Summary PHY101 ( 2 ) T / Hanadi Al Harbi


 Augusta Jacobs
 3 years ago
 Views:
Transcription
1 الكمية Physical Quantity القانون Low التعريف Definition الوحدة SI Unit Linear Momentum P = mθ be equal to the mass of an object times its velocity. Kg. m/s vector quantity Stress F \ A the external force acting on an object per unit crosssectional are Elastic modulus stress / strain the ratio of the stress to the resulting: strain. N/ m 2 or kg/m.sec2 N / m 2 Density ρ= m \ v amount of matter per unit volume or is the ratio of mass to volume. kg.m 3 Pressure P = F/A force per unit area. N / m 2 = Pa scalar quantity. intensity I = P A the power P per unit area A w/m 2 The speed of sound waves v = B ρ If the medium is a liquid or a gas and has a bulk modulus B and density ρ, the speed of sound waves in that medium is Km/s 1
2  Elastic Properties of Solids : The types 1 Young s modulus 2 Shear modulus 3 Bulk modulus measures which measures the resistance of a solid to a change in its length. which measures the resistance to motion of the planes within a solid parallel to each other which measures the resistance of solids or fluids to changes in their volume. For solid length. Solid Shape solids or fluids volume Low Definition Tensile stress: the ratio of the magnitude of the external force F to the crosssectional area A. Tensile strain: in this case the ratio of the change in length ΔLto the original length Li. Shear stress: ratio of the tangential force to the area A of the face being sheared. Shear strain: ratio Δx/h, where Δx is the horizontal distance that the sheared face moves and h is the height of the object. Volume stress: ratio of magnitude of total force F exerted on a surface to the area A of the surface. P = F/A is called pressure. If it changes by an amount ΔP = ΔF/A, then the object will experience a volume change ΔV. Volume strain : is equal to the change in volume ΔV divided by the initial volume Vi. Unit N / m 2 N / m 2 N / m 2 2
3 Fluid mechanics is : the study of how fluids moveand the forces on them. divided into: Fluid statics the study of fluids at rest. Fluid dynamics the study of fluids in motion  The types of collision : 1 / Elastic collision 2 / Inelastic collision  Momentum of the system is conserved in all collisions, but kinetic energy of the system is conserved only in elastic collisions.  Conservation of momentum: Whenever two or more particles in an isolated system (frictionless, no loss of energy) interact, the total momentum of the system remains constant. (total linear momentum before = total linear momentum after)  The result of a stress is strai, which is a measure of the degree of deformation. 3
4 Matter is normally classified as being in one of four states: solid, liquid, gas, and plasma. All of liquids, gases, and plasma are fluids.  pressure of the fluid at a depth is given by:  The pressure in a fluid changes linearly with depth.  Pascal s princible: A change in the pressure applied to an enclosed liquid is transmitted undiminished to every point of the liquid and to the walls of the container. 4
5  Law of Archimedes: The buoyant force is equal to the weight of the replaced liquid or gas. Buoyant Force B : which is equal in magnitude to the weight of the fluid displaced by the object. The Surface of Liquid : cohesive forces forces between like molecules such as the forces between water molecules adhesive forces forces between unlike molecules such as those exerted by glass on water The drop takes spherical shape because of a property of liquid surfaces called surface tension. Viscosity refers to the internal friction of a fluid. 5
6 The viscosity force F is given as : F = η A v L The equation of continuity for fluids states that: The product of the area and the fluid speed at all points along a pipe is constant for an incompressible fluid (A 1 V 1 = A 2 V 2 = const) The Bernoulli s equation is : (P ρv 2 + ρ g h = constant) 6
7 Torricelli's law, also known as Torricelli's theorem, is relating the speed of fluid flowing out of an opening to the height of fluid above the opening. (P = P 0, and v 1 = 2 gh )  Simple harmonic motion is : a special case of oscillatory motion that occurs when the restoring force is proportional to the displacement. The spring force is : ( F = kx) is called (Hooke s law)  Simple harmonic motion Components : 1 Position (x) : x = A cos ( ωt + ) 2 AMPLITUDE ( A ) : The maximum value of the position of the particle in either the (+x) or ( x) direction. 3 PHASE CONSTANT ( ): is determined uniquely by the position and velocity of the particle. 4 PERIOD ( T ): is the time interval required for the particle to go throughone full cycle of its motion. (T= 2π ) ω (ω = K m, has units of rad/s.). 5 FREQUENCY( f ): the number of oscillations that the particle undergoes per unit time interval,the units of f are cycles per second, or hertz (Hz). ( f= 1 T = ω 2π ) 7
