanics -Properties of fluids -Density, specific gravity, specific volume and Viscosity -Newtonian and non Newtonian fluids -Surface tension Compressibility -Pressure -Cavitations

### AMME2261: Fluid Mechanics 1 Course Notes

Module 1 Introduction and Fluid Properties Introduction Matter can be one of two states: solid or fluid. A fluid is a substance that deforms continuously under the application of a shear stress, no matter

### Steven Burian Civil & Environmental Engineering September 25, 2013

Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

### Liquids and solids are essentially incompressible substances and the variation of their density with pressure is usually negligible.

Properties of Fluids Intensive properties are those that are independent of the mass of a system i.e. temperature, pressure and density. Extensive properties are those whose values depend on the size of

### Fluid Engineering Mechanics

Fluid Engineering Mechanics Chapter Fluid Properties: Density, specific volume, specific weight, specific gravity, compressibility, viscosity, measurement of viscosity, Newton's equation of viscosity,

### s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I

Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum

### Fluid Mechanics-61341

An-Najah National University College of Engineering Fluid Mechanics-61341 Chapter [1] Fundamentals 1 The Book (Elementary Fluid Mechanics by Street, Watters and Vennard) Each chapter includes: Concepts

### Petroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara

Continents Petroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara Chapter 1. Fluid Mechanics -Properties of fluids -Density, specific gravity, specific volume and

### 1 FLUIDS AND THEIR PROPERTIES

FLUID MECHANICS CONTENTS CHAPTER DESCRIPTION PAGE NO 1 FLUIDS AND THEIR PROPERTIES PART A NOTES 1.1 Introduction 1.2 Fluids 1.3 Newton s Law of Viscosity 1.4 The Continuum Concept of a Fluid 1.5 Types

### Lecturer, Department t of Mechanical Engineering, SVMIT, Bharuch

Fluid Mechanics By Ashish J. Modi Lecturer, Department t of Mechanical Engineering, i SVMIT, Bharuch Review of fundamentals Properties of Fluids Introduction Any characteristic of a system is called a

### Dynamic (absolute) Viscosity

Viscosity Taken from: http://www.engineeringtoolbox.com/dynamic-absolute-kinematic-viscosity-d_412.html The viscosity of a fluid is an important property in the analysis of liquid behavior and fluid motion

### MECHANICS OF FLUIDS. (For B.E. Mechanical Engineering Students) As per New Revised Syllabus of APJ Abdul Kalam Technological University

MECHANICS OF FLUIDS (For B.E. Mechanical Engineering Students) As per New Revised Syllabus of APJ Abdul Kalam Technological University Dr. S.Ramachandran, M.E., Ph.D., Mr. K.Pandian, M.E., Mr. YVS. Karthick,

### ME3250 Fluid Dynamics I

ME3250 Fluid Dynamics I Section I, Fall 2012 Instructor: Prof. Zhuyin Ren Department of Mechanical Engineering University of Connecticut Course Information Website: http://www.engr.uconn.edu/~rzr11001/me3250_f12/

### BFC FLUID MECHANICS BFC NOOR ALIZA AHMAD

BFC 10403 FLUID MECHANICS CHAPTER 1.0: Principles of Fluid 1.1 Introduction to Fluid Mechanics 1.2 Thermodynamic Properties of a Fluid: Density, specific weight, specific gravity, viscocity (kelikatan)berat

### Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION 1-1 The Fluid. 1-2 Dimensions. 1-3 Units. 1-4 Fluid Properties. 1 1-1 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid

### Fluid Mechanics. du dy

FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

### CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

### Dr. Nidal Hussein 7/15/2018

Dr. Nidal Hussein What is a Fluid? A fluid is defined as a substance that deforms continuously whilst acted upon by any force (shear force) tangential to the area on which it acts The ratio of the shear

### Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi

Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi WHAT we will learn I. Characterization of Fluids - What is the fluid? (Physical properties of Fluid) II. Behavior of fluids - Fluid