8 The simple pendulum: 1 angular frequency : ω = g l 2 PERIOD: 2π ω = 2π l g The period and frequency of a simple pendulum depend only on the length of the string and the acceleration due to gravity. Wave: is a periodic disturbance traveling through a medium. All waves carry energy. Types of Waves: 1Transverse wave A traveling wave or pulse that causes the elements of the disturbed medium to move perpendicular to the direction of propagation. an example: Water waves 2 Longitudinal wave A traveling wave or pulse that causes the elements of the medium to move parallel to the direction of propagation an example: Sound waves 8
9  Sound Waves: are divided into three categories that cover different frequency ranges: (1) Audible waves :lie within the range of sensitivity of the human ear. (2) Infrasonic waves: have frequencies below the audible range. (3) Ultrasonic waves :have frequencies above the audible range. 9
10 They travel through any material medium with a speed that depends on the properties of the medium. The speed of sound waves depends on: 1 the compressibility ( 1\B) 2 density of the medium ( ρ) 3bulk modulus B if the medium is gas or liquid 4the temperature of the medium. Superposition principle: If two or more traveling waves are moving through a medium, the resultant value of the wave function at any point is the algebraic sum of the values of the wave functions of the individual waves. interference of wave: One consequence of thattwo traveling waves can pass through each other without being destroyed or even altered A standing wave : is an oscillation pattern with a stationary outline that results from the superposition of two identical waves traveling in opposite directions. INTERFERENCE OF WAVES: 1/ constructive interference 2/destructive interference 10
11 The Doppler Effect : General Case: 11
TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant ForcesArchimedes Principle
Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant ForcesArchimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation
More informationOscillatory Motion and Wave Motion
Oscillatory Motion and Wave Motion Oscillatory Motion Simple Harmonic Motion Wave Motion Waves Motion of an Object Attached to a Spring The Pendulum Transverse and Longitudinal Waves Sinusoidal Wave Function
More informationChapter 9: Solids and Fluids
Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical
More information1 Lecture 5. Linear Momentum and Collisions Elastic Properties of Solids
1 Lecture 5 Linear Momentum and Collisions Elastic Properties of Solids 2 Linear Momentum and Collisions 3 Linear Momentum Is defined to be equal to the mass of an object times its velocity. P = m θ Momentum
More informationProducing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont.
Producing a Sound Wave Chapter 14 Sound Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave Using a Tuning Fork to Produce a
More informationPHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.
PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion
More informationToday s lecture. WEST VIRGINIA UNIVERSITY Physics
Today s lecture Review of chapters 114 Note: I m taking for granted that you ll still know SI/cgs units, orderofmagnitude estimates, etc., so I m focusing on problems. Velocity and acceleration (1d)
More informationOutline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves
Outline Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves Hooke s Law Force is directly proportional to the displacement of the object from the equilibrium
More informationSchedule for the remainder of class
Schedule for the remainder of class 04/25 (today): Regular class  Sound and the Doppler Effect 04/27: Cover any remaining new material, then Problem Solving/Review (ALL chapters) 04/29: Problem Solving/Review
More informationExam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2)
Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) What to study: Quiz 6 Homework problems for Chapters 15 & 16 Material indicated in the following review slides Other Specific things:
More informationLongitudinal Waves. waves in which the particle or oscillator motion is in the same direction as the wave propagation
Longitudinal Waves waves in which the particle or oscillator motion is in the same direction as the wave propagation Longitudinal waves propagate as sound waves in all phases of matter, plasmas, gases,
More informationANSWERS 403 INDEX. Bulk modulus 238 Buoyant force 251
ANSWERS 403 INDEX A Absolute scale temperature 276 Absolute zero 276 Acceleration (linear) 45 Acceleration due to gravity 49,189 Accuracy 22 Actionreaction 97 Addition of vectors 67 Adiabatic process
More informationChapter 10. Solids & Liquids
Chapter 10 Solids & Liquids Next 6 chapters use all the concepts developed in the first 9 chapters, recasting them into a form ready to apply to specific physical systems. 10.1 Phases of Matter, Mass Density
More informationExam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations.
Exam 3 Review Chapter 10: Elasticity and Oscillations stress will deform a body and that body can be set into periodic oscillations. Elastic Deformations of Solids Elastic objects return to their original
More informationMiamiDade Community College PHY 2053 College Physics I
MiamiDade Community College PHY 2053 College Physics I PHY 2053 3 credits Course Description PHY 2053, College physics I, is the first semester of a two semester physicswithoutcalculus sequence. This
More informationChapter 13. Hooke s Law: F =  kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week!
Chapter 13 Hooke s Law: F =  kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition Next Week! Review Physics 2A: Springs, Pendula & Circular Motion Elastic Systems F = kx Small Vibrations
More informationSection 1 Simple Harmonic Motion. The student is expected to:
Section 1 Simple Harmonic Motion TEKS The student is expected to: 7A examine and describe oscillatory motion and wave propagation in various types of media Section 1 Simple Harmonic Motion Preview Objectives
More information1 2 Models, Theories, and Laws 1.5 Distinguish between models, theories, and laws 2.1 State the origin of significant figures in measurement
Textbook Correlation Textbook Correlation Physics 1115/2015 Chapter 1 Introduction, Measurement, Estimating 1.1 Describe thoughts of Aristotle vs. Galileo in describing motion 1 1 Nature of Science 1.2
More informationOscillation the vibration of an object. Wave a transfer of energy without a transfer of matter
Oscillation the vibration of an object Wave a transfer of energy without a transfer of matter Equilibrium Position position of object at rest (mean position) Displacement (x) distance in a particular direction
More information4. Find the average velocities and average accelerations of a particle moving in 1D given its position at various times.
PHYSICS 201: TEST 1 STUDY SHEET 1. Convert a quantity from one set of units to another set of units. 2. Convert a 2D vector from rectangular form (components) to polar form (magnitude and angle), or from
More informationDIVIDED SYLLABUS ( )  CLASS XI PHYSICS (CODE 042) COURSE STRUCTURE APRIL
DIVIDED SYLLABUS (201516 )  CLASS XI PHYSICS (CODE 042) COURSE STRUCTURE APRIL Unit I: Physical World and Measurement Physics Need for measurement: Units of measurement; systems of units; SI units, fundamental
More informationPHYS 1114, Lecture 33, April 10 Contents:
PHYS 1114, Lecture 33, April 10 Contents: 1 This class is o cially cancelled, and has been replaced by the common exam Tuesday, April 11, 5:30 PM. A review and Q&A session is scheduled instead during class
More informationFinal Mock Exam PH 2211D
Final Mock Exam PH 2211D April 18, 2015 You will have 2 hours to complete this exam. You must answer 8 questions to make a perfect score of 80. 1 Chapter Concept Summary Equations: Cutnell & Johnson
More information2016 AP Physics Unit 6 Oscillations and Waves.notebook December 09, 2016
AP Physics Unit Six Oscillations and Waves 1 2 A. Dynamics of SHM 1. Force a. since the block is accelerating, there must be a force acting on it b. Hooke's Law F = kx F = force k = spring constant x =
More informationChapter 11: Fluids. ρ = Density: Pressure: F P = P atm = Pa = 1 atm. Pressure: Pressure in a Static Fluid: P2 = P1+
Chapter 11: Fluids Density: ρ = m V ρ = 1. 1 water 3 kg m 3 Pressure: Pressure: F P = P atm =1.13 1 5 Pa = 1 atm A Pressure in a Static Fluid: P = P1+ ρ gh Pascal s Principle: Any change in the pressure
More informationD.A.V. PUBLIC SCHOOL, UPPAL S SOUTHEND, SECTOR 49, GURUGRAM CLASS XI (PHYSICS) Academic plan for
D.A.V. PUBLIC SCHOOL, UPPAL S SOUTHEND, SECTOR 49, GURUGRAM CLASS XI (PHYSICS) Academic plan for 20172018 UNIT NAME OF UNIT WEIGHTAGE 1. 2. 3. Physical World and Measurement Kinemetics Laws of Motion
More informationLecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves.