### MECHANICAL PROPERTIES OF FLUIDS:

Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is

### Summary PHY101 ( 2 ) T / Hanadi Al Harbi

الكمية Physical Quantity القانون Low التعريف Definition الوحدة SI Unit Linear Momentum P = mθ be equal to the mass of an object times its velocity. Kg. m/s vector quantity Stress F \ A the external force

### University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1

University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING ME 311 - Fluid Mechanics Lecture notes Chapter 1 Introduction and fluid properties Prepared by : Dr. N. Ait Messaoudene Based

### FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

### ch-01.qxd 8/4/04 2:33 PM Page 1 Part 1 Basic Principles of Open Channel Flows

ch-01.qxd 8/4/04 2:33 PM Page 1 Part 1 Basic Principles of Open Channel Flows ch-01.qxd 8/4/04 2:33 PM Page 3 Introduction 1 Summary The introduction chapter reviews briefly the basic fluid properties

### INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

INTRODUCTION DEFINITION OF FLUID plate solid F at t = 0 t > 0 = F/A plate U p F fluid t 0 t 1 t 2 t 3 FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

### CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

### Any of the book listed below are more than adequate for this module.

Notes For the Level 1 Lecture Course in Fluid Mechanics Department of Civil Engineering, University of Tikrit. FLUID MECHANICS Ass. Proff. Yaseen Ali Salih 2016 1. Contents of the module 2. Objectives:

### 10 - FLUID MECHANICS Page 1

0 - FLUID MECHANICS Page Introduction Fluid is a matter in a state which can flow. Liquids, gases, molten metal and tar are examples of fluids. Fluid mechanics is studied in two parts: ( i ) Fluid statics

### Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,

CHAPTER1: Basic Definitions, Zeroth, First, and Second Laws of Thermodynamics 1.1. Definitions What does thermodynamic mean? It is a Greeks word which means a motion of the heat. Water is a liquid substance

### FRIDAYS 14:00 to 15:40. FRIDAYS 16:10 to 17:50

Brad Peterson, P.E. FRIDAYS 14:00 to 15:40 FRIDAYS 16:10 to 17:50 BRAD PETERSON, P.E., PTOE Brigham Young University, 1975 Highway and Bridge Design Montana, Utah, Idaho, Wyoming Worked 27 Years in Helena,

### Chapter 9: Solids and Fluids

Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical

### MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 6113 DEPARTMENT: CIVIL SUB.CODE/ NAME: CE6303/ MECHANICS OF FLUIDS SEMESTER: III UNIT-1 FLUID PROPERTIES TWO MARK QUESTIONS AND ANSWERS 1. Define fluid mechanics.(auc

### PROPERTIES OF FLUIDS

Unit - I Chapter - PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pa-s To find : Shear stress. Step - : Calculate the shear stress at various

### Fluids and their Properties

Chapter (1) Fluids and their Properties Dr. KHALIL MAHMOUD ALASTAL Eng.Mohammed AbuRahma Eng.Reem Sbaih 2017 Newton s Law of Viscosity: - / Non-Newtonian Fluids: - Mass Density: - / Specific weight: -

### Fluid Mechanics Discussion. Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad

Discussion Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad 2014-2015 Chapter (1) Fluids and their Properties Fluids and their Properties Fluids (Liquids or gases) which a substance

### Welcome to MECH 280. Ian A. Frigaard. Department of Mechanical Engineering, University of British Columbia. Mech 280: Frigaard

Welcome to MECH 280 Ian A. Frigaard Department of Mechanical Engineering, University of British Columbia Lectures 1 & 2: Learning goals/concepts: What is a fluid Apply continuum hypothesis Stress and viscosity

### Chapter 9. Solids and Fluids

Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium

### Chapter -5(Section-1) Friction in Solids and Liquids

Chapter -5(Section-1) Friction in Solids and Liquids Que 1: Define friction. What are its causes? Ans : Friction:- When two bodies are in contact with each other and if one body is made to move then the