Lecture 17 Mechanical waves. Transverse waves. Sound waves. Standing Waves. What is a wave? A wave is a traveling disturbance that transports energy but not matter. Examples: Sound waves (air moves back
More informationRaymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves
Raymond A. Serway Chris Vuille Chapter Thirteen Vibrations and Waves Periodic Motion and Waves Periodic motion is one of the most important kinds of physical behavior Will include a closer look at Hooke
More informationChapter 1: Mathematical Concepts and Vectors
Chapter 1: Mathematical Concepts and Vectors giga G 1 9 mega M 1 6 kilo k 1 3 centi c 1  milli m 13 micro μ 16 nano n 19 1 in =.54 cm 1 m = 1 cm = 3.81 t 1 mi = 58 t = 169 m 1 hr = 36 s 1 day = 86,4
More informationMECHANICAL PROPERTIES OF FLUIDS:
Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is
More informationSound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects.
Sound Waves Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects Introduction Sound Waves: Molecular View When sound travels through a medium, there
More informationPhys101 Lectures 28, 29. Wave Motion
Phys101 Lectures 8, 9 Wave Motion Key points: Types of Waves: Transverse and Longitudinal Mathematical Representation of a Traveling Wave The Principle of Superposition Standing Waves; Resonance Ref: 117,8,9,10,11,16,1,13,16.
More informationOscillations  AP Physics B 1984
Oscillations  AP Physics B 1984 1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of (A) 1 2 (B) (C) 1 1 2 (D) 2 (E) 2 A block oscillates
More informationSimple Harmonic Motion and Elasticity continued
Chapter 10 Simple Harmonic Motion and Elasticity continued Spring constants & oscillations Hooke's Law F A = k x Displacement proportional to applied force Oscillations position: velocity: acceleration:
More informationClass XI Physics Syllabus One Paper Three Hours Max Marks: 70
Class XI Physics Syllabus 2013 One Paper Three Hours Max Marks: 70 Class XI Weightage Unit I Physical World & Measurement 03 Unit II Kinematics 10 Unit III Laws of Motion 10 Unit IV Work, Energy & Power
More informationSection 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum
Section 1 Simple Harmonic Motion Preview Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum Section 1 Simple Harmonic Motion Objectives Identify the conditions of simple harmonic
More informationGrade XI. Physics Exam Preparation Booklet. Chapterwise Important Questions. #GrowWithGreen
Grade XI Physics Exam Preparation Booklet Chapterwise Important Questions #GrowWithGreen Units and Measurements Q1. After reading the physics book, Anamika recalled and noted down the expression for the
More informationPhysics in Faculty of
Why we study Physics in Faculty of Engineering? Dimensional analysis Scalars and vector analysis Rotational of a rigid body about a fixed axis Rotational kinematics 1. Dimensional analysis The ward dimension
More informationMeasurement p. 1 What Is Physics? p. 2 Measuring Things p. 2 The International System of Units p. 2 Changing Units p. 3 Length p. 4 Time p. 5 Mass p.
Measurement p. 1 What Is Physics? p. 2 Measuring Things p. 2 The International System of Units p. 2 Changing Units p. 3 Length p. 4 Time p. 5 Mass p. 7 Review & Summary p. 8 Problems p. 8 Motion Along
More informationOscillations and Waves
Oscillations and Waves Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring Energy Conservation in Oscillatory
More informationCLASS 2 CLASS 2. Section 13.5
CLASS 2 CLASS 2 Section 13.5 Simple Pendulum The simple pendulum is another example of a system that exhibits simple harmonic motion The force is the component of the weight tangent to the path of motion
More informationCHAPTER 1: PHYSICAL QUANTITIES AMD MEASUREMENT
CHAPTER 1: PHYSICAL UANTITIES AMD MEASUREMENT 11 Physical uantities and Units a) State basic quantities and their respective SI units: length (m), time (s), mass (kg), electrical current (A), temperature
More informationMock Exam III PH 201, PH 221
Mock Exam III PH 201, PH 221 April 12, 2015 You will have 1 hour to complete this exam, and must answer 7 of the problems correctly to make a perfect score. 1 Chapter Concept Summary Equations: Cutnell
More informationCHAPTER 11 VIBRATIONS AND WAVES
CHAPTER 11 VIBRATIONS AND WAVES http://www.physicsclassroom.com/class/waves/u10l1a.html UNITS Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Period and Sinusoidal Nature of SHM The
More information2007 Problem Topic Comment 1 Kinematics Positiontime equation Kinematics 7 2 Kinematics Velocitytime graph Dynamics 6 3 Kinematics Average velocity