### ESE TOPIC WISE OBJECTIVE SOLVED PAPER II

C I V I L E N G I N E E R I N G ESE TOPIC WISE OBJECTIVE SOLVED PAPER II FROM 1995-2017 UPSC Engineering Services Examination, State Engineering Service Examination & Public Sector Examination. IES MASTER

### MECHANICAL PROPERTIES OF FLUIDS

CHAPTER-10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure

### Chapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas

Chapter 9 States of Matter Solids and Fluids Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium

### TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

### Class Notes Fall 2014

57:020 Fluid Mechanics Class Notes Fall 2014 Prepared by: Professor Fred Stern Typed by: Stephanie Schrader (Fall 1999) Corrected by: Jun Shao (Fall 2003, Fall 2005) Corrected by: Jun Shao, Tao Xing (Fall

### Chapter 1 Fluid Proper2es. CE Fluid Mechanics Diogo Bolster

Chapter 1 Fluid Proper2es CE30460 - Fluid Mechanics Diogo Bolster What is a Fluid? A substance that deforms con2nuously when acted on by a shearing stress A solid will deform to a certain point for a given

### UNIT I FLUID PROPERTIES AND STATICS

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: II-B.Tech & I-Sem Course & Branch:

### CHAPTER (2) FLUID PROPERTIES SUMMARY DR. MUNZER EBAID MECH.ENG.DEPT.

CHAPTER () SUMMARY DR. MUNZER EBAID MECH.ENG.DEPT. 08/1/010 DR.MUNZER EBAID 1 System Is defined as a given quantity of matter. Extensive Property Can be identified when it is Dependent on the total mass

### Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

### Chapter 10 - Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain

Question 10.1: Explain why The blood pressure in humans is greater at the feet than at the brain Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though

### Fluid Mechanics Testbank By David Admiraal

Fluid Mechanics Testbank By David Admiraal This testbank was created for an introductory fluid mechanics class. The primary intentions of the testbank are to help students improve their performance on

### Homework of chapter (1) (Solution)

بسم اهلل الرمحن الرحيم The Islamic University of Gaza, Civil Engineering Department, Fluid mechanics-discussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Mohammed H El Nazli Eng. Sarah R Rostom First

### NPTEL Quiz Hydraulics

Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic

### The most common methods to identify velocity of flow are pathlines, streaklines and streamlines.

4 FLUID FLOW 4.1 Introduction Many civil engineering problems in fluid mechanics are concerned with fluids in motion. The distribution of potable water, the collection of domestic sewage and storm water,

### Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:

11/01/2017 Lecture 3 Properties of Fluids There are thermodynamic properties of fluids like: Pressure, p (N/m 2 ) or [ML -1 T -2 ], Density, ρ (kg/m 3 ) or [ML -3 ], Specific weight, γ = ρg (N/m 3 ) or

### UNIT V : DIMENSIONAL ANALYSIS AND MODEL STUDIES

UNIT V : DIMENSIONAL ANALYSIS AND MODEL STUDIES 1. Define dimensional analysis. Dimensional analysis is a mathematical technique which makes use of the study of dimensions as an aid to solution of several

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

### MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.

Dynamic, Absolute and Kinematic Viscosity An introduction to dynamic, absolute and kinematic viscosity and how to convert between CentiStokes (cst), CentiPoises (cp), Saybolt Universal Seconds (SSU), degree

### CE MECHANICS OF FLUIDS UNIT I

CE 6303- MECHANICS OF FLUIDS UNIT I 1. Define specific volume of a fluid and write its unit [N/D-14][M/J-11] Volume per unit mass of a fluid is called specific volume. Unit: m3 / kg. 2. Name the devices

### ACE Engineering College

ACE Engineering College Ankushapur (V), Ghatkesar (M), R.R.Dist 501 301. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * MECHANICS OF FLUIDS & HYDRAULIC

### Lecture 5. Labs this week: Please review ME3281 Systems materials! Viscosity and pressure drop analysis Fluid Bulk modulus Fluid Inertance