2007 Problem Topic Comment 1 Kinematics Positiontime equation Kinematics 7 2 Kinematics Velocitytime graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics
More informationWay to Success Model Question Paper. Answer Key
A Way to Success Model Question Paper,aw;gpay; / PHYSICS Answer Key (Based on new Question pattern 2019) gphpt I / SECTION I 1 (c) 9 (b) 2 jpirntfk; velocity 10 (d) 3 AB cosθ; 11 (c) 4 v = f λ 12 (b) 5
More information7.2.1 Seismic waves. Waves in a mass spring system
7..1 Seismic waves Waves in a mass spring system Acoustic waves in a liquid or gas Seismic waves in a solid Surface waves Wavefronts, rays and geometrical attenuation Amplitude and energy Waves in a mass
More informationEXPERIENCE COLLEGE BEFORE COLLEGE
Mechanics, Heat, and Sound (PHY302K) College Unit Week Dates Big Ideas Subject Learning Outcomes Assessments Apply algebra, vectors, and trigonometry in context. Employ units in problems. Course Mathematics
More informationCHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS
CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS 7.1 Period and Frequency Anything that vibrates or repeats its motion regularly is said to have oscillatory motion (sometimes called harmonic
More informationNEW HORIZON PRE UNIVERSITY COLLEGE LESSON PLAN FOR THE ACADEMIC YEAR Department of PHYSICS ( I PUC)
NEW HORIZON PRE UNIVERSITY COLLEGE LESSON PLAN FOR THE ACADEMIC YEAR 017 018 Department of PHYSICS ( I PUC) Week  Month: June Chapter (Physical world) Scope and excitement of Physics
More informationPhysics. Assignment1(UNITS AND MEASUREMENT)
Assignment1(UNITS AND MEASUREMENT) 1. Define physical quantity and write steps for measurement. 2. What are fundamental units and derived units? 3. List the seven basic and two supplementary physical
More informationPHYSICS PAPER 1. (THEORY) (Three hours)
PHYSICS PAPER 1 (THEY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) All questions are compulsory. Question number
More informationPage # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork
Physics 103: Lecture 6 Sound Producing a Sound Wave Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave A tuning fork will produce
More informationSection 1 Matter and Energy
CHAPTER OUTLINE Section 1 Matter and Energy Key Idea questions > What makes up matter? > What is the difference between a solid, a liquid, and a gas? > What kind of energy do all particles of matter have?
More informationBaccalieu Collegiate. Physics Course Outline
Baccalieu Collegiate Physics 2204 Course Outline Course Content: Unit 1: Kinematics Motion is a common theme in our everyday lives: birds fly, babies crawl, and we, ourselves, seem to be in a constant
More informationcos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015
skiladæmi 10 Due: 11:59pm on Wednesday, November 11, 015 You will receive no credit for items you complete after the assignment is due Grading Policy Alternative Exercise 1115 A bar with cross sectional
More informationChapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian
Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite
More informationChapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas
Chapter 9 States of Matter Solids and Fluids Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium
More informationRutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 19. Home Page. Title Page. Page 1 of 36.
Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics I Fall 2015 Lecture 19 Page 1 of 36 12. Equilibrium and Elasticity How do objects behave under applied external forces? Under
More informationRecap. Transitions from one state into another are initiated by heating/cooling the material. Density is mass per volume: Pressure is force per area:
Recap There are 4 aggregates states of matter:  Solid: Strong interatomic bonds, particles cannot move freely.  Liquid: Weaker bonds, particles move more freely  Gas: No interatomic bonds, particles
More informationFinal Review, Day 1. Announcements: Web page:
Announcements: Final Review, Day 1 Final exam next Wednesday (5/9) at 7:30am in the Coors Event Center. Recitation tomorrow is a review. Please feel free to ask the TA any questions on the course material.
More informationFluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding
Fluid Mechanics HOOKE'S LAW If deformation is small, the stress in a body is proportional to the corresponding strain. In the elasticity limit stress and strain Stress/strain = Const. = Modulus of elasticity.
More informationSIMPLE HARMONIC MOTION AND WAVES
Simple Harmonic Motion (SHM) SIMPLE HARMONIC MOTION AND WAVES  Periodic motion any type of motion that repeats itself in a regular cycle. Ex: a pendulum swinging, a mass bobbing up and down on a spring.
More informationBRAZOSPORT COLLEGE LAKE JACKSON, TEXAS SYLLABUS PHYS MECHANICS AND HEAT
BRAZOSPORT COLLEGE LAKE JACKSON, TEXAS SYLLABUS PHYS 2325  MECHANICS AND HEAT CATALOG DESCRIPTION: PHYS 2325 Mechanics and Heat. CIP 4008015403 A calculusbased approach to the principles of mechanics
More informationMonth. March APRIL. The Orchid School Baner Weekly Syllabus Overview Std : XI Subject : Physics. Activities/ FAs Planned.
The Orchid School Baner Weekly Syllabus Overview 20152016 Std : XI Subject : Physics Month Lesson / Topic Expected Learning Objective Activities/ FAs Planned Remark March Physical World and Measurement
More informationPhysics 141 Rotational Motion 2 Page 1. Rotational Motion 2
Physics 141 Rotational Motion 2 Page 1 Rotational Motion 2 Right handers, go over there, left handers over here. The rest of you, come with me.! Yogi Berra Torque Motion of a rigid body, like motion of
More informationMECHANICAL PROPERTIES OF FLUIDS
CHAPTER10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure
More informationPhysical and Biological Properties of Agricultural Products Acoustic, Electrical and Optical Properties and Biochemical Property
Physical and Biological Properties of Agricultural Products Acoustic, Electrical and Optical Properties and Biochemical Property 1. Acoustic and Vibrational Properties 1.1 Acoustics and Vibration Engineering
More informationThe... of a particle is defined as its change in position in some time interval.
Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle
More informationFigure 1 Answer: = m
Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel
More informationObjectives: After completion of this module, you should be able to:
Chapter 12 Objectives: After completion of this module, you should be able to: Demonstrate your understanding of elasticity, elastic limit, stress, strain, and ultimate strength. Write and apply formulas
More informationChapter 16 Waves in One Dimension
Lecture Outline Chapter 16 Waves in One Dimension Slide 161 Chapter 16: Waves in One Dimension Chapter Goal: To study the kinematic and dynamics of wave motion, i.e., the transport of energy through a
More information43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms,
43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, A) her moment of inertia increases and her rotational kinetic energy remains the same.
More informationChapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation
Chapter 9 Solids and Fluids Elasticity Archimedes Principle Bernoulli s Equation States of Matter Solid Liquid Gas Plasmas Solids: Stress and Strain Stress = Measure of force felt by material Stress= Force
More informationAP PHYSICS 1 Learning Objectives Arranged Topically
AP PHYSICS 1 Learning Objectives Arranged Topically with o Big Ideas o Enduring Understandings o Essential Knowledges o Learning Objectives o Science Practices o Correlation to Knight Textbook Chapters
More informationChapter 16 Waves in One Dimension
Chapter 16 Waves in One Dimension Slide 161 Reading Quiz 16.05 f = c Slide 162 Reading Quiz 16.06 Slide 163 Reading Quiz 16.07 Heavier portion looks like a fixed end, pulse is inverted on reflection.
More information11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an
Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior
More informationChapter 9. Solids and Fluids
Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium
More informationChapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM)
Chapter 6: Oscillatory Motion and Waves Hooke s Law (revisited) F =  k x Tthe elastic potential energy of a stretched or compressed spring is PE elastic = kx / Springblock Note: To consider the potential
More informationMODEL PAPER CLASS XI PHYSICS (GROUP 1) BLUEPRINT Name of chapter (1)
sr. no. MODEL PAPER CLASS XI PHYSICS (GROUP ) BLUEPRINT Name of chapter VSAQ () SAI (2) SAII (3) Value based (4) LA(5) Total 70 Physical world and measurement 3 2 Kinematics 2 3,3 5 3 Laws of motion
More informationPhysics 1C. Lecture 12C
Physics 1C Lecture 12C Simple Pendulum The simple pendulum is another example of simple harmonic motion. Making a quick force diagram of the situation, we find:! The tension in the string cancels out with
More informationFluid Mechanics Abdusselam Altunkaynak
Fluid Mechanics Abdusselam Altunkaynak 1. Unit systems 1.1 Introduction Natural events are independent on units. The unit to be used in a certain variable is related to the advantage that we get from it.