Labs this week: Lab 10: Sequencing circuit Lecture 5 Lab 11/12: Asynchronous/Synchronous and Parallel/Tandem Operations Please review ME3281 Systems materials! 132 Viscosity and pressure drop analysis

### Fluid Mechanics and Machinery

Fluid Mechanics and Machinery For III Semester B.E., Mechanical Engineering Students As per Latest Syllabus of Anna University - TN With Short Questions & Answers and University Solved Papers New Regulations

### PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.

PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion

### ME3560 Tentative Schedule Spring 2019

ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to

### We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from

Chapter 1. Introduction 1.1 Some Characteristics of Fluids We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from scientific or engineering point of view. In

### Fluid Mechanics. Spring 2009

Instructor: Dr. Yang-Cheng Shih Department of Energy and Refrigerating Air-Conditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 1-1 General Remarks 1-2 Scope

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.

Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : II-I- B. Tech Year : 0 0 Course Coordinator

### REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology

REE 307 Fluid Mechanics II Lecture 1 Sep 27, 2017 Dr./ Ahmed Mohamed Nagib Elmekawy Zewail City for Science and Technology Course Materials drahmednagib.com 2 COURSE OUTLINE Fundamental of Flow in pipes

### Tutorial 10. Boundary layer theory

Tutorial 10 Boundary layer theory 1. If the velocity distribution law in a laminar boundary layer over a flat plate is assumes to be of the form, determine the velocity distribution law. At y = 0, u= 0

### ME3560 Tentative Schedule Fall 2018

ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read

### Chapter 4 DYNAMICS OF FLUID FLOW

Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

### 1.3 Analysis of Fluid Behavior

1.3 Analysis of Fluid Behavior Fluid Statics : When the fluid is at rest. Fluid Dynamics : When the fluid is moving. Governing equations : Conservation of Conservation of Conservation of mass momentum

### R09. d water surface. Prove that the depth of pressure is equal to p +.

Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

### 1. Properties of Fluids

Properties of Fluids S K Mondal s Chapter. Properties of Fluids Contents of this chapter. Definition of Fluid. Characteristics of Fluid 3. Ideal and Real Fluids 4. Viscosity 5. Units of Viscosity 6. Kinematic

### Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

### Viscous Flow and Convective Heat Transfer (EGFD 7041) Fall 2018

Viscous Flow and Convective Heat Transfer (EGFD 7041) Fall 2018 Introduction & Review Dr. Peter J. Disimile UC-FEST Department of Aerospace Engineering Peter.disimile@uc.edu 1 2 1 1.Basic Modes of Heat

### Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016

Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 01 May 4/ 016 Second year Mech. Time :180 min. Examiner:Dr.Mohamed Elsharnoby Attempt

### Chapter 12. Static Equilibrium and Elasticity

Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial

### 9 MECHANICAL PROPERTIES OF SOLIDS

9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body

### MEASUREMENT OF VISCOSITY OF LIQUID

MEASUREMENT OF VISCOSITY OF LIQUID Objectives: To measure the viscosity of sample liquids. Apparatus: (i) Glass tube (ii)steel balls, (iii) Retort stand and clamps, (iv) Weighing balance, (v) Screw gauge,

### Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Agricultural Science 1B Principles & Processes in Agriculture Mike Wheatland (m.wheatland@physics.usyd.edu.au) Outline - Lectures weeks 9-12 Chapter 6: Balance in nature - description of energy balance

### Introduction and Fundamental Concepts (Lectures 1-7)

Introduction and Fundamental Concepts (Lectures -7) Q. Choose the crect answer (i) A fluid is a substance that (a) has the same shear stress at a point regardless of its motion (b) is practicall incompressible

### DIMENSIONS AND UNITS

DIMENSIONS AND UNITS A dimension is the measure by which a physical variable is expressed quantitatively. A unit is a particular way of attaching a number to the quantitative dimension. Primary Dimension

### Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small