More informationThe velocity (v) of the transverse wave in the string is given by the relation: Time taken by the disturbance to reach the other end, t =
Question 15.1: A string of mass 2.50 kg is under a tension of 200 N. The length of the stretched string is 20.0 m. If the transverse jerk is struck at one end of the string, how long does the disturbance
More informationChapter 16 Mechanical Waves
Chapter 6 Mechanical Waves A wave is a disturbance that travels, or propagates, without the transport of matter. Examples: sound/ultrasonic wave, EM waves, and earthquake wave. Mechanical waves, such as
More informationLectures Chapter 16 (Cutnell & Johnson, Physics 7 th edition)
PH 2014A spring 2007 Waves and Sound Lectures 2627 Chapter 16 (Cutnell & Johnson, Physics 7 th edition) 1 Waves A wave is a vibrational, trembling motion in an elastic, deformable body. The wave is initiated
More informationStanding waves [49 marks]
Standing waves [49 marks] 1. The graph shows the variation with time t of the velocity v of an object undergoing simple harmonic motion (SHM). At which velocity does the displacement from the mean position
More informationPhysics 161 Lecture 17 Simple Harmonic Motion. October 30, 2018
Physics 161 Lecture 17 Simple Harmonic Motion October 30, 2018 1 Lecture 17: learning objectives Review from lecture 16  Second law of thermodynamics.  In pv cycle process: ΔU = 0, Q add = W by gass
More informationOCR Physics Specification A  H156/H556
OCR Physics Specification A  H156/H556 Module 3: Forces and Motion You should be able to demonstrate and show your understanding of: 3.1 Motion Displacement, instantaneous speed, average speed, velocity
More informationKnowledge of basic math concepts is expected (conversions, units, trigonometry, vectors, etc.)
Topics for the Final Exam Knowledge of basic math concepts is expected (conversions, units, trigonometry, vectors, etc.) Chapter 2. displacement, velocity, acceleration motion in one dimension with constant
More informationChapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow
Fluids: substances which flow Chapter 5: Fluids Liquids: take the shape of their container but have a definite volume Gases: take the shape and volume of their container Density m ρ = V Mass Density =
More informationUNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 117.3 MIDTERM TEST Alternative Siting February 2014 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE
More informationChapter 10 Lecture Outline. Copyright The McGrawHill Companies, Inc. Permission required for reproduction or display.
Chapter 10 Lecture Outline Copyright The McGrawHill Companies, Inc. Permission required for reproduction or display. 1 Chapter 10: Elasticity and Oscillations Elastic Deformations Hooke s Law Stress and
More informationPhy 212: General Physics II. Daniel Bernoulli ( )
Phy 1: General Physics II Chapter 14: Fluids Lecture Notes Daniel Bernoulli (1700178) Swiss merchant, doctor & mathematician Worked on: Vibrating strings Ocean tides Kinetic theory Demonstrated that as
More informationSolution to phys101t112final Exam
Solution to phys101t112final Exam Q1. An 800N man stands halfway up a 5.0m long ladder of negligible weight. The base of the ladder is.0m from the wall as shown in Figure 1. Assuming that the wallladder
More informationClass Average = 71. Counts Scores
30 Class Average = 71 25 20 Counts 15 10 5 0 0 20 10 30 40 50 60 70 80 90 100 Scores Chapter 12 Mechanical Waves and Sound To describe mechanical waves. To study superposition, standing waves, and interference.
More informationAP PHYSICS 1 BIG IDEAS AND LEARNING OBJECTIVES
AP PHYSICS 1 BIG IDEAS AND LEARNING OBJECTIVES KINEMATICS 3.A.1.1: The student is able to express the motion of an object using narrative, mathematical, and graphical representations. [SP 1.5, 2.1, 2.2]
More information1. Types of Waves. There are three main types of waves:
Chapter 16 WAVES I 1. Types of Waves There are three main types of waves: https://youtu.be/kvc7obkzq9u?t=3m49s 1. Mechanical waves: These are the most familiar waves. Examples include water waves, sound
More informationChapter 12 Vibrations and Waves Simple Harmonic Motion page
Chapter 2 Vibrations and Waves 2 Simple Harmonic Motion page 43845 Hooke s Law Periodic motion the object has a repeated motion that follows the same path, the object swings to and fro. Examples: a pendulum
More informationSt Olave s Grammar School. AS Physics Mock Revision Checklist
St Olave s Grammar School Mock Practical skills.. a Can you design experiments, including ones to solve problems set in a practical context?.. b Can you identify the variables that must be controlled in
More informationWork. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or:
Work To move an object we must do work Work is calculated as the force applied to the object through a distance or: W F( d) Work has the units Newton meters (N m) or Joules 1 Joule = 1 N m Energy Work
More